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Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan. 22
– Due: Mon, Feb. 3 at 11:59pm
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Q&A
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Q: Why don’t my entropy calculations match those on the slides?

A: Remember that H(Y) is conventionally reported in “bits” and computed using 
log base 2. 
e.g., H(Y) = - P(Y=0) log2P(Y=0) - P(Y=1) log2P(Y=1)

Q: When and how do we decide to stop growing trees? What if the set of 
values an attribute could take was really large or even infinite?

A: We’ll address this question for discrete attributes today. If an attribute is real-
valued, there’s a clever trick that only considers O(L) splits where L = # of 
values the attribute takes in the training set. Can you guess what it does?



Q&A
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Q: What does decision tree training do if a branch receives no data?

A: Then we hit the base case and create a leaf node. So the real 
question is what does majority vote do when there is no data? 
Of course, there is no majority label, so (if forced to) we could 
just return one randomly.

Q: What do we do at test time when we observe a value 
for a feature that we didn’t see at training time.

A: This really just a variant of the first question. That said, a real DT 
implementation needs to elegantly handle this case. We could 
do so by either (a) assuming that all possible values will be seen 
at train time, so there should be a branch for all attributes even 
if the partition of the dataset doesn’t include them all or (b) 
recognize the unseen value at test time and return some 
appropriate label in that case.



EMPIRICAL COMPARISON OF SPLITTING 
CRITERIA 
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Experiments: Splitting Criteria

Bluntine & Niblett (1992) compared 4 criteria (random, Gini, 
mutual information, Marshall) on 12 datasets
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Table 1. Properties of the data sets. 

Data Set Classes Attr.s Real Multi % Unkn Training Set Test Set % Base Error 

hypo 4 29 7 1 5.5 1000 2772 7.7 
breast 2 9 4 2 0.4 200 86 29.7 
tumor 22 18 0 3 3.7 237 102 75.2 
lymph 4 18 1 8 0 103 45 45.3 
LED 10 7 0 0 0 200 1800 90.0 
mush 2 22 0 18 0 200 7924 48.2 
votes 2 17 0 17 0 200 235 38.6 
votesl 2 16 0 16 0 200 235 38.6 
iris 3 4 4 0 0 100 50 66.7 
glass 7 9 9 0 0 100 114 64.5 
xd6 2 10 0 0 0 200 400 35.5 
pole 2 4 4 0 0 200 1647 49.0 

Some data sets were obtained through indirect sources. The "breast," "tumor" and 
"lymph" data sets were originally collected at the University Medical Center, Institute of 
Oncology, Ljubljana, Yugoslavia, in particular by G. Klajn~ek and M. Soklic (lympho- 
graphy data), and M. Zwitter (breast cancer and primary tumor). The data was converted 
into easy-to-use experimental material by Igor Kononenko, Faculty of Electrical Engineer- 
ing, Ljubljana University. The data has been the subject of a series of comparative studies, 
for instance (Cestnik, et al., 1987). The hypothyroid data ("hypo") came originally from 
me Garvan Institute of Medical Research, Sydney. The data sets "glass," "votes" and "mush" 
zame from David Aha's Machine Learning Database available over the academic computer 
aetwork from the University of California at Irvine, "hypo" and "xd6" came from a collec- 
Iion by Ross Quinlan of the University of Sydney (Quinlan, 1988), "breast," "lymph" and 
"tumor" came via Pete Clark of the Turing Institute, and "iris" from Stuart Crawford of 
Advanced Decision Systems. Versions 2 of the last four mentioned data sets are also avail- 
able from the Irvine Machine Learning Database. 

Major properties of the data sets are given in Table 1. Columns headed "real" and "multi" 
are the number of attributes that are treated as real-valued or ordered and as multi-valued 
5iscrete attributes respectively. Percentage unknown is the proportion of all attribute values 
:hat are unknown. These are usually concentrated in a few attributes. Percentage base error 
is the percentage error obtained if the most frequent class is always predicted. Good trees 
should give a significant improvement over this. 

~. Implementation 

the decision tree implementation used in these experiments was originally written by David 
Harper, Chris Carter, and other students at the University of Sydney from 1984 to 1988. 
the present version has been largely rewritten by Wray Bunfine. Performance of the cur- 
rent system was compared to earlier versions to check that bugs were not introduced during 
rewriting. Unknown attribute values were treated as follows. When evaluating a test, an 
example with unknown outcome had its unit weight split across outcomes according to 
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Medical Diagnosis Datasets: (4 of 12)
• hypo: data set of 3772 examples records expert opinion 

on possible hypo- thyroid conditions from 29 real and 
discrete attributes of the patient such as sex, age, taking 
of relevant drugs, and hormone readings taken from drug 
samples.

• breast: The classes are reoccurrence or non-reoccurrence 
of breast cancer sometime after an operation. There are 
nine attributes giving details about the original cancer 
nodes, position on the breast, and age, with multi-valued 
discrete and real values.

• tumor: examples of the location of a primary tumor
• lymph: from the lymphography domain in oncology. The 

classes are normal, metastases, malignant, and fibrosis, 
and there are nineteen attributes giving details about the 
lymphatics and lymph nodes

Table from Bluntine & Niblett (1992)



Experiments: Splitting Criteria
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Info. Gain is another name 
for mutual information

Table from Bluntine & Niblett (1992)

Key Takeaway: 
GINI gain and 

Mutual 
Information are 

statistically 
indistinguishable!



Experiments: Splitting Criteria
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Results are of the form 
A.AA (B.BB) where:
1. A.AA is the average 

difference in errors 
between the two 
methods

2. B.BB is the significance 
of the difference 
according to a two-tailed 
paired t-test

Table from Bluntine & Niblett (1992)

Key Takeaway: 
GINI gain and 

Mutual 
Information are 

statistically 
indistinguishable!



INDUCTIVE BIAS 
(FOR DECISION TREES)
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Decision Tree Learning Example

17

Poll Question 1
Which decision tree would you learn if you used error 
rate as the splitting criterion?
(Assume ties are broken alphabetically.)

Dataset: 
Output Y, Attributes A, B, C
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Decision Tree Learning Example
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Poll Question 2
Which decision tree is the smallest tree that achieves 
the lowest possible training error?

Dataset: 
Output Y, Attributes A, B, C

Y A B C
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C C
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- - +
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Background: Greedy Search
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Start
State

End
States

2
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3
1 7
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Greedy Search:
• At each node, selects 

the edge with lowest 
(immediate) weight

• Heuristic method of 
search (i.e. does not 
necessarily find the 
best path)

• Computation time: 
linear in max path 
length

Goal:
• Search space consists 

of nodes and weighted 
edges

• Goal is to find the 
lowest (total) weight 
path from root to a 
leaf
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Background: Greedy Search
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Background: Global Search
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Start
State

End
States

Goal:
• Search space consists 

of nodes and weighted 
edges

• Goal is to find the 
lowest (total) weight 
path from root to a 
leaf2
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Global Search:
• Compute the weight 

of the path to every 
leaf

• Exact method of 
search (i.e. 
gauranteed to find the 
best path)

• Computation time: 
exponential in max 
path length



Decision Tree Learning as Search
1. search space: all possible decision trees
2. node: single decision tree
3. edge: connects one full tree to another, 

where child has one more split than parent

4. edge weight: (negative) splitting criterion
5. DT learning: greedy search, maximizing our 

splitting criterion at each step
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Big Question:
How is it that your 
ML algorithm can 

generalize to 
unseen examples?



DT: Remarks

Question: Which tree does ID3 find?

25

Definition:
We say that the inductive bias of a machine learning 
algorithm is the principal by which it generalizes to unseen 
examples

What is the inductive bias of the ID3 algorithm?
Greedy search for the smallest tree that matches the data 
with high mutual information attributes near the top

Occam’s Razor: (restated for ML) 
Prefer the simplest hypothesis  that explains the data

ID3 = Decision Tree 
Learning with Mutual 

Information as the 
splitting criterion



OVERFITTING
(FOR DECISION TREES)
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Overfitting and Underfitting

Underfitting
• The model…

– is too simple
– is unable captures the trends in the data
– exhibits too much bias

• Example: majority-vote classifier (i.e. 
depth-zero decision tree)

• Example: a toddler (that has not 
attended medical school) attempting 
to carry out medical diagnosis

Overfitting
• The model…

– is too complex
– is fitting the noise in the data or fitting 

“outliers”
– does not have enough bias

• Example: our “memorizer” algorithm 
responding to an irrelevant attribute

• Example: medical student who simply 
memorizes patient case studies, but 
does not understand how to apply 
knowledge to new patients
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Overfitting

• Given a hypothesis h, its…
…error rate over all training data: error(h, Dtrain)
…error rate over all test data:   error(h, Dtest)
…true error over all data:    errortrue(h)

• We say h overfits the training data if…

• Amount of overfitting =

30
Slide adapted from Tom Mitchell

errortrue(h) > error(h, Dtrain) 

errortrue(h) – error(h, Dtrain) 

In practice, 
errortrue(h) is 

unknown



Overfitting in Decision Tree Learning
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Figure from Tom Mitchell

On training data
On validation data

A
cc

ur
ac

y

Size of tree (number of nodes)



Overfitting in Decision Tree Learning
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How to Avoid Overfitting?

For Decision Trees…
1. Do not grow tree beyond some maximum depth
2. Do not split if splitting criterion (e.g. mutual information) is below 

some threshold
3. Stop growing when the split is not statistically significant
4. Grow the entire tree, then prune (e.g. Reduced Error Pruning)
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Reduced Error Pruning

Figure from Tom Mitchell

On training data
On validation data
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Size of tree (number of nodes) 35

1. Split data in two: training 
dataset and validation 
dataset

2. Grow the full tree using 
the training dataset

3. Repeatedly prune the 
tree:
– Evaluate each split 

using a validation 
dataset by comparing 
the validation error 
rate with and without 
that split

– (Greedily) remove the 
split that most 
decreases the 
validation error rate

– Stop if no split 
improves validation 
error, otherwise repeat



Reduced Error Pruning
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Figure from Tom Mitchell

On training data
On validation data

On validation data (during pruning)

A
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y

Size of tree (number of nodes)

1. Split data in two: training 
dataset and validation 
dataset

2. Grow the full tree using 
the training dataset

3. Repeatedly prune the 
tree:
– Evaluate each split 

using a validation 
dataset by comparing 
the validation error 
rate with and without 
that split

– (Greedily) remove the 
split that most 
decreases the 
validation error rate

– Stop if no split 
improves validation 
error, otherwise repeat
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𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

𝒟%&' =

𝑠(

𝑠,

𝑠-

Bus

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.2 0.2
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𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike Bus

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

Bus



𝑥!
Cholesterol 

𝑦
Heart Disease?

155 No

163 Yes

174 No

178 No

181 No

197 Yes

221 Yes

233 Yes

244 Yes

245 No

Real-Valued 
Features: 
Example

51

𝑥! < 189

𝑥!
Cholesterol 

𝑦
Heart Disease?

174 No

155 No

163 Yes

233 Yes

197 Yes

181 No

244 Yes

245 No

178 No

221 Yes

𝑥!
𝑥 ≥ 189𝑥! < 189

YesNo



𝑥!
Cholesterol 

𝑦
Heart Disease?

155 No

163 Yes

174 No

178 No

181 No

197 Yes

221 Yes

233 Yes

244 Yes

245 No

Real-Valued 
Features: 
Example
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𝑥! < 189

𝑥!
Cholesterol 

𝑦
Heart Disease?

174 No

155 No

163 Yes

233 Yes

197 Yes

181 No

244 Yes

245 No

178 No

221 Yes

𝑥!
𝑥 ≥ 189𝑥! < 189

𝑥! < 244.5

𝑥! < 168.5

𝑥!
𝑥 ≥ 168.5𝑥! < 168.5

NoYes

𝑥!
𝑥 ≥ 244.5𝑥! < 244.5

NoYes



Decision Trees (DTs) in the Wild
• DTs are one of the most popular classification methods for practical 

applications
– Reason #1: The learned representation is easy to explain a non-ML person
– Reason #2: They are efficient in both computation and memory

• DTs can be applied to a wide variety of problems including classification, 
regression, density estimation, etc.

• Applications of DTs include…
– medicine, molecular biology, text classification, manufacturing, astronomy, 

agriculture, and many others
• Decision Forests learn many DTs from random subsets of features; the 

result is a very powerful example of an ensemble method (discussed 
later in the course)
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DT Learning Objectives
You should be able to…
1. Implement Decision Tree training and prediction
2. Use effective splitting criteria for Decision Trees and be able to define 

entropy, conditional entropy, and mutual information / information gain
3. Explain the difference between memorization and generalization [CIML]
4. Describe the inductive bias of a decision tree
5. Formalize a learning problem by identifying the input space, output space, 

hypothesis space, and target function
6. Explain the difference between true error and training error
7. Judge whether a decision tree is "underfitting" or "overfitting"
8. Implement a pruning or early stopping method to combat overfitting in 

Decision Tree learning
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REAL VALUED ATTRIBUTES
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petal

sepal

petal

sepal



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)

57
Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



Fisher Iris Dataset
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Fisher Iris Dataset
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sepal width

se
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l l
en
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h y=0

y=1
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Classification & Real-Valued Features

Def: Classification Def: Binary Classification

63

D =

{(

x(i), y(i)
)}N

i=1

∀i, x(i) ∈ R
M (features/instance)

∀i, y(i) ∈ {1, 2, . . . , L} (label/class)
M = # of features (dimensionality of x)
N = # of training examples = |D|

Classification where |Y| = 2

∀i, y(i) ∈ {+,−}

∈ {red, blue}
∈ {cat, dog}



Classification & Real-Valued Features
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Def: Hypothesis (aka. Decision Rule) for Binary Classification

Ex: Decision Boundaries (2D Binary Classification)

h : RM → {+,−}
Train time: Learn h
Test time: Given x̂, predict ŷ = h(x̂)

Evaluate h

1 2 3

1
2

3

linear decision boundary nonlinear decision boundary
y=+

y= – 

1 2 3

1
2

3

y=+ y= – 

h(x1, x2)
h(x1, x2)



K-NEAREST NEIGHBORS
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Nearest Neighbor: Algorithm

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let 𝒙 ! 	= the point in 𝒟 that is nearest to 𝒙′ 
 return 𝑦 !
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Nearest Neighbor: Example
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Nearest Neighbor: Example
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• This is a Voronoi 
diagram

• Each cell contain 
one of our 
training 
examples

• All points within 
a cell are closer 
to that training 
example, than 
to any other 
training example

• Points on the 
Voronoi line 
segments are 
equidistant to 
one or more 
training 
examples



Nearest Neighbor: Example
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The Nearest Neighbor Model

• Requires no training!

• Always has zero training error! 
– A data point is always its own nearest neighbor
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k-Nearest Neighbors: Algorithm
def set_hyperparameters(k, d):
 Store k
 Store d(·, ·)

def train(𝒟):
 Store 𝒟

def h(𝒙′):
 Let S = the set of k points in 𝒟 nearest to 𝒙′
      according to distance function 
      d(u, v)
 Let v = majority_vote(S)
 return v
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k-Nearest Neighbors
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3
4

2
8

7
7

xnew

x1

x2

How should we label 
the new point?

It depends on k:
if k=1, h(xnew) = +1
if k=3, h(xnew) = -1
if k=5, h(xnew) = +1

Suppose we have the 
training dataset below.



KNN: Remarks
Distance Functions:
• KNN requires a distance function

• The most common choice is Euclidean distance

• But there are other choices (e.g. Manhattan distance)
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𝑑 ∶ 	ℝ! 	×	ℝ! → ℝ

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣" %

𝑑 𝒖, 𝒗 = +
"#$

!

𝑢" − 𝑣"



KNN: Computational Efficiency

• Suppose we have N training examples and 
each one has M features

• Computational complexity when k=1:
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Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict 
(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but 
very slow for large M

In practice: use stochastic 
approximations (very fast, and 
empirically often as good)



KNN: Theoretical Guarantees
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Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary 
classifier. As the number of training 
examples N goes to infinity…

errortrue(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the 
classification information in an infinite 
sample set is contained in the nearest 
neighbor.”

very 
informally, 
Bayes Error 
Rate can be 
thought of as:
‘the best you 
could possibly 
do’


