
Overfitting
+

k-Nearest Neighbors

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 4

Jan. 27, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Course
Staff

7

Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan. 22
– Due: Mon, Feb. 3 at 11:59pm

8

Q&A

10

Q: Why don’t my entropy calculations match those on the slides?

A: Remember that H(Y) is conventionally reported in “bits” and computed using
log base 2.
e.g., H(Y) = - P(Y=0) log2P(Y=0) - P(Y=1) log2P(Y=1)

Q: When and how do we decide to stop growing trees? What if the set of
values an attribute could take was really large or even infinite?

A: We’ll address this question for discrete attributes today. If an attribute is real-
valued, there’s a clever trick that only considers O(L) splits where L = # of
values the attribute takes in the training set. Can you guess what it does?

Q&A

11

Q: What does decision tree training do if a branch receives no data?

A: Then we hit the base case and create a leaf node. So the real
question is what does majority vote do when there is no data?
Of course, there is no majority label, so (if forced to) we could
just return one randomly.

Q: What do we do at test time when we observe a value
for a feature that we didn’t see at training time.

A: This really just a variant of the first question. That said, a real DT
implementation needs to elegantly handle this case. We could
do so by either (a) assuming that all possible values will be seen
at train time, so there should be a branch for all attributes even
if the partition of the dataset doesn’t include them all or (b)
recognize the unseen value at test time and return some
appropriate label in that case.

EMPIRICAL COMPARISON OF SPLITTING
CRITERIA

12

Experiments: Splitting Criteria

Bluntine & Niblett (1992) compared 4 criteria (random, Gini,
mutual information, Marshall) on 12 datasets

13

80 W. BUNTINE AND T. NIBLETT

Table 1. Properties of the data sets.

Data Set Classes Attr.s Real Multi % Unkn Training Set Test Set % Base Error

hypo 4 29 7 1 5.5 1000 2772 7.7
breast 2 9 4 2 0.4 200 86 29.7
tumor 22 18 0 3 3.7 237 102 75.2
lymph 4 18 1 8 0 103 45 45.3
LED 10 7 0 0 0 200 1800 90.0
mush 2 22 0 18 0 200 7924 48.2
votes 2 17 0 17 0 200 235 38.6
votesl 2 16 0 16 0 200 235 38.6
iris 3 4 4 0 0 100 50 66.7
glass 7 9 9 0 0 100 114 64.5
xd6 2 10 0 0 0 200 400 35.5
pole 2 4 4 0 0 200 1647 49.0

Some data sets were obtained through indirect sources. The "breast," "tumor" and
"lymph" data sets were originally collected at the University Medical Center, Institute of
Oncology, Ljubljana, Yugoslavia, in particular by G. Klajn~ek and M. Soklic (lympho-
graphy data), and M. Zwitter (breast cancer and primary tumor). The data was converted
into easy-to-use experimental material by Igor Kononenko, Faculty of Electrical Engineer-
ing, Ljubljana University. The data has been the subject of a series of comparative studies,
for instance (Cestnik, et al., 1987). The hypothyroid data ("hypo") came originally from
me Garvan Institute of Medical Research, Sydney. The data sets "glass," "votes" and "mush"
zame from David Aha's Machine Learning Database available over the academic computer
aetwork from the University of California at Irvine, "hypo" and "xd6" came from a collec-
Iion by Ross Quinlan of the University of Sydney (Quinlan, 1988), "breast," "lymph" and
"tumor" came via Pete Clark of the Turing Institute, and "iris" from Stuart Crawford of
Advanced Decision Systems. Versions 2 of the last four mentioned data sets are also avail-
able from the Irvine Machine Learning Database.

Major properties of the data sets are given in Table 1. Columns headed "real" and "multi"
are the number of attributes that are treated as real-valued or ordered and as multi-valued
5iscrete attributes respectively. Percentage unknown is the proportion of all attribute values
:hat are unknown. These are usually concentrated in a few attributes. Percentage base error
is the percentage error obtained if the most frequent class is always predicted. Good trees
should give a significant improvement over this.

~. Implementation

the decision tree implementation used in these experiments was originally written by David
Harper, Chris Carter, and other students at the University of Sydney from 1984 to 1988.
the present version has been largely rewritten by Wray Bunfine. Performance of the cur-
rent system was compared to earlier versions to check that bugs were not introduced during
rewriting. Unknown attribute values were treated as follows. When evaluating a test, an
example with unknown outcome had its unit weight split across outcomes according to

8 0 W. BUNTINE AND T. NIBLETT

Table 1. Properties of the data sets.

Data Set Classes Attr.s Real Multi % Unkn Training Set Test Set % Base Error

hypo 4 29 7 1 5.5 1000 2772 7.7
breast 2 9 4 2 0.4 200 86 29.7
tumor 22 18 0 3 3.7 237 102 75.2
lymph 4 18 1 8 0 103 45 45.3
LED 10 7 0 0 0 200 1800 90.0
mush 2 22 0 18 0 200 7924 48.2
votes 2 17 0 17 0 200 235 38.6
votesl 2 16 0 16 0 200 235 38.6
iris 3 4 4 0 0 100 50 66.7
glass 7 9 9 0 0 100 114 64.5
xd6 2 10 0 0 0 200 400 35.5
pole 2 4 4 0 0 200 1647 49.0

Some data sets were obtained through indirect sources. The "breast," "tumor" and
"lymph" data sets were originally collected at the University Medical Center, Institute of
Oncology, Ljubljana, Yugoslavia, in particular by G. Klajn~ek and M. Soklic (lympho-
graphy data), and M. Zwitter (breast cancer and primary tumor). The data was converted
into easy-to-use experimental material by Igor Kononenko, Faculty of Electrical Engineer-
ing, Ljubljana University. The data has been the subject of a series of comparative studies,
for instance (Cestnik, et al., 1987). The hypothyroid data ("hypo") came originally from
me Garvan Institute of Medical Research, Sydney. The data sets "glass," "votes" and "mush"
zame from David Aha's Machine Learning Database available over the academic computer
aetwork from the University of California at Irvine, "hypo" and "xd6" came from a collec-
Iion by Ross Quinlan of the University of Sydney (Quinlan, 1988), "breast," "lymph" and
"tumor" came via Pete Clark of the Turing Institute, and "iris" from Stuart Crawford of
Advanced Decision Systems. Versions 2 of the last four mentioned data sets are also avail-
able from the Irvine Machine Learning Database.

Major properties of the data sets are given in Table 1. Columns headed "real" and "multi"
are the number of attributes that are treated as real-valued or ordered and as multi-valued
5iscrete attributes respectively. Percentage unknown is the proportion of all attribute values
:hat are unknown. These are usually concentrated in a few attributes. Percentage base error
is the percentage error obtained if the most frequent class is always predicted. Good trees
should give a significant improvement over this.

~. Implementation

the decision tree implementation used in these experiments was originally written by David
Harper, Chris Carter, and other students at the University of Sydney from 1984 to 1988.
the present version has been largely rewritten by Wray Bunfine. Performance of the cur-
rent system was compared to earlier versions to check that bugs were not introduced during
rewriting. Unknown attribute values were treated as follows. When evaluating a test, an
example with unknown outcome had its unit weight split across outcomes according to

Medical Diagnosis Datasets: (4 of 12)
• hypo: data set of 3772 examples records expert opinion

on possible hypo- thyroid conditions from 29 real and
discrete attributes of the patient such as sex, age, taking
of relevant drugs, and hormone readings taken from drug
samples.

• breast: The classes are reoccurrence or non-reoccurrence
of breast cancer sometime after an operation. There are
nine attributes giving details about the original cancer
nodes, position on the breast, and age, with multi-valued
discrete and real values.

• tumor: examples of the location of a primary tumor
• lymph: from the lymphography domain in oncology. The

classes are normal, metastases, malignant, and fibrosis,
and there are nineteen attributes giving details about the
lymphatics and lymph nodes

Table from Bluntine & Niblett (1992)

Experiments: Splitting Criteria

14

Info. Gain is another name
for mutual information

Table from Bluntine & Niblett (1992)

Key Takeaway:
GINI gain and

Mutual
Information are

statistically
indistinguishable!

Experiments: Splitting Criteria

15

Results are of the form
A.AA (B.BB) where:
1. A.AA is the average

difference in errors
between the two
methods

2. B.BB is the significance
of the difference
according to a two-tailed
paired t-test

Table from Bluntine & Niblett (1992)

Key Takeaway:
GINI gain and

Mutual
Information are

statistically
indistinguishable!

INDUCTIVE BIAS
(FOR DECISION TREES)

16

Decision Tree Learning Example

17

Poll Question 1
Which decision tree would you learn if you used error
rate as the splitting criterion?
(Assume ties are broken alphabetically.)

Dataset:
Output Y, Attributes A, B, C

Y A B C

+ 0 0 0

+ 0 0 1

- 0 1 0

+ 0 1 1

- 1 0 0

- 1 0 1

- 1 1 0

+ 1 1 1

A

+

C C
0 1

0 1 0 1

- - +

A

+

B C
0 1

0 1 0 1

- - +

C

+

B A
0 1

0 1 0 1

- - +

B

+

A C
0 1

0 1 0 1

- - +

1 2

4 5

A

B B
0 1

0 1 0 1

+ C
0 1

- +

C
0 1

-

- +
B

A A
0 1

0 1 0 1

+ -

+

C C
0 1 0 1

- - +

3

6

Decision Tree Learning Example

18

Poll Question 2
Which decision tree is the smallest tree that achieves
the lowest possible training error?

Dataset:
Output Y, Attributes A, B, C

Y A B C

+ 0 0 0

+ 0 0 1

- 0 1 0

+ 0 1 1

- 1 0 0

- 1 0 1

- 1 1 0

+ 1 1 1

A

+

C C
0 1

0 1 0 1

- - +

A

+

B C
0 1

0 1 0 1

- - +

C

+

B A
0 1

0 1 0 1

- - +

B

+

A C
0 1

0 1 0 1

- - +

1 2

4 5

A

B B
0 1

0 1 0 1

+ C
0 1

- +

C
0 1

-

- +
B

A A
0 1

0 1 0 1

+ -

+

C C
0 1 0 1

- - +

3

6

Background: Greedy Search

19

Start
State

End
States

2
4
3
1 7

3
3
5

4
1
2
2

3
5
6
4

7
8
9
8

Greedy Search:
• At each node, selects

the edge with lowest
(immediate) weight

• Heuristic method of
search (i.e. does not
necessarily find the
best path)

• Computation time:
linear in max path
length

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf

Background: Greedy Search

20

Start
State

End
States

2
4
3
1 7

3
3
5

4
1
2
2

3
5
6
4

7
8
9
8

9
9
1
9

Greedy Search:
• At each node, selects

the edge with lowest
(immediate) weight

• Heuristic method of
search (i.e. does not
necessarily find the
best path)

• Computation time:
linear in max path
length

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf

Background: Greedy Search

21

Start
State

End
States

Greedy Search:
• At each node, selects

the edge with lowest
(immediate) weight

• Heuristic method of
search (i.e. does not
necessarily find the
best path)

• Computation time:
linear in max path
length

2
4
3
1 7

3
3
5

4
1
2
2

3
5
6
4

7
8
9
8

9
9
1
9

7
1
3
5

2
1
2
2

5
3
1
5

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf

Background: Global Search

22

Start
State

End
States

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf2

4
3
1 7

3
3
5

4
1
2
2

3
5
6
4

7
8
9
8

9
9
1
9

7
1
3
5

2
1
2
2

5
3
1
5

Global Search:
• Compute the weight

of the path to every
leaf

• Exact method of
search (i.e.
gauranteed to find the
best path)

• Computation time:
exponential in max
path length

Decision Tree Learning as Search
1. search space: all possible decision trees
2. node: single decision tree
3. edge: connects one full tree to another,

where child has one more split than parent

4. edge weight: (negative) splitting criterion
5. DT learning: greedy search, maximizing our

splitting criterion at each step

23

START

sneeze
0 1

+ -

hives
0 1

- -

age
0 1

- +

gender
0 1

+ -

-.1

-.2

-.5

-0

age

+

gender

0 1

0 1

-

+

age

+

hives

0 1

0 1

+

+

-.2

-.1

age

+

gender hives

0 1

0 1 0 1

- - +-.4

age

+

gender sneeze

0 1

0 1 0 1

- - +

-.7

-.1
age

+

sneeze

0 1

0 1

+

+

…
…

…

…

…

…

…

24

Big Question:
How is it that your
ML algorithm can

generalize to
unseen examples?

DT: Remarks

Question: Which tree does ID3 find?

25

Definition:
We say that the inductive bias of a machine learning
algorithm is the principal by which it generalizes to unseen
examples

What is the inductive bias of the ID3 algorithm?
Greedy search for the smallest tree that matches the data
with high mutual information attributes near the top

Occam’s Razor: (restated for ML)
Prefer the simplest hypothesis that explains the data

ID3 = Decision Tree
Learning with Mutual

Information as the
splitting criterion

OVERFITTING
(FOR DECISION TREES)

27

Overfitting and Underfitting

Underfitting
• The model…

– is too simple
– is unable captures the trends in the data
– exhibits too much bias

• Example: majority-vote classifier (i.e.
depth-zero decision tree)

• Example: a toddler (that has not
attended medical school) attempting
to carry out medical diagnosis

Overfitting
• The model…

– is too complex
– is fitting the noise in the data or fitting

“outliers”
– does not have enough bias

• Example: our “memorizer” algorithm
responding to an irrelevant attribute

• Example: medical student who simply
memorizes patient case studies, but
does not understand how to apply
knowledge to new patients

29

Overfitting

• Given a hypothesis h, its…
…error rate over all training data: error(h, Dtrain)
…error rate over all test data: error(h, Dtest)
…true error over all data: errortrue(h)

• We say h overfits the training data if…

• Amount of overfitting =

30
Slide adapted from Tom Mitchell

errortrue(h) > error(h, Dtrain)

errortrue(h) – error(h, Dtrain)

In practice,
errortrue(h) is

unknown

Overfitting in Decision Tree Learning

32
Figure from Tom Mitchell

On training data
On validation data

A
cc

ur
ac

y

Size of tree (number of nodes)

Overfitting in Decision Tree Learning

33
Figure from Tom Mitchell

On training data
On validation data

A
cc

ur
ac

y

Size of tree (number of nodes)

How to Avoid Overfitting?

For Decision Trees…
1. Do not grow tree beyond some maximum depth
2. Do not split if splitting criterion (e.g. mutual information) is below

some threshold
3. Stop growing when the split is not statistically significant
4. Grow the entire tree, then prune (e.g. Reduced Error Pruning)

34

Reduced Error Pruning

Figure from Tom Mitchell

On training data
On validation data

A
cc

ur
ac

y

Size of tree (number of nodes) 35

1. Split data in two: training
dataset and validation
dataset

2. Grow the full tree using
the training dataset

3. Repeatedly prune the
tree:
– Evaluate each split

using a validation
dataset by comparing
the validation error
rate with and without
that split

– (Greedily) remove the
split that most
decreases the
validation error rate

– Stop if no split
improves validation
error, otherwise repeat

Reduced Error Pruning

36
Figure from Tom Mitchell

On training data
On validation data

On validation data (during pruning)

A
cc

ur
ac

y

Size of tree (number of nodes)

1. Split data in two: training
dataset and validation
dataset

2. Grow the full tree using
the training dataset

3. Repeatedly prune the
tree:
– Evaluate each split

using a validation
dataset by comparing
the validation error
rate with and without
that split

– (Greedily) remove the
split that most
decreases the
validation error rate

– Stop if no split
improves validation
error, otherwise repeat

Slide from Henry Chai 38

𝒙𝟒

𝒙𝟑 𝒙𝟑

DriveBus 𝒙𝟏𝒙𝟏

Bike BusBus𝒙𝟐

Bike Bus

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟%&' =

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

Slide from Henry Chai 39

𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟%&' =

𝑠(

𝑠)

𝑠*

𝑠+

𝑠,

𝑠-Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ, 𝒟%&' = 0.2

Slide from Henry Chai 40

𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟%&' =

𝑠(

Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠(, 𝒟%&' = 0.2

Slide from Henry Chai 41

𝒟%&' =

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝑠(

𝑒𝑟𝑟 ℎ − 𝑠(, 𝒟%&' = 0.2

Slide from Henry Chai 42

𝒟%&' =

Bus
𝑠(

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠(, 𝒟%&' = 0.4

Slide from Henry Chai 43

𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟%&' =

𝑠,

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

Bus

BusBus

Bus

𝑒𝑟𝑟 ℎ − 𝑠,, 𝒟%&' = 0.2

Slide from Henry Chai 44

𝒙𝟒

𝒙𝟑

𝒙𝟏

𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

DuringBefore, After

𝒟%&' =

𝑠,
Drive

Bus

Bus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠,, 𝒟%&' = 0.2

Slide from Henry Chai 45

𝒙𝟒

𝒙𝟑

𝒙𝟏

𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

DuringBefore, After

𝒟%&' =

𝑠,
Drive

Bus

Bus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠,, 𝒟%&' = 0.4

Slide from Henry Chai 46

𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟%&' =

𝑠(

𝑠)

𝑠*

𝑠+

𝑠,

𝑠-

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 𝒔𝟔

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.4 0.4 0 0 0.2

Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

Slide from Henry Chai 47

𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟%&' =

𝑠(

𝑠)

𝑠*

𝑠+

𝑠,

𝑠-Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 𝒔𝟔

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.4 0.4 0 0 0.2

Slide from Henry Chai 48

𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

𝒟%&' =

Bus

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ, 𝒟%&' = 0

Slide from Henry Chai 49

𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

𝒟%&' =

𝑠(

𝑠,

𝑠-

Bus

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.2 0.2

Slide from Henry Chai 50

𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike Bus

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

Bus

𝑥!
Cholesterol

𝑦
Heart Disease?

155 No

163 Yes

174 No

178 No

181 No

197 Yes

221 Yes

233 Yes

244 Yes

245 No

Real-Valued
Features:
Example

51

𝑥! < 189

𝑥!
Cholesterol

𝑦
Heart Disease?

174 No

155 No

163 Yes

233 Yes

197 Yes

181 No

244 Yes

245 No

178 No

221 Yes

𝑥!
𝑥 ≥ 189𝑥! < 189

YesNo

𝑥!
Cholesterol

𝑦
Heart Disease?

155 No

163 Yes

174 No

178 No

181 No

197 Yes

221 Yes

233 Yes

244 Yes

245 No

Real-Valued
Features:
Example

52

𝑥! < 189

𝑥!
Cholesterol

𝑦
Heart Disease?

174 No

155 No

163 Yes

233 Yes

197 Yes

181 No

244 Yes

245 No

178 No

221 Yes

𝑥!
𝑥 ≥ 189𝑥! < 189

𝑥! < 244.5

𝑥! < 168.5

𝑥!
𝑥 ≥ 168.5𝑥! < 168.5

NoYes

𝑥!
𝑥 ≥ 244.5𝑥! < 244.5

NoYes

Decision Trees (DTs) in the Wild
• DTs are one of the most popular classification methods for practical

applications
– Reason #1: The learned representation is easy to explain a non-ML person
– Reason #2: They are efficient in both computation and memory

• DTs can be applied to a wide variety of problems including classification,
regression, density estimation, etc.

• Applications of DTs include…
– medicine, molecular biology, text classification, manufacturing, astronomy,

agriculture, and many others
• Decision Forests learn many DTs from random subsets of features; the

result is a very powerful example of an ensemble method (discussed
later in the course)

53

DT Learning Objectives
You should be able to…
1. Implement Decision Tree training and prediction
2. Use effective splitting criteria for Decision Trees and be able to define

entropy, conditional entropy, and mutual information / information gain
3. Explain the difference between memorization and generalization [CIML]
4. Describe the inductive bias of a decision tree
5. Formalize a learning problem by identifying the input space, output space,

hypothesis space, and target function
6. Explain the difference between true error and training error
7. Judge whether a decision tree is "underfitting" or "overfitting"
8. Implement a pruning or early stopping method to combat overfitting in

Decision Tree learning

54

REAL VALUED ATTRIBUTES

55

petal

sepal

petal

sepal

Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

57
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

58
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal
Length

Sepal
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the
four features, so that

input space is 2D

Fisher Iris Dataset

59

sepal width

se
pa

l l
en

gt
h y=0

y=1

Fisher Iris Dataset

60

sepal width

se
pa

l l
en

gt
h y=0

y=1

61

Classification & Real-Valued Features

Def: Classification Def: Binary Classification

63

D =

{(

x(i), y(i)
)}N

i=1

∀i, x(i) ∈ R
M (features/instance)

∀i, y(i) ∈ {1, 2, . . . , L} (label/class)
M = # of features (dimensionality of x)
N = # of training examples = |D|

Classification where |Y| = 2

∀i, y(i) ∈ {+,−}

∈ {red, blue}
∈ {cat, dog}

Classification & Real-Valued Features

64

Def: Hypothesis (aka. Decision Rule) for Binary Classification

Ex: Decision Boundaries (2D Binary Classification)

h : RM → {+,−}
Train time: Learn h
Test time: Given x̂, predict ŷ = h(x̂)

Evaluate h

1 2 3

1
2

3

linear decision boundary nonlinear decision boundary
y=+

y= –

1 2 3

1
2

3

y=+ y= –

h(x1, x2)
h(x1, x2)

K-NEAREST NEIGHBORS

65

Nearest Neighbor: Algorithm

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let 𝒙 ! 	= the point in 𝒟 that is nearest to 𝒙′
 return 𝑦 !

66

Nearest Neighbor: Example

67

Nearest Neighbor: Example

68

• This is a Voronoi
diagram

• Each cell contain
one of our
training
examples

• All points within
a cell are closer
to that training
example, than
to any other
training example

• Points on the
Voronoi line
segments are
equidistant to
one or more
training
examples

Nearest Neighbor: Example

69

The Nearest Neighbor Model

• Requires no training!

• Always has zero training error!
– A data point is always its own nearest neighbor

70

k-Nearest Neighbors: Algorithm
def set_hyperparameters(k, d):
 Store k
 Store d(·, ·)

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let S = the set of k points in 𝒟 nearest to 𝒙′
 according to distance function
 d(u, v)
 Let v = majority_vote(S)
 return v

71

k-Nearest Neighbors

73

3
4

2
8

7
7

xnew

x1

x2

How should we label
the new point?

It depends on k:
if k=1, h(xnew) = +1
if k=3, h(xnew) = -1
if k=5, h(xnew) = +1

Suppose we have the
training dataset below.

KNN: Remarks
Distance Functions:
• KNN requires a distance function

• The most common choice is Euclidean distance

• But there are other choices (e.g. Manhattan distance)

79

𝑑 ∶ 	ℝ! 	×	ℝ! → ℝ

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣" %

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣"

KNN: Computational Efficiency

• Suppose we have N training examples and
each one has M features

• Computational complexity when k=1:

80

Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict
(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)

KNN: Theoretical Guarantees

81

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity…

errortrue(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:
‘the best you
could possibly
do’

