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Reminders

* Homework 2: Decision Trees
— Out: Wed, Jan. 22
— Due: Mon, Feb. 3 at 11:59pm




Q&A

Why don’t my entropy calculations match those on the slides?

Remember that H(Y) is conventionally reported in “bits” and computed using

log base 2.
e.g., H(Y) =- P(Y=0) log,P(Y=0) - P(Y=1) log,P(Y=1)

When and how do we decide to stop growing trees? What if the set of
values an attribute could take was really large or even infinite?

We’ll address this question for discrete attributes today. If an attribute is real-
valued, there’s a clever trick that only considers O(L) splits where L = # of
values the attribute takes in the training set. Can you guess what it does?



Q&A

What does decision tree training do if a branch receives no data?

Then we hit the base case and create a leaf node. So the real
question is what does majority vote do when there is no data?
Of course, there is no majority label, so (if forced to) we could
just return one randomly.

What do we do at test time when we observe a value
for a feature that we didn’t see at training time.

This really just a variant of the first question. That said, areal DT
implementation needs to elegantly handle this case. We could
do so by either (a) assuming that all possible values will be seen
at train time, so there should be a branch for all attributes even
if the partition of the dataset doesn’t include them all or (b)
recognize the unseen value at test time and return some
appropriate label in that case.



EMPIRICAL COMPARISON OF SPLITTING
CRITERIA



Experiments: Splitting Criteria

Bluntine & Niblett (1992) compared 4 criteria (random, Gini,
mutual information, Marshall) on 12 datasets

Medical Diagnosis Datasets: (4 of 12) e 1, Propertics ol he, Aiieets

* hypo: data set of 3772 examples records expert opinion
on possible hypo- thyroid conditions from 29 real and Data Set ~ Classes  Attr.s  ITraining Set  Test Set

discrete attributes of the patient such as sex, age, taking

of relevant drugs, and hormone readings taken from drug hypo 4 29 1000 2712
breast 2 9 200 86

samples.
tumor 22 18 237 102
* breast: The classes are reoccurrence or non-reoccurrence lymph 4 18 103 45
of breast cancer sometime after an operation. There are LED 10 7 200 1800
nine attributes giving details about the original cancer - 2 2 200 7924
nodes, position on the breast, and age, with multi-valued — 2 17 200 235
discrete and real values. votesl 2 16 200 235
* tumor: examples of the location of a primary tumor iris 3 4 100 50
 lymph: from the lymphography domain in oncology. The ig‘;s Z 13 ;% i(l)g
classes are normal, metastases, malignant, and fibrosis, bole > y 200 1647

and there are nineteen attributes giving details about the

lymphatics and lymph nodes

Table from Bluntine & Niblett (1992)



Experiments: Splitting Criteria

Iable 3. Error for different splitting rules (pruned trees).

Splitting Rule

Data Set GINI Info. Gain Marsh. Random
hypo 1.01 + 0.29 0.95 + 0.22 1.27 £ 0.47 744 + 0.53
breast 28.66 + 3.87 28.49 + 4.28 27.15 + 4.22 29.65 + 4.97
tumor 60.88 + 5.44 62.70 + 3.89 61.62 + 3.98 67.94 + 5.68
lymph 24.44 + 6.92 24.00 + 6.87 24.33 + 5.51 32.33 + 11.25
LED 33.77T £ 3.06 32.89 + 2.59 33,15 + 4.02 38.18 + 4.57
mush 1.44 + 0.47 1.44 + 0.47 7.31 + 2.25 8.77 + 4.65
votes 4.47 + 0.95 4.57 + 0.87 11.77 £ 3.95 12.40 + 4.56
votesl 12.79 + 1.48 13.04 + 1.65 15.13 4 2.89 10.62 + 2./3
iris 5.00 + 3.08 490 + 3.08 5.50 £ 2.59 14.20 + 6.77
glass 39.56 + 6.20 50.57 + 6.73 0.53 + 6.41 53.20 £ 5.01
xd6 22.14 + 3.23 22.17 £ 3.36 06 -+ 3.37 31.86 + 3.62
pole 1543 + 1.51 15.47 + 0.88

Table from Bluntine & Niblett (1992)

Info. Gain is another name
for mutual information
14



Experiments: Splitting Criteria

Table 4. Difference and significance of error for GINI splitting rule

versus others.

Splitting Rule

Data Set Info. Gain Marsh. Random
Key Takeaway:
GINI gain and hypo ~0.06 (0.82) 0.26 (0.99) 6.43 (1.00)
Mutual breast —0.17 (0.23) —1.51 (0.94) 0.99 (0.72)
Information are tfumor 1.81 (0.84) 0.74 (0.39) 7.06 (0.99)
statistically lymph —0.44 (0.83) @1 (0.05) 7.89 (0.99)
e e .- . LED 0.12 (0.17) 8] Results are of the form
v
IMEEEINEUIETEIONE | R—— 0.00 (0.00) 5.86| A-AA (B.BB) where:
votes 0.11 (0.55) 7.30 - A0 1S the average
votesl 0.26 (047) 2.34 between the two
iris —0.10 (0.67) 0.50 methods
glass 1.01 (0.50) 0.96] 2. B.BBis the significance
xd6 0.04 (0.11) —0.07 of the difference
' ' ' according to a two-tailed
pole 0.03 (0.11) ~0.43|  Dairedttest

Table from Bluntine & Niblett (1992)




INDUCTIVE BIAS
(FOR DECISION TREES)



Decision Tree Learning Example

Dataset:

Output Y, Attributes A, B, C

+ 0 0)
+ o) o)
- o)
+ o)
- 1 o)
- 1 o)
- 1
+ 1

Poll Question 1

Which decision tree would you learn if you used error
rate as the splitting criterion?

(Assume ties are broken alphabetically.)
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N N, e
C C B
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Decision Tree Learning Example

Dataset: Poll Question 2

Output Y, Attributes A, B, C | which decision tree is the smallest tree that achieves
the lowest possible training error?

D (> J © =
. 0o 1 o N\ N A
C c B C B B
+ 0 1 1 NN || AN || A2 I
+ - + + - -+ + C C
_ 1 (0] (0] W %1
D = P : 1 S '¢
_ 1 0 1 |§V\1A I\ B B
A C y\
_ 1 1 0 y‘?/\ WW A A
+ + + == + M (Y\
+ - cC c
S I I N A
+ - - +




Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalisto find the
lowest (total) weight
path from root to a

2 leaf
4
Greedy Search:
1 *  Ateachnode, selects
Start the edge with lowest
State (immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

0 Computation time:
linear in max path
length
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Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges

States e Goalisto find the
lowest (total) weight
path from root to a
leaf

Greedy Search:

. At each node, selects
the edge with lowest
(immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

0 Computation time:
linear in max path
length



Background: Global Search

End
States

Goal:

Search space consists
of nodes and weighted
edges

Goal is to find the
lowest (total) weight
path from root to a
leaf

Global Search:

Compute the weight
of the path to every
leaf

Exact method of
search (i.e.
gauranteed to find the
best path)
Computation time:
exponential in max
path length



Decision Tree Learning as Search

search space: all possible decision trees 4. edge weight: (negative) splitting criterion

node: single decision tree 5. DT learning: greedy search, maximizing our
edge: connects one full tree to another, splitting criterion at each step
where child has one more split than parent - =~
( RN _ ,  d age N N
a - {y( ) / y\ \
7 sneeze N, - _>( 4 gender ives I
- / o\ 0/\
[ y\ s = -~ - /\ /\
A o/ -4 + - = +
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Big Question:

How is it that your
ML algorithm can
generalize to
unseen examples?



ID3 = Decision Tree

DT: Re ma rkS Learning with Mutual

Information as the
splitting criterion

Question: Which tree does ID3 find?

Definition:
We say that the inductive bias of a machine learning
algorithm is the principal by which it generalizes to unseen
examples

What is the inductive bias of the ID3 algorithm?



OVERFITTING
(FOR DECISION TREES)



Overfitting and Underfitting

Underfitting Overfitting

* The model... * The model...
— istoo simple — istoo complex
— isunable captures the trends in the data — is fitting the noise in the data or fitting
— exhibits too much bias “outliers”

« Example: majority-vote classifier (i.e. — does not have enough bias

depth-zero decision tree) * Example: our “memorizer” algorithm

« Example: a toddler (that has not responding to an irrelevant attribute

attended medical school) attempting  * Example: medical student who simply
to carry out medical diagnosis memorizes patient case studies, but

does not understand how to apply
knowledge to new patients



Overfitting

* Given a hypothesis h, its...

... error rate over all training data:  error(h, D;.i)
...error rate over all test data: error(h, Diect)
...true error over all data: error, .(h)

* We say h overfits the training data if... %

error,, .(h) > error(h, D)
* Amount of overfitting =

errortrue(h) — error(h) Dtrain)

Slide adapted from Tom Mitchell

In practice,
errory.(h) is
unknown




Overtfitting in Decision Tree Learning

09

Accuracy
=
|
Ll

On training data
On validation data ----

Figure from Tom Mitchell

10

20

30 40 50 60 70 80 90

Size of tree (number of nodes)

100
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Overtfitting in Decision Tree Learning

0.9 I 1 I 1 1 I ! 1 I

Accuracy

0.6 F On training data _____ |
On validation data ----
0.55 F o
0.5 . : - | ] J | ] L
0 10 20 30 40 50 60 70 90 100

Figure from Tom Mitchell

Size of tree (number of nodes)

33



How to Avoid Overfitting?

For Decision Trees...
1. Do not grow tree beyond some maximum depth
2. Do not split if splitting criterion (e.g. mutual information) is below
some threshold
Stop growing when the split is not statistically significant
4. Grow the entire tree, then prune (e.g. Reduced Error Pruning)

W



Reduced Error Pruning

Split data in two: training

dataset and validation 09 : , , : | | | |
dataset
Grow the full tree using 0.85

the training dataset

Repeatedly prune the
tree: 0.75

—  Evaluate each split 5

using a validation 5 07k

dataset by comparing 3!

the validation error < 065 b

rate with and without |

that Split 06 F On training data
—  (Greedily) remove the On validation data ----

split that most 0.55 -

decreases the
validation error rate

i ) 05 | 1 1 | 1 1 1 1
— Stopifnosplit 0 10 20 30 40 50 60 70 80
improves validation ,
error, otherwise repeat Size of tree (number of nodes)

Figure from Tom Mitchell



Split data in two: training

dataset and validation
dataset

Grow the full tree using
the training dataset

Repeatedly prune the
tree:

—  Evaluate each split
using a validation
dataset by comparing
the validation error
rate with and without

that split

—  (Greedily) remove the
split that most
decreases the
validation error rate

—  Stop if no split
improves validation
error, otherwise repeat

Reduced Error Pruning

Accuracy

On training data

0.6 F |
On validation data ----
0.55 On validation data (during pruning) ----- i
0.5 A l L 1 1 1 1 1 1

0 10 20

Figure from Tom Mitchell

30 40 50 60 70 80 90

Size of tree (number of nodes) 36



Slide from Henry Chai

X4
Not Tired Tired

X3
Backpack Both, Lunchbox Backpack

X3

Both, Lunchbox

Bus Drive

X1 X1

No Rain Rain No Rain Rain
X2 Bus Bike Bus
Before, After During I N N A
- kpack T
Blke Bus Rain During Backpac ired
D Rain After Both Not Tired Bus
val — No Rain Before Backpack Not Tired Bus
No Rain During Lunchbox Tired Drive
No Rain After Lunchbox Tired Drive



Slide from Henry Chai

X4
@ Not Tired Tired @

X3 X3
Backpack Both, Lunchbox Backpack

QL OF

No Rain Rain No Rain Rain

Both, Lunchbox

Bus Drive

(5. x, Bus Bike M Bus
Before, After During B S R W
Bi ke Bus Rain During Backpack Tired
Rain After Both Not Tired
val -

-----

No Rain During Lunchbox Tired Drive

eTT(h, Dval) = 0.2 No Rain After Lunchbox Tired Drive
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Slide from Henry Chai

X4 .
Not Tired Tired
X3 X3
Backpack Both, Lunchbox Backpack Both, Lunchbox
X1 Bus X1 Drive
No Rain Rain No Rain Rain
X2 Bus Bike Bus
Before, After During I R
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D . Rain After Both Not Tired Bus
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Slide from Henry Chai

err(h — s1, Dyar)

Dyar =

Rain
Rain
No Rain
No Rain
No Rain

Dunng
After
Before
During
After

Backpack
Both
Backpack
Lunchbox

Lunchbox

Tired
Not Tired
Not Tired

Tired

Tired

Bus
Bus
Drive

Drive
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Slide from Henry Chai

err(h — s1,Dyqr)

=04

Dyar =

Rain Durlng Backpack Tired
Rain After Both Not Tired Bus
No Rain Before Backpack Not Tired
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Slide from Henry Chai
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Slide from Henry Chai
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Slide from Henry Chai

Before, After

err(h — s2, Dyq1)

=04

Both, Lunchbox

Rain After Both Not Tired
Dyar = -----
No Rain During Lunchbox Tired Drive
No Rain After Lunchbox Tired Drive

45



X4
@ Not Tired Tired @

X3 X3
Backpack Both, Lunchbox Backpack

QL OF

No Rain Rain No Rain Rain

Both, Lunchbox

Bus Drive

(56 x2 Bus Bike Bus
Before, Afte During B S R W
Bi ke Bus Rain During Backpack Tired
Rain After Both Not Tired Bus
o No Rain Before Backpack Not Tired Bus
_- NoRain  Duing  Lunchbox  Tred  Drv
err(h —s,Dyq) 04 04 04 No Rain After Lunchbox Tired Drive

Slide from Henry Chai



X4
@ Not Tired Tired @
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Backpack Both, Lunchbox Backpack

QL OF

No Rain Rain No Rain Rain

Both, Lunchbox

Bus Drive

(s, x, Bus Bike M Bus
Before, After During B R O VO I
Bi ke Bus Rain During Backpack Tired
D Rain After Both Not Tired Bus
val — No Rain Before Backpack Not Tired Bus
NoRain  Duing  Lunchbox  Tred  Drv
err(h—s,Dyg) 04 04 04 . 0 02 No Rain After Lunchbox Tired Drive

Slide from Henry Chai



Not Tired

Rain
Rain
No Rain
No Rain
err(h, Dval) =0 No Rain

Dyar =

Slide from Henry Chai

Dunng
After
Before
During
After

Backpack
Both
Backpack
Lunchbox

Lunchbox

Tired
Not Tired
Not Tired

Tired

Tired

Both, Lunchbox

Bus
Bus
Drive

Drive
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Not Tired

Both, Lunchbox

Rain Durlng Backpack Tired
Rain After Both Not Tired Bus
Dval — No Rain Before Backpack Not Tired Bus
No Rain During Lunchbox Tired Drive
err(h —s,Dyq) 04 02 0.2 No Rain After Lunchbox Tired Drive

Slide from Henry Chai



Slide from Henry Chai

Not Tired

Both, Lunchbox

5o



Real-Valued

Features:
Example

X3 y
Cholesterol | Heart Disease?
174 No

155
163
233
197
181
244
245
178
221

No
Yes
Yes
Yes
No
Yes
No
No

Yes

X3 y
Cholesterol | Heart Disease?
155 No

163
174
178
181
197
221
233
244
245

Yes
No
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Real-Valued

Features:
Example

X3 y
Cholesterol | Heart Disease?
174 No

155
163
233
197
181
244
245
178
221

No
Yes
Yes
Yes
No
Yes
No
No

Yes

X3 y
Cholesterol | Heart Disease?
155 No

163
174
178
181
197
221
233
244
245

Yes
No
No
No
Yes
Yes
Yes
Yes
No

<«— x; < 1685
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Decision Trees (DTs) in the Wild

DTs are one of the most popular classification methods for practical
applications

— Reason #1: The learned representation is easy to explain a non-ML person
— Reason #2: They are efficient in both computation and memory

DTs can be applied to a wide variety of problems including classification,
regression, density estimation, etc.

Applications of DTs include...

— medicine, molecular biology, text classification, manufacturing, astronomy,
agriculture, and many others

Decision Forests learn many DTs from random subsets of features; the
result is a very powerful example of an ensemble method (discussed

later in the course)



DT Learning Objectives

You should be able to...

1.
2.

v W

o N o

Implement Decision Tree training and prediction

Use effective splitting criteria for Decision Trees and be able to define
entropy, conditional entropy, and mutual information / information gain

Explain the difference between memorization and generalization [CIML]
Describe the inductive bias of a decision tree

Formalize a learning problem by identifying the input space, output space,
hypothesis space, and target function

Explain the difference between true error and training error
Judge whether a decision tree is "underfitting' or "overfitting"

Implement a pruning or early stopping method to combat overfitting in
Decision Tree learning



REAL VALUED ATTRIBUTES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

Sepal Sepal
il 7 7 | pereteaasrne
0 4.3 3.0 four features, so that
0 4.9 3.6 input space is 2D

0 5-3 3.7

1 4.9 2.4 @

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set
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sepal length

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15 -

1.0 -

Fisher Iris Dataset

5

sepal width
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Classification & Real-Valued Features

Def: Classification Def: Binary Classification

D = {(X(i)7 y(i)) }N Classification where | )| = 2

i=1 |
. N _
Vi, x ¢ RM (features/instance) Vi, Y €1+
€ {red, blue}

Vi, v e {1,2,... L} (label/cl

b t _ J (.a /_C ass) € {cat, dog}
M = # of features (dimensionality of x)

N = # of training examples = | D|



Classification & Real-Valued Features

Def: Hypothesis (aka. Decision Rule) for Binary Classification

h:RM—>{—|—,—}

Train time: Learn h
Test time: Given x, predict y = h(x)
Evaluate h

Ex: Decision Boundaries (2D Binary Classification)

linear decision boundary nonlinear decision boundary
A 4
en| ++ o 4+ +
+ + T + + |'™=
+ 4+ +++ T |
L -+ + o\l L
oL + [f= =
—L -- — | + - o
— ——




K-NEAREST NEIGHBORS



Nearest Neighbor: Algorithm

def train(D):
Store D

def h(x"):
Let x(¥) = the point in D that is nearest to x’
return y



Nearest Neighbor: Example
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Nearest Neighbor: Example

* This is a Voronoi
diagram

* Each cell contain .-
one of our
training 0.8
examples

* All points within
a cell are closer
to that training
example, than
to any other
training example ;|

* Points on the
Voronoi line 04
segments are
equidistant to =
one or more
trainin
examples

0.h -




Nearest Neighbor: Example

1
0.9
08
07
0.6
0.5
04
0.3
0.2

0.1

0
0 01 02 03 04 05 0.6 0.7 08 09 1
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The Nearest Neighbor Model

* Requires no training!

* Always has zero training error!

— A data point is always its own nearest neighbor



k-Nearest Neighbors: Algorithm

def set_hyperparameters(k, d):
Store k
Store d(-, *)

def train(D):
Store D

def h(x"):
Let S = the set of k points in D nearest to x’
according to distance function
d(u, v)
Let v = majority vote(S)
returnv



k-Nearest Neighbors

Suppose we have the

. training dataset below. How should we label
X5 _ the new point?
_ It depends on k:
.... 3 “ Xnew
& k=1, N(Xpey) = +
+ 7 if k=3, h(X,eu) =
7'-._-: + if k=5, h(x, ew) = +1
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KNN: Remarks

Distance Functions:
* KNN requires a distance function

d: RM xRM 5 R
e The most common choice is Euclidean distance

M
d(u: U) — z (um - vm)z

\
 But there are other choices (e.g. Manhattan distance)

M

AWv) = ) [y = v

m=1




KNN: Computational Efficiency

Suppose we have N training examples and
each one has M features
Computational complexity when k=1:

ok Nawe  lkdTee

Train 0(1) ~O(M N log N)

Predict O(MN) ~0O(2Mlog N) on average
(one test example)

Problem: Very fast for small M, but :
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)
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KNN: Theoretical Guarantees

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity...

error,.(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:

‘the best you
could possibly
do’




