

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Overfitting + k-Nearest Neighbors

Matt Gormley Lecture 4 Jan. 27, 2025

Course Staff

Education Associate

Brynn Edmunds

Instructors

Henry Chai

Matt Gormley

HW2/HW6

Sebastian Lu

Zhifei Li

Rohini Banerjee

HW3/HW7

Bhargav Hadya

Changwook Shim

Maxwell Chien

Santiago Arambulo

HW5/HW9

Albert Zhang

Joaquin Wang

Shivi Jindal

Jenny Yang

Yuhan Gao

Zoe Xu

Siyan Chen

HW4/HW8

Andrew Wang

Andra Liu

Vianna Seifi

Reminders

- Homework 2: Decision Trees
 - Out: Wed, Jan. 22
 - Due: Mon, Feb. 3 at 11:59pm

Q&A

- Why don't my entropy calculations match those on the slides?
- Remember that H(Y) is conventionally reported in "bits" and computed using log base 2. e.g., H(Y) = - P(Y=0) $\log_2 P(Y=0) - P(Y=1) \log_2 P(Y=1)$
- When and how do we decide to stop growing trees? What if the set of values an attribute could take was really large or even infinite?
- We'll address this question for discrete attributes today. If an attribute is real-valued, there's a clever trick that only considers O(L) splits where L = # of values the attribute takes in the training set. Can you guess what it does?

Q&A

- Q: What does decision tree training do if a branch receives no data?
- A: Then we hit the base case and create a leaf node. So the real question is what does majority vote do when there is no data? Of course, there is no majority label, so (if forced to) we could just return one randomly.

- Q: What do we do at test time when we observe a value for a feature that we didn't see at training time.
- A: This really just a variant of the first question. That said, a real DT implementation needs to elegantly handle this case. We could do so by either (a) assuming that all possible values will be seen at train time, so there should be a branch for all attributes even if the partition of the dataset doesn't include them all or (b) recognize the unseen value at test time and return some appropriate label in that case.

EMPIRICAL COMPARISON OF SPLITTING CRITERIA

Experiments: Splitting Criteria

Bluntine & Niblett (1992) compared 4 criteria (random, Gini, mutual information, Marshall) on 12 datasets

Medical Diagnosis Datasets: (4 of 12)

- hypo: data set of 3772 examples records expert opinion on possible hypo- thyroid conditions from 29 real and discrete attributes of the patient such as sex, age, taking of relevant drugs, and hormone readings taken from drug samples.
- breast: The classes are reoccurrence or non-reoccurrence of breast cancer sometime after an operation. There are nine attributes giving details about the original cancer nodes, position on the breast, and age, with multi-valued discrete and real values.
- tumor: examples of the location of a primary tumor
- lymph: from the lymphography domain in oncology. The classes are normal, metastases, malignant, and fibrosis, and there are nineteen attributes giving details about the lymphatics and lymph nodes

Data Set	Classes	Attr.s	Training Set	Test Set
hypo	4	29	1000	2772
breast	2	9	200	86
tumor	22	18	237	102
lymph	4	18	103	45
LED	10	7	200	1800
mush	2	22	200	7924
votes	2	17	200	235
votes1	2	16	200	235
iris	3	4	100	50
glass	7	9	100	114
xd6	2	10	200	400
pole	2	4	200	1647

Table 1 Properties of the data sate

Experiments: Splitting Criteria

Table 3. Error for different splitting rules (pruned trees).

Key Takeaway:
GINI gain and
Mutual
Information are
statistically
indistinguishable!

	Splitting Rule				
Data Set	GINI	Info. Gain	Marsh.	Random	
hypo	1.01 ± 0.29	0.95 ± 0.22	1.27 ± 0.47	7.44 ± 0.53	
breast	28.66 ± 3.87	28.49 ± 4.28	27.15 ± 4.22	29.65 ± 4.97	
tumor	60.88 ± 5.44	62.70 ± 3.89	61.62 ± 3.98	67.94 ± 5.68	
lymph	24.44 ± 6.92	24.00 ± 6.87	24.33 ± 5.51	32.33 ± 11.25	
LED	33.77 ± 3.06	32.89 ± 2.59	33.15 ± 4.02	38.18 ± 4.57	
mush	1.44 ± 0.47	1.44 ± 0.47	7.31 ± 2.25	8.77 ± 4.65	
votes	4.47 ± 0.95	4.57 ± 0.87	11.77 ± 3.95	12.40 ± 4.56	
votes1	12.79 ± 1.48	13.04 ± 1.65	15.13 ± 2.89	15.62 ± 2.73	
iris	5.00 ± 3.08	4.90 ± 3.08	5.50 ± 2.59	14.20 ± 6.77	
glass	39.56 ± 6.20	50.57 ± 6.73	40.53 ± 6.41	53.20 ± 5.01	
xd6	22.14 ± 3.23	22.17 ± 3.36	2.06 ± 3.37	31.86 ± 3.62	
pole	15.43 ± 1.51	15.47 ± 0.88		another name	

tor mutual information

Experiments: Splitting Criteria

Table 4. Difference and significance of error for GINI splitting rule versus others.

Key Takeaway:
GINI gain and
Mutual
Information are
statistically
indistinguishable!

		Splitting Rule	
Data Set	Info. Gain	Marsh.	Random
hypo breast tumor lymph LED mush votes votesl iris glass xd6 pole	-0.06 (0.82) -0.17 (0.23) 1.81 (0.84) -0.44 (0.83) 0.12 (0.17) 0.00 (0.00) 0.11 (0.55) 0.26 (0.47) -0.10 (0.67) 1.01 (0.50) 0.04 (0.11) 0.03 (0.11)	5.86 A.AA (7.30 1. A 2.34 6. 0.50 7. 0.96 2. E -0.07 6.42	6.43 (1.00) 0.99 (0.72) 7.06 (0.99) 7.89 (0.99) s are of the form (B.BB) where: A.AA is the average difference in errors between the two methods B.BB is the significance of the difference according to a two-tailed baired t-test

Splitting Dula

INDUCTIVE BIAS (FOR DECISION TREES)

Decision Tree Learning Example

Dataset:

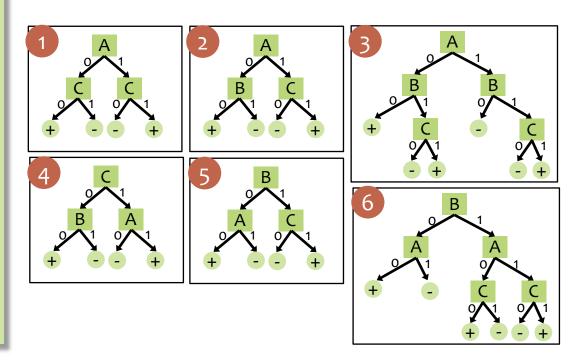
Output Y, Attributes A, B, C

Υ	Α	В	C
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

Poll Question 1

Which decision tree would you learn if you used error rate as the splitting criterion?

(Assume ties are broken alphabetically.)



Decision Tree Learning Example

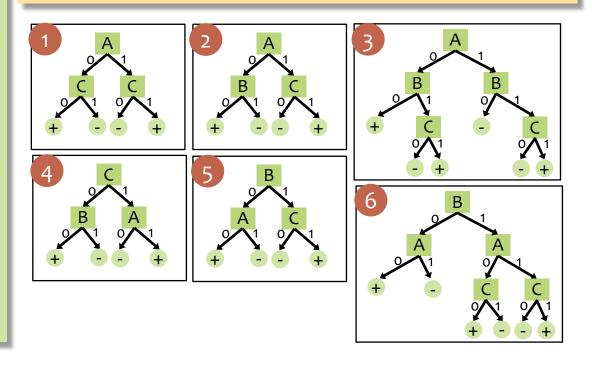
Dataset:

Output Y, Attributes A, B, C

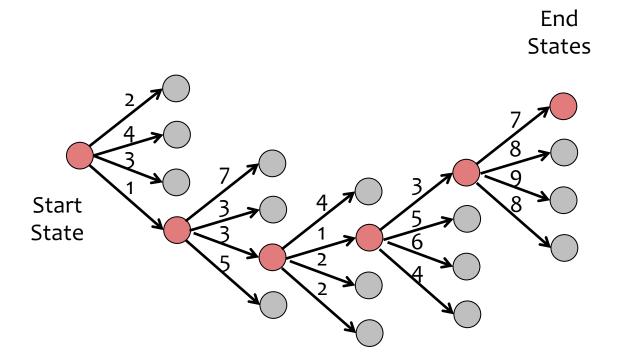
Υ	Α	В	C
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

Poll Question 2

Which decision tree is the smallest tree that achieves the lowest possible training error?



Background: Greedy Search



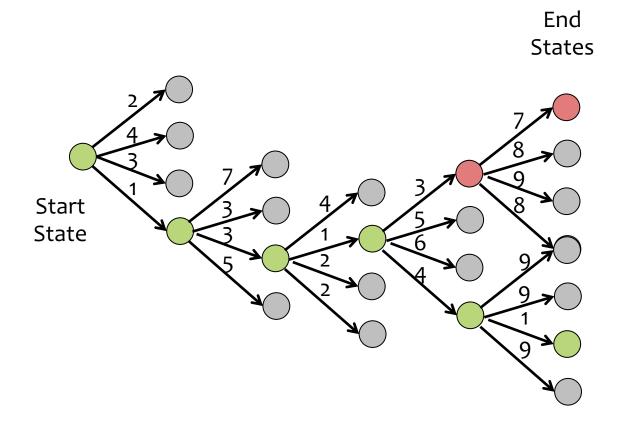
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Background: Greedy Search



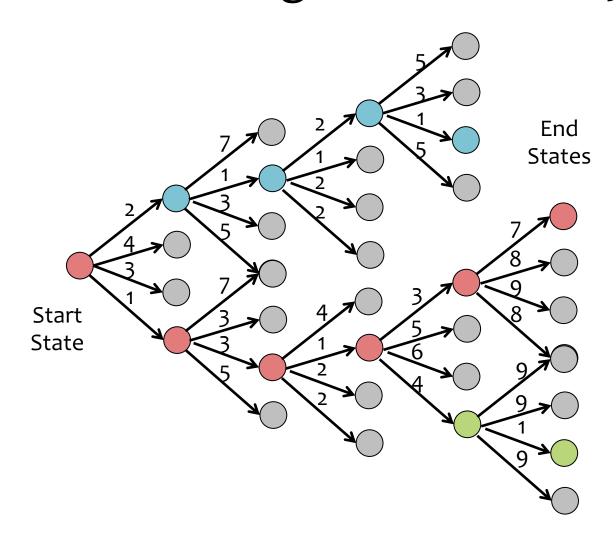
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Background: Greedy Search



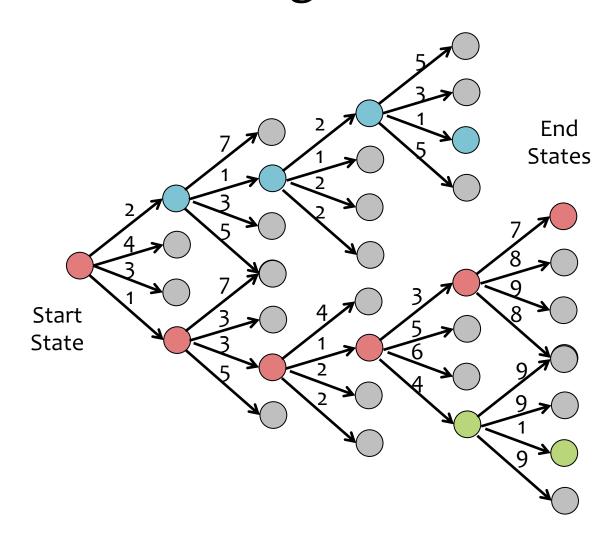
Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Greedy Search:

- At each node, selects the edge with lowest (immediate) weight
- Heuristic method of search (i.e. does not necessarily find the best path)
- Computation time: linear in max path length

Background: Global Search



Goal:

- Search space consists of nodes and weighted edges
- Goal is to find the lowest (total) weight path from root to a leaf

Global Search:

- Compute the weight of the path to every leaf
- Exact method of search (i.e. gauranteed to find the best path)
- Computation time: exponential in max path length

Decision Tree Learning as Search

search space: all possible decision trees
 node: single decision tree
 edge: connects one full tree to another, where child has one more split than parent
 sneeze
 dege weight: (negative) splitting criterion
 DT learning: greedy search, maximizing our splitting criterion at each step

Big Question:

How is it that your ML algorithm can generalize to unseen examples?

DT: Remarks

ID3 = Decision Tree Learning with Mutual Information as the splitting criterion

Question: Which tree does ID3 find?

Definition:

We say that the **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples

What is the inductive bias of the ID3 algorithm?

OVERFITTING (FOR DECISION TREES)

Overfitting and Underfitting

Underfitting

- The model...
 - is too simple
 - is unable captures the trends in the data
 - exhibits too much bias
- Example: majority-vote classifier (i.e. depth-zero decision tree)
- Example: a toddler (that has not attended medical school) attempting to carry out medical diagnosis

Overfitting

- The model...
 - is too complex
 - is fitting the noise in the data or fitting "outliers"
 - does not have enough bias
- Example: our "memorizer" algorithm responding to an irrelevant attribute
- Example: medical student who simply memorizes patient case studies, but does not understand how to apply knowledge to new patients

Overfitting

• Given a hypothesis *h*, its...

... error rate over all training data: error(h, D_{train})

... error rate over all test data: error(h, D_{test})

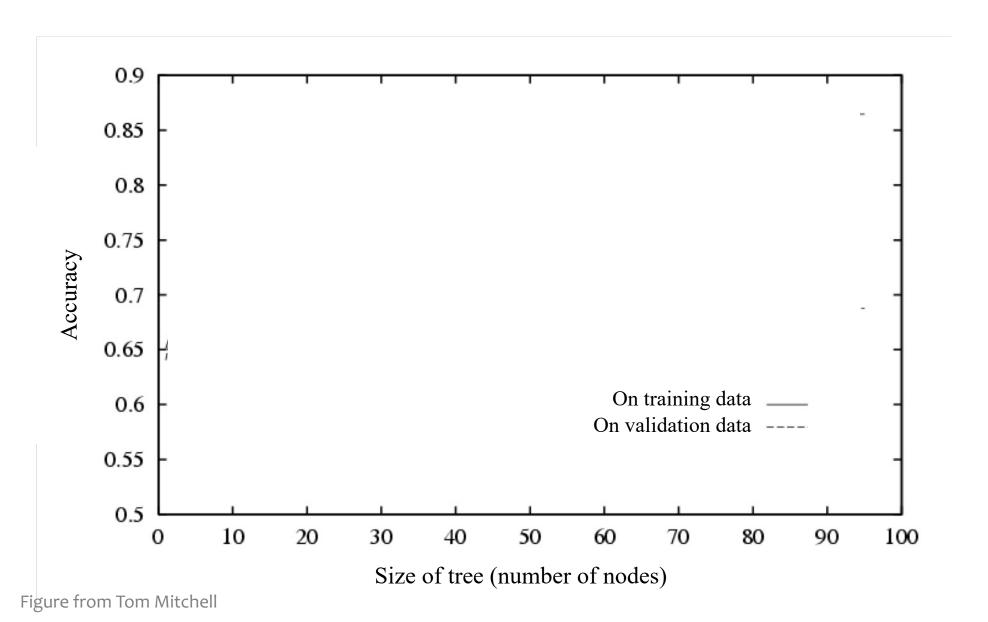
... true error over all data: error_{true}(h)

• We say h overfits the training data if...

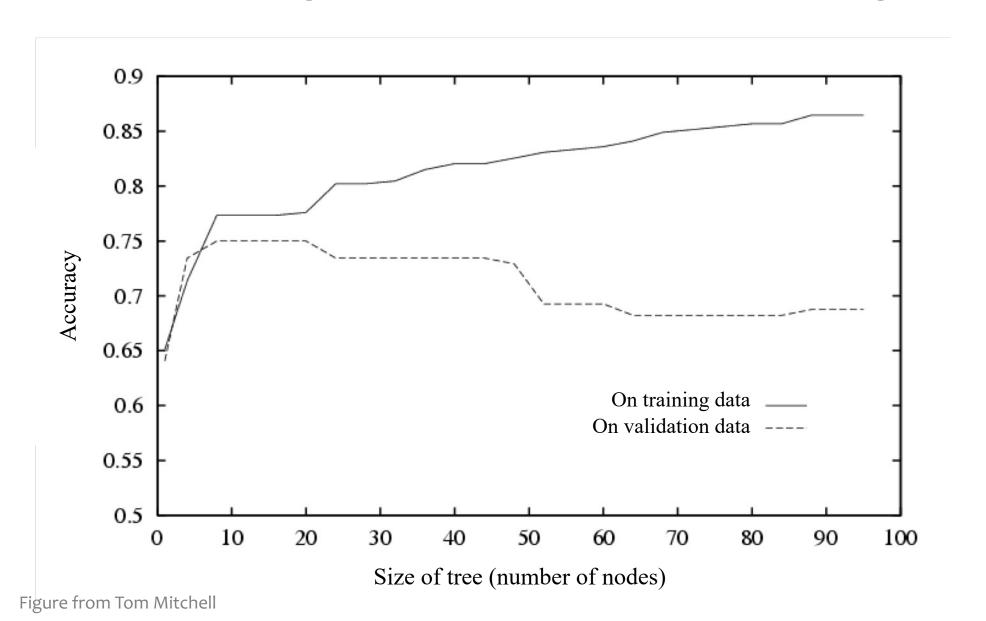
Amount of overfitting =

In practice, error_{true}(h) is **unknown**

Overfitting in Decision Tree Learning



Overfitting in Decision Tree Learning



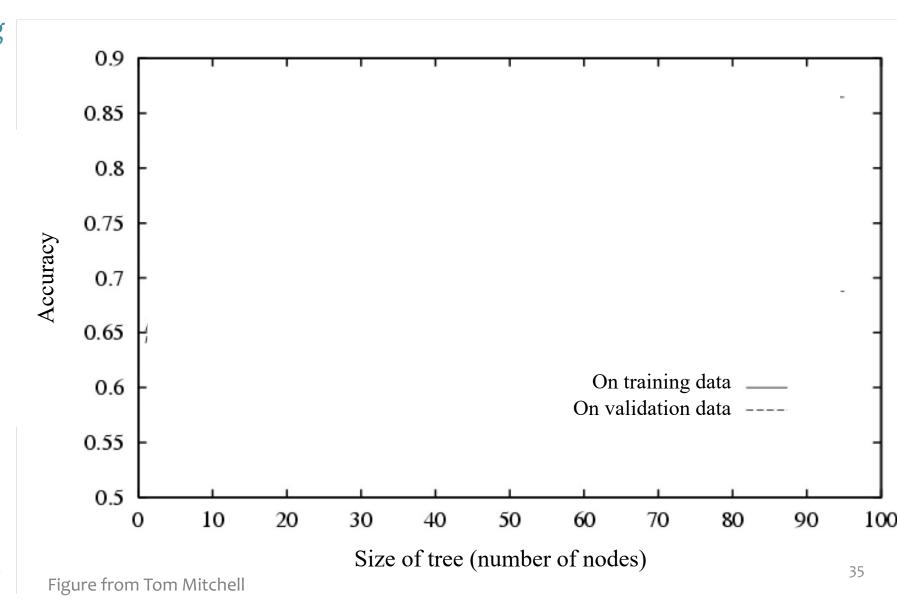
How to Avoid Overfitting?

For Decision Trees...

- 1. Do not grow tree beyond some maximum depth
- Do not split if splitting criterion (e.g. mutual information) is below some threshold
- 3. Stop growing when the split is not statistically significant
- 4. Grow the entire tree, then **prune** (e.g. Reduced Error Pruning)

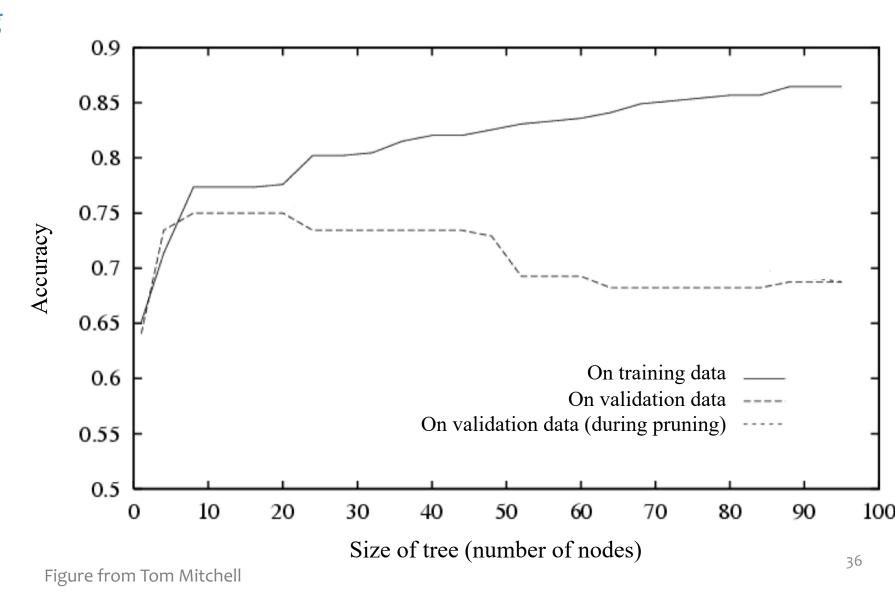
Reduced Error Pruning

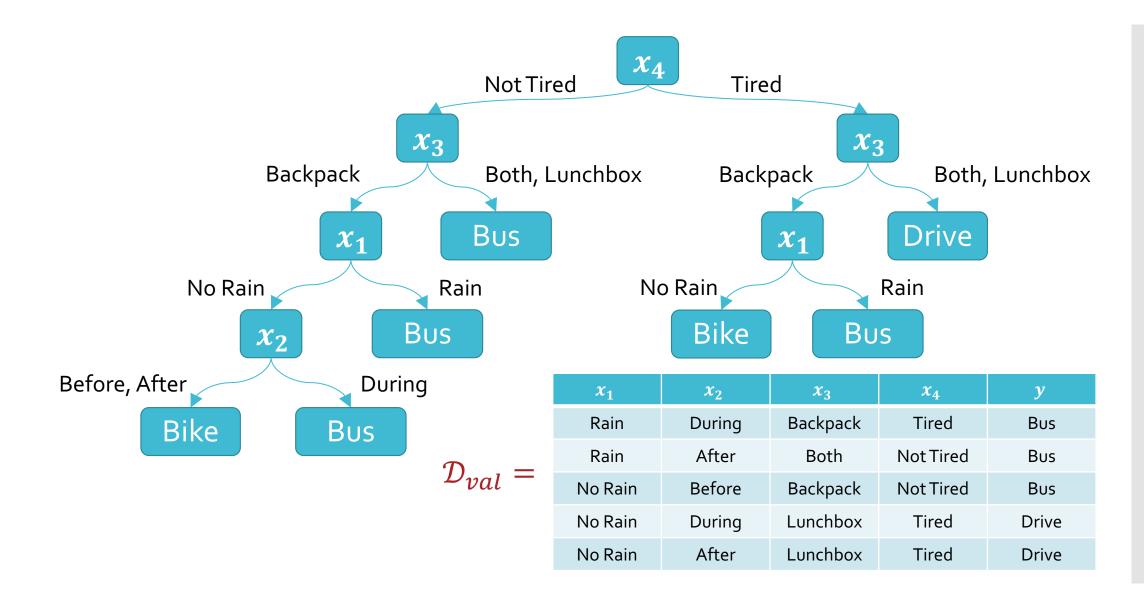
- Split data in two: training dataset and validation dataset
- 2. Grow the full tree using the *training* dataset
- 3. Repeatedly prune the tree:
 - Evaluate each split
 using a validation
 dataset by comparing
 the validation error
 rate with and without
 that split
 - (Greedily) remove the split that most decreases the validation error rate
 - Stop if no split improves validation error, otherwise repeat

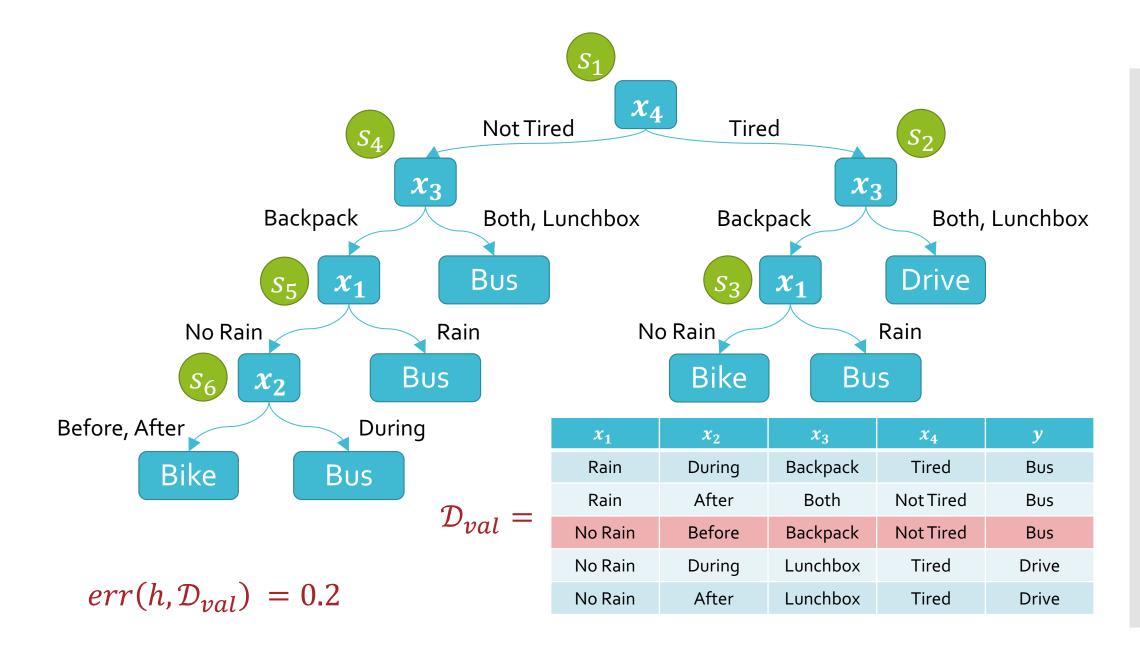


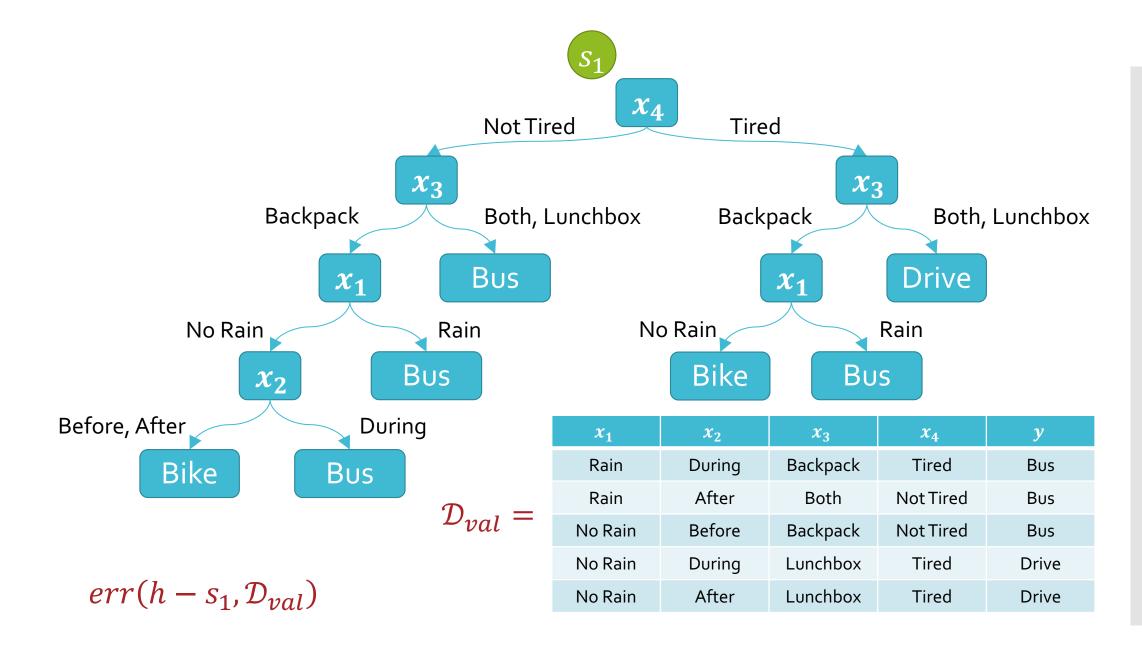
Reduced Error Pruning

- Split data in two: training dataset and validation dataset
- 2. Grow the full tree using the *training* dataset
- 3. Repeatedly prune the tree:
 - Evaluate each split
 using a validation
 dataset by comparing
 the validation error
 rate with and without
 that split
 - (Greedily) remove the split that most decreases the validation error rate
 - Stop if no split improves validation error, otherwise repeat









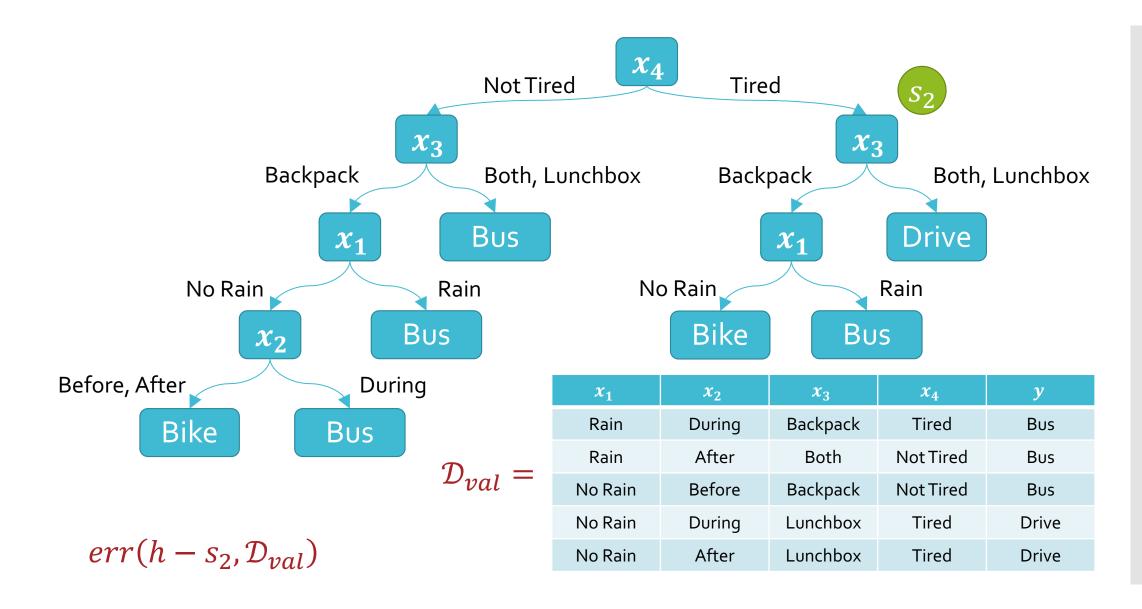
x_1	x_2	x_3	x_4	y
Rain	During	Backpack	Tired	Bus
Rain	After	Both	Not Tired	Bus
No Rain	Before	Backpack	Not Tired	Bus
No Rain	During	Lunchbox	Tired	Drive
No Rain	After	Lunchbox	Tired	Drive

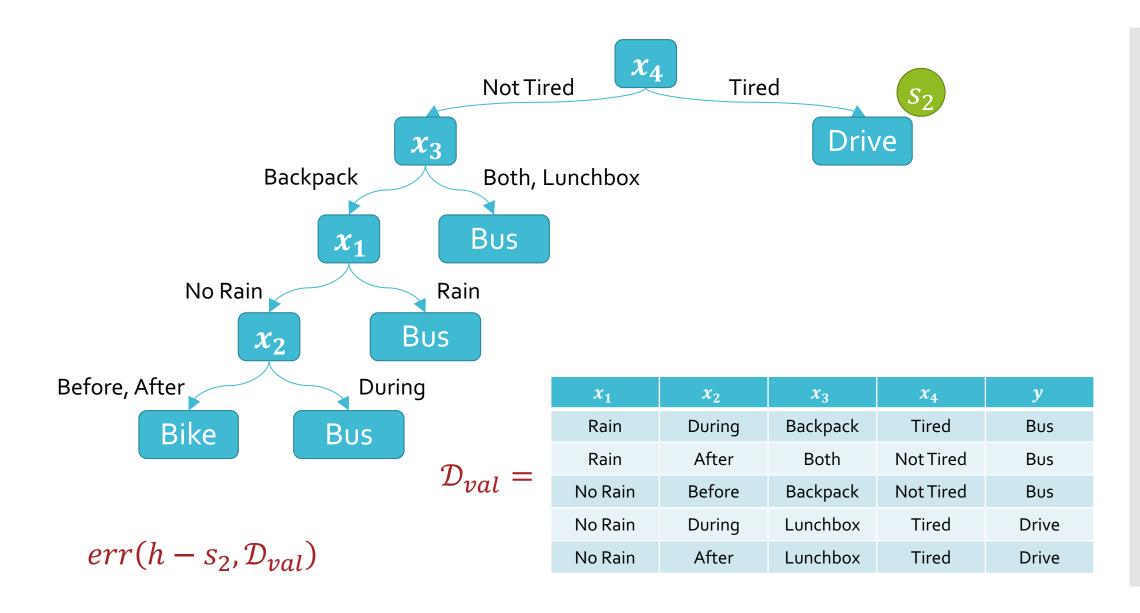
 $err(h-s_1, \mathcal{D}_{val})$

$$\mathcal{D}_{val} =$$

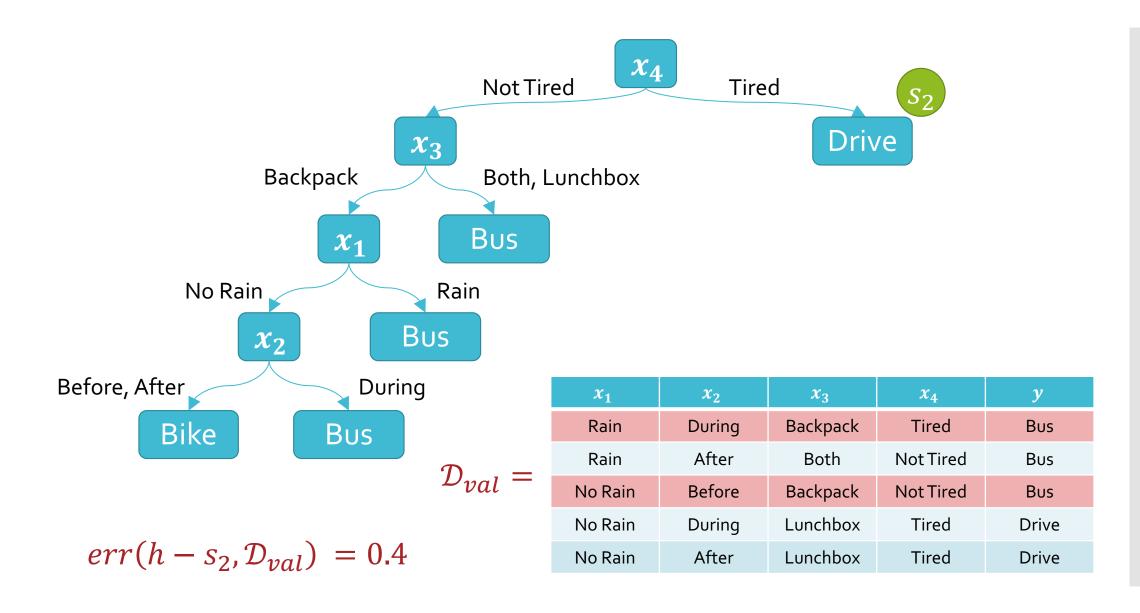
$$err(h - s_1, \mathcal{D}_{val}) = 0.4$$

x_1	x_2	x_3	x_4	y
Rain	During	Backpack	Tired	Bus
Rain	After	Both	Not Tired	Bus
No Rain	Before	Backpack	Not Tired	Bus
No Rain	During	Lunchbox	Tired	Drive
No Rain	After	Lunchbox	Tired	Drive

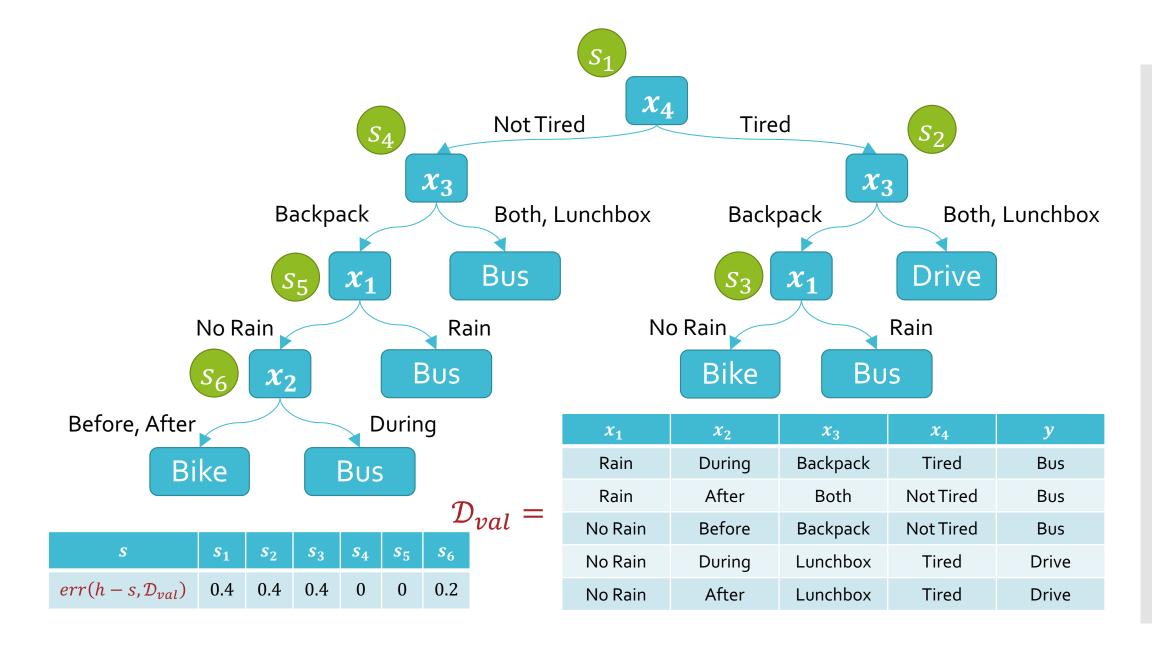




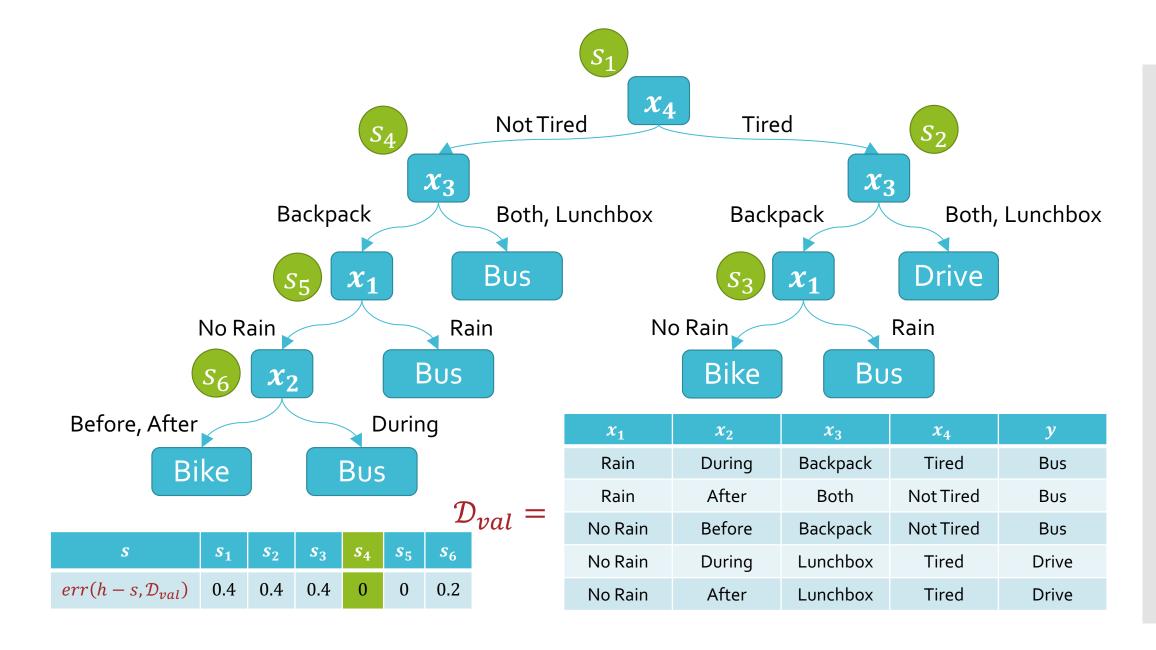
Slide from Henry Chai



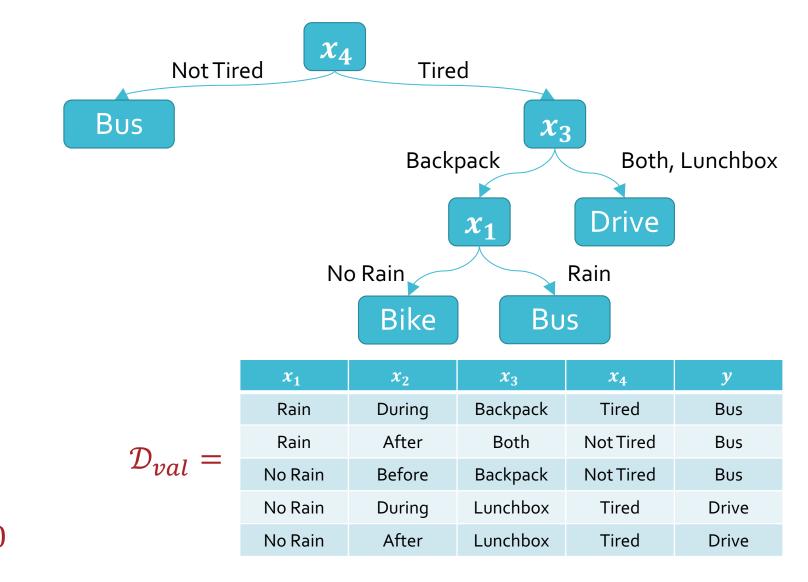
Slide from Henry Chai



Slide from Henry Chai

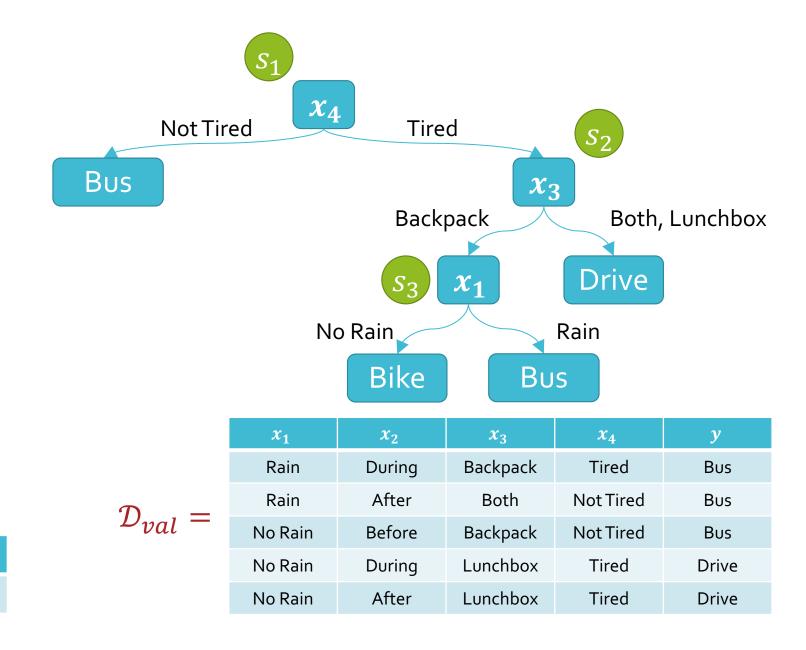


Slide from Henry Chai



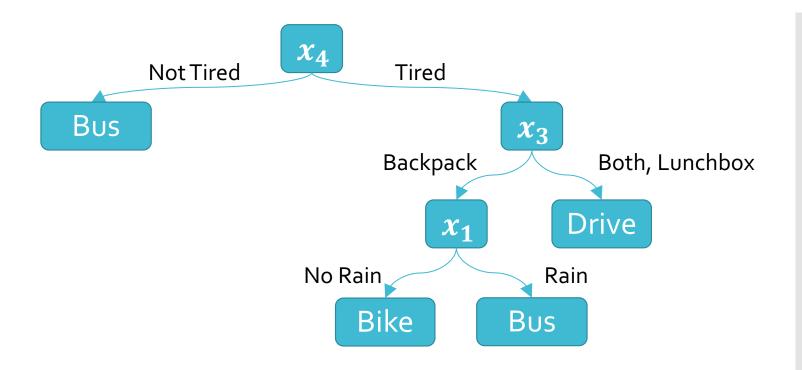
onn	(h)	
err	(n,	ν_{ι}	ral)	 U

Slide from Henry Chai

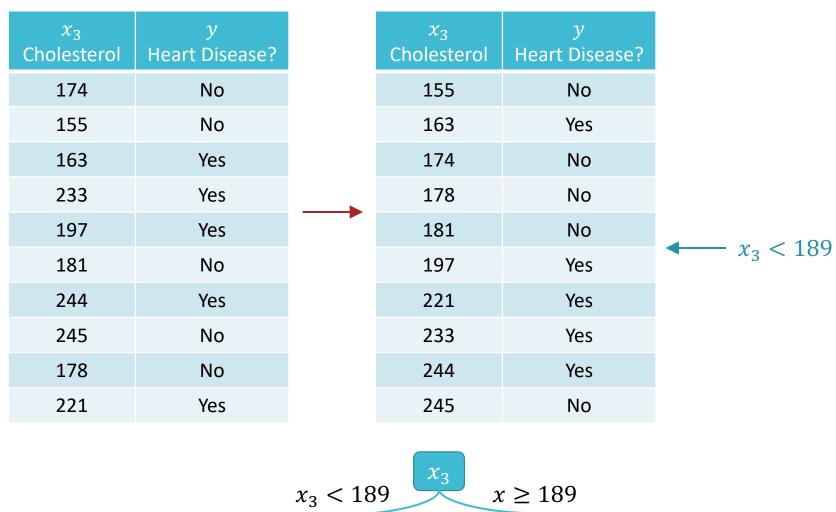


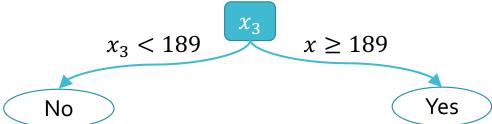
S	s_1	s_2	s_3
$err(h-s, \mathcal{D}_{val})$	0.4	0.2	0.2

Slide from Henry Chai

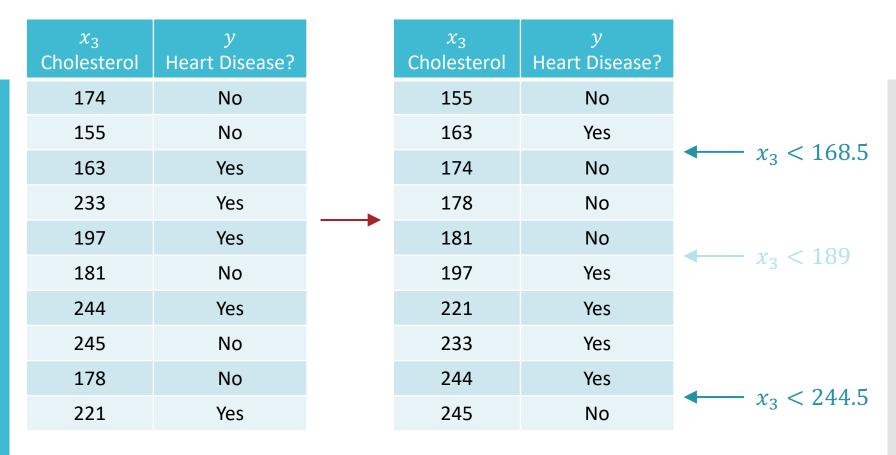


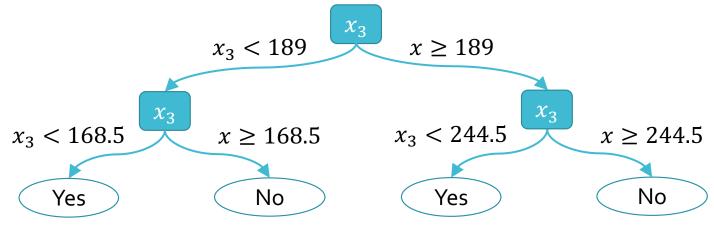
Real-Valued Features: Example





Real-Valued Features: Example





Decision Trees (DTs) in the Wild

- DTs are one of the most popular classification methods for practical applications
 - Reason #1: The learned representation is easy to explain a non-ML person
 - Reason #2: They are efficient in both computation and memory
- DTs can be applied to a wide variety of problems including classification, regression, density estimation, etc.
- Applications of DTs include...
 - medicine, molecular biology, text classification, manufacturing, astronomy, agriculture, and many others
- Decision Forests learn many DTs from random subsets of features; the result is a very powerful example of an ensemble method (discussed later in the course)

DT Learning Objectives

You should be able to...

- 1. Implement Decision Tree training and prediction
- Use effective splitting criteria for Decision Trees and be able to define entropy, conditional entropy, and mutual information / information gain
- 3. Explain the difference between memorization and generalization [CIML]
- 4. Describe the inductive bias of a decision tree
- Formalize a learning problem by identifying the input space, output space, hypothesis space, and target function
- 6. Explain the difference between true error and training error
- 7. Judge whether a decision tree is "underfitting" or "overfitting"
- 8. Implement a pruning or early stopping method to combat overfitting in Decision Tree learning

REAL VALUED ATTRIBUTES

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

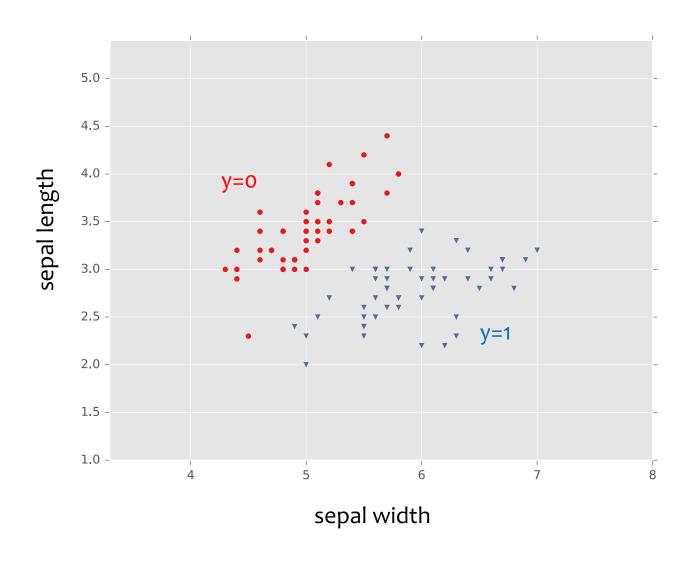
Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

Deleted two of the four features, so that input space is 2D

Fisher Iris Dataset





Classification & Real-Valued Features

Def: Classification

$$D = \left\{ \begin{pmatrix} \mathbf{x}^{(i)}, y^{(i)} \end{pmatrix} \right\}_{i=1}^{N}$$

$$\forall i, \ \mathbf{x}^{(i)} \in \mathbb{R}^{M} \quad \text{(features/instance)}$$

$$\forall i, \ y^{(i)} \in \{1, 2, \dots, L\} \quad \text{(label/class)}$$

$$M = \text{\# of features} \quad \text{(dimensionality of } \mathbf{x} \text{)}$$

$$N = \text{\# of training examples} = |D|$$

Def: Binary Classification

Classification where
$$|\mathcal{Y}|=2$$

$$\forall i,\; y^{(i)} \in \{+,-\}$$

$$\in \{\text{red, blue}\}$$

$$\in \{\text{cat, dog}\}$$

Classification & Real-Valued Features

Def: Hypothesis (aka. Decision Rule) for Binary Classification

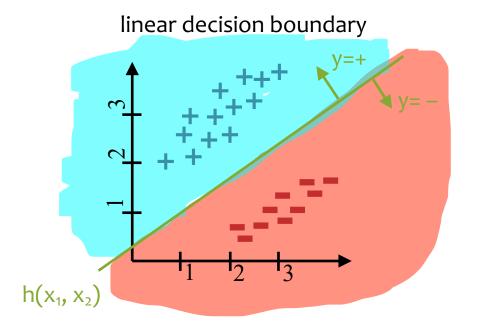
 $h: \mathbb{R}^M \to \{+, -\}$

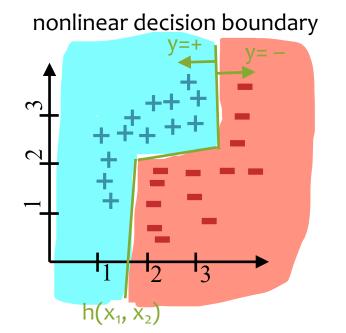
Train time: Learn *h*

Test time: Given $\hat{\mathbf{x}}$, predict $\hat{y} = h(\hat{\mathbf{x}})$

Evaluate *h*

Ex: Decision Boundaries (2D Binary Classification)





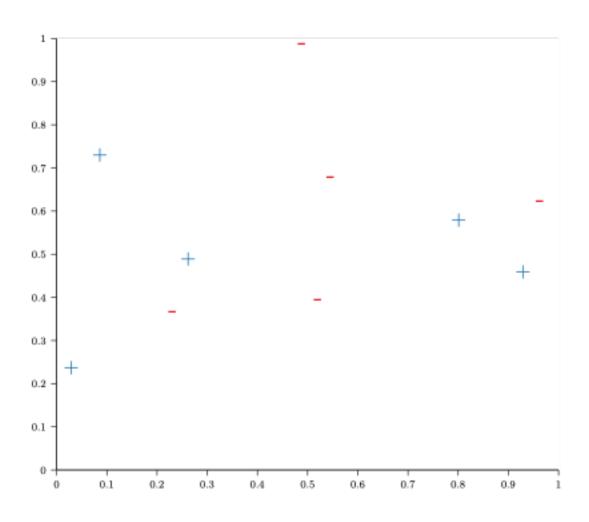
K-NEAREST NEIGHBORS

Nearest Neighbor: Algorithm

```
def train(\mathcal{D}):
    Store \mathcal{D}

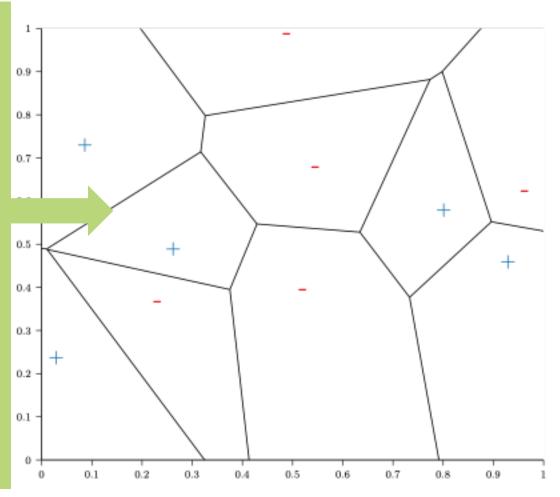
def h(x'):
    Let x^{(i)} = the point in \mathcal{D} that is nearest to x'
    return y^{(i)}
```

Nearest Neighbor: Example

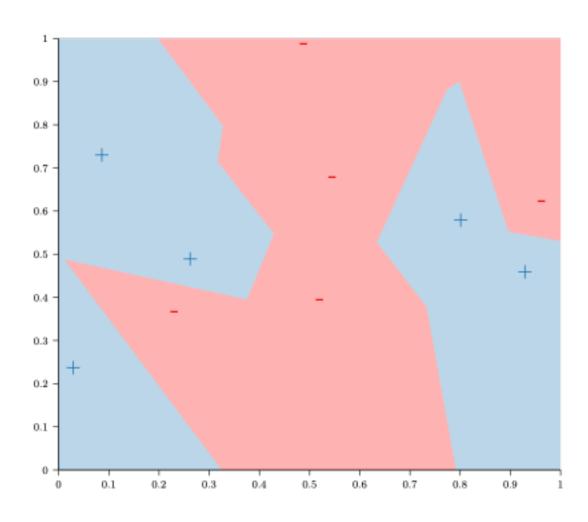


Nearest Neighbor: Example

- This is a Voronoi diagram
- Each cell contain one of our training examples
- All points within a cell are closer to that training example, than to any other training example
- Points on the Voronoi line segments are equidistant to one or more training examples



Nearest Neighbor: Example



The Nearest Neighbor Model

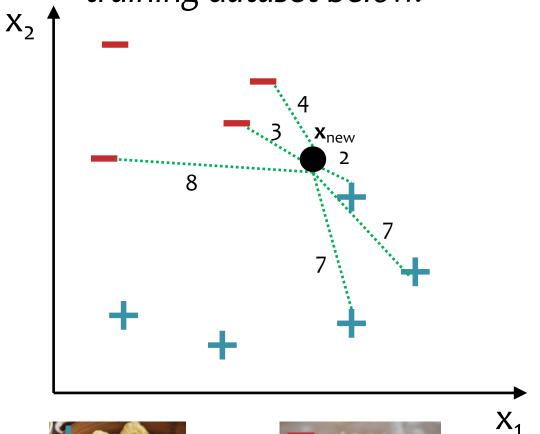
- Requires no training!
- Always has zero training error!
 - A data point is always its own nearest neighbor

k-Nearest Neighbors: Algorithm

```
def set_hyperparameters(k, d):
       Store k
       Store d(\cdot, \cdot)
def train(\mathcal{D}):
       Store \mathcal{D}
def h(x'):
       Let S = the set of k points in \mathcal{D} nearest to x'
                 according to distance function
                 d(\mathbf{u}, \mathbf{v})
       Let v = majority vote(S)
       return v
```

k-Nearest Neighbors

Suppose we have the training dataset below.



How should we label the new point?

It depends on k:

if
$$k=1$$
, $h(x_{new}) = +1$

if
$$k=3$$
, $h(x_{new}) = -1$

if
$$k=5$$
, $h(x_{new}) = +1$

KNN: Remarks

Distance Functions:

KNN requires a distance function

$$d: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$$

• The most common choice is **Euclidean distance**

$$d(\boldsymbol{u},\boldsymbol{v}) = \sqrt{\sum_{m=1}^{M} (u_m - v_m)^2}$$

• But there are other choices (e.g. Manhattan distance)

$$d(\boldsymbol{u},\boldsymbol{v}) = \sum_{m=1}^{M} |u_m - v_m|$$

KNN: Computational Efficiency

- Suppose we have N training examples and each one has M features
- Computational complexity when k=1:

Task	Naive	k-d Tree
Train	O(1)	~ O(M N log N)
Predict (one test example)	O(MN)	~ O(2 ^M log N) on average

Problem: Very fast for small M, but very slow for large M

In practice: use stochastic approximations (very fast, and empirically often as good)

KNN: Theoretical Guarantees

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary classifier. As the number of training examples N goes to infinity...

error_{true}(h) < 2 x Bayes Error Rate

"In this sense, it may be said that half the classification information in an infinite sample set is contained in the nearest neighbor."

very informally, Bayes Error Rate can be thought of as: 'the best you could possibly do'