10-301/601: Introduction to Machine Learning Lecture 3 – Decision Trees

Henry Chai & Matt Gormley 1/22/25

Front Matter

- Announcements:
 - HW1 released 1/13, due 1/22 (today!) at 11:59 PM
 - Reminder: we will grant (basically) any extension requests for this assignment
 - HW2 released 1/22 (today!), due 2/3 at 11:59 PM
 - Unlike HW1, you will only have:
 - 1 submission for the written portion
 - 10 submissions of the programming portion to our autograder

Q & A:

How do these in-class polls work?

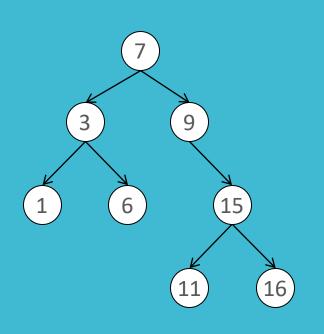
- Open the poll, either by clicking the [Poll] link on the schedule page of our course website or going to http://poll.mlcourse.org
- Sign into Google Forms using your Andrew email
- Answer all poll questions during lecture for full credit or within 24 hours for half credit
 - Exception: for today's polls only, any response within 24 hours will receive full credit
- Avoid the toxic option (will be clearly specified in lecture) which gives negative poll points
- You have 8 free "poll points" for the semester that will excuse you from all polls from a single lecture; you cannot use more than 3 poll points consecutively.

Poll Question 1:

Which of the following did you bring to class today? Select all that apply

- A. A tablet
- B. A smartphone
- C. A payphone
- D. A laptop
- E. None of the above

Background: Recursion



- A binary search tree (BST) consists of nodes, where each node:
 - · has a value, v
 - up to 2 children, a left descendant and a right descendant
 - all its left descendants have values less than v and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree

```
def contains_iterative (node, key):

Curr = node

while (tvve):

if key < curr. value & curr. left != null:

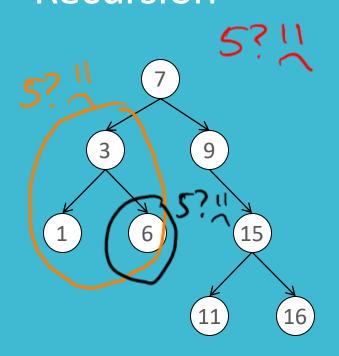
curr = curr. left

else if key > curr. value & curr. right!= null:

curr = curr. right

else: break return key == curr. value 5
```

Background: Recursion



- A binary search tree (BST) consists of nodes, where each node:
 - has a value, v
 - up to 2 children, a left descendant and a right descendant
 - all its left descendants have values less than v and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree

def contains_recursive (node, key):

if key < node, value & node, left != null:

return contains_ recursive (node, left, key)

eke if key > node, value & node, right != null:

return contains_ recursive (node, right, key)

else:

return key == node, value

Recall: Decision Stumps

Algorithm 3: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

	\mathcal{Y}	\boldsymbol{x}_1	x_2	\boldsymbol{x}_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
_	_	Y	N	N	N
+	_	Ν	Υ	N	N
+	+	Y	Y	N	N
_	_	Υ	N	Υ	Υ
+	+	N	Υ	Υ	N

Nonzero training error, but perhaps still better than the memorizer

Example decision stump: h(x) = { + if sneezing = Y } - otherwise But why would we only use just one feature?

Algorithm 3: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

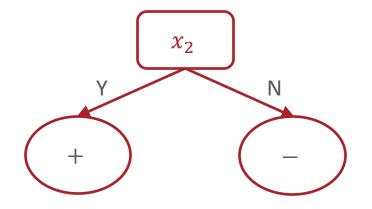
	\mathcal{Y}	\boldsymbol{x}_1	\boldsymbol{x}_2	\boldsymbol{x}_3	$oldsymbol{x_4}$
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
_	_	Y	N	N	N
+	_	Ν	Υ	N	N
+	+	Υ	Y	N	N
_	_	Υ	N	Υ	Υ
+	+	N	Υ	Υ	N

Nonzero training error, but perhaps still better than the memorizer

Example decision stump: $h(\mathbf{x}) = \begin{cases} + \text{ if sneezing } = Y \\ - \text{ otherwise} \end{cases}$

From Decision Stump

\mathcal{Y}	\boldsymbol{x}_1	x_2	\boldsymbol{x}_3	x_4
allergic?	hives?	sneezing?	red eye?	has cat?
_	Y	N	N	N
_	N	Υ	N	Ν
+	Y	Y	N	N
_	Υ	N	Υ	Υ
+	N	Υ	Υ	N



From
Decision
Stump
to
Decision
Tree

	У	x_1	x_2	x_3	x_4
alle	ergic?	hives?	sneezing?	red eye?	has cat?
	_	Y	N	N	N
	_	N	Y	N	N
	+	Y	Y	N	N
	_	Υ	N	Υ	Υ
	+	N	Y	Y	N
					Y
					_

Decision Tree: In-class Activity

- 1. Group 1: Answer the questions to determine which leaf node corresponds to your feature values
- 2. Group 2:
 - a) Take a blue sticky note if you prefer dogs to cats; otherwise, take a red sticky note
 - Answer the questions to determine which leaf node corresponds to your feature values and place your sticky note there
 - c) Answer the new question to determine which new leaf node to move your sticky note to
- 3. Group 3: Answer the questions to determine which leaf node corresponds to your feature values

Decision Tree: Example

```
Learned from medical records of 1000 women
  Negative examples are C-sections
  [833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
    Previous_Csection = 0: [767+,81-] .90+ .10-
    | Primiparous = 0: [399+,13-] .97+ .03-
→ | | Primiparous = 1: [368+,68-] .84+ .16-
   | | | Fetal_Distress = 1: [34+,21-] .62+ .38- 🛪
→ | Previous_Csection = 1: [55+,35-] .61+ .39- ★
→ Fetal_Presentation = 2: [3+,29-] .11+ .89- ጵ
→Fetal_Presentation = 3: [8+,22-] .27+ .73- ★
```

1/22/25 Figure courtesy of Tom Mitchell

Decision Tree: Pseudocode

```
[x'_1, x_2, \dots, x_D]
def h(x'):
   - walk from the root node to a leaf
   while (true)?
         if current_node is "internal"
             check the associated feature, X
             as go down the branch corresponding to xj
        if current node is a leaf!
             return label stored at current_node
```

Decision Tree Questions

1. How can we pick which feature to split on?

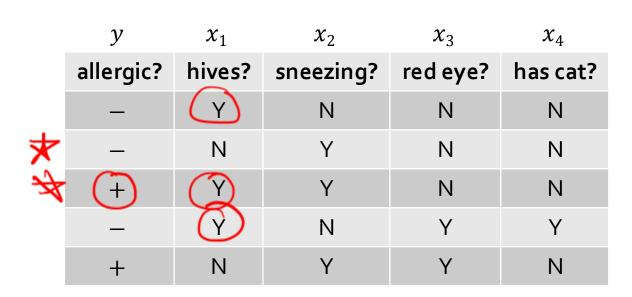
2. Why stop at just one feature?

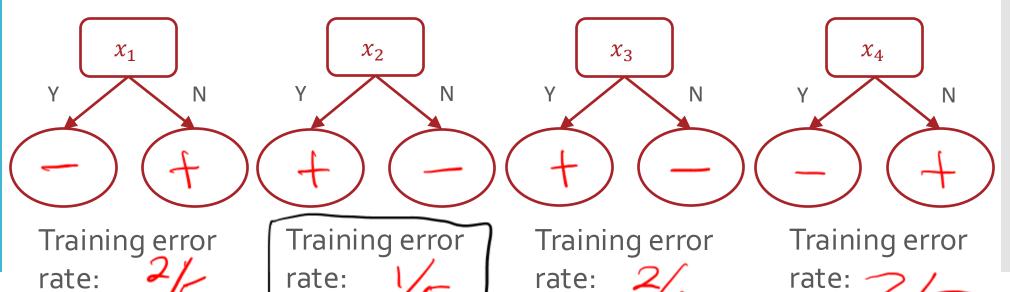
Splitting Criterion

- A **splitting criterion** is a function that measures how good or useful splitting on a particular feature is *for a specified dataset*
- Idea: when deciding which feature to split on, use the one that optimizes the splitting criterion

1/22/25 **15**

Training Error Rate as a Splitting Criterion





Poll Question 2:

Which feature would you split on using training error rate as the splitting criterion?

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

A. x_1

B. χ_2

C. Either x_1 or x_2

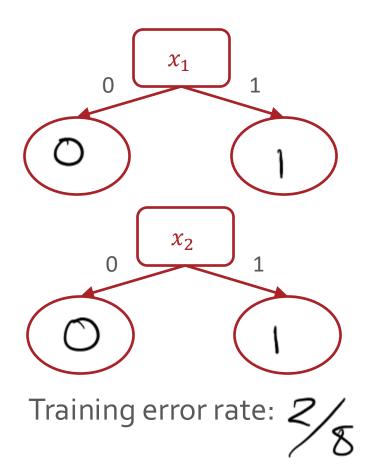
D. Neither x_1 nor x_2

1/22/25 **17**

Poll Question 2:

Which feature would you split on using training error rate as the splitting criterion?

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1



Splitting Criterion

- A **splitting criterion** is a function that measures how good or useful splitting on a particular feature is *for a specified dataset*
- Idea: when deciding which feature to split on, use the one that optimizes the splitting criterion
- Potential splitting criteria:
 - Training error rate (minimize)
 - Gini impurity (minimize) → CART algorithm
 - Mutual information (maximize) → ID3 algorithm

Splitting Criterion

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Idea: when deciding which feature to split on, use the one that optimizes the splitting criterion
- Potential splitting criteria:
 - Training error rate (minimize)
 - Gini impurity (minimize) → CART algorithm
 - Mutual information (maximize) → ID3 algorithm

Entropy

• The **entropy** of a *random variable* describes the uncertainty of its outcome: the higher the entropy, the less certain we are about what the outcome will be.

$$H(X) = -\sum_{v \in V(X)} P(X = v) \log_2(P(X = v))$$

where *X* is a (discrete) random variable

V(X) is the set of possible values X can take on

Entropy

• The **entropy** of a *set* describes how uniform or pure it is: the higher the entropy, the more impure or "mixed-up" the set is

set is
$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right) \quad \text{and} \quad \text{of} \quad \text$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

If all the elements in S are the same, then

$$H(S) = -\frac{181}{151}\log_2\frac{1S1}{1S1} = -1\log_2$$

Entropy

• The **entropy** of a *set* describes how uniform or pure it is: the higher the entropy, the more impure or "mixed-up" the set is

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

• If *S* is split fifty-fifty between two values, then

$$H(S) = -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right)$$
$$= -\left(\frac{1}{2}(-1) + \frac{1}{2}(-1)\right) = 1$$

Mutual Information

• The **mutual information** between *two random variables* describes how much clarity knowing the value of one random variables provides about the other

$$I(Y;X) = H(Y) - H(Y|X)$$

$$= H(Y) - \sum_{v \in V(X)} P(X = v)H(Y|X = v)$$

where X and Y are random variables

V(X) is the set of possible values X can take on

H(Y|X=v) is the conditional entropy of Y given X=v

Mutual Information

• The **mutual information** between *a feature and the label* describes how much clarity knowing the feature provides about the label

$$I(y; x_d) = H(y) - H(y|x_d)$$

$$= H(y) - \sum_{v \in Y(v)} f_v * H(Y_{x_d=v})$$

where x_d is a feature and y is the set of all labels

 $V(x_d)$ is the set of possible values x_d can take on

 f_v is the fraction of data points where $x_d = v$

 $Y_{x_d=v}$ is the set of all labels where $x_d=v$

Mutual Information: Example

x_d	y	
1	1	7
1	1)
0	0	3
0	0)

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$= 1 - \left(\frac{1}{2} H(Y_{x_d=1}) + \frac{1}{2} H(Y_{x_d=0})\right)$$

Mutual Information: Example

	x_d	y	
	1	1	4
7	0	1	4
()	1	0	
	0	0	

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$= \left(- \left(\frac{1}{2} H(Y_{X_d=v}) + \frac{1}{2} H(Y_{X_d=o}) \right) \right)$$

$$\downarrow$$

Poll Question 3:

Which feature would you split on using mutual information as the splitting criterion?

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

A. x_1

B. χ_2

C. Either x_1 or x_2

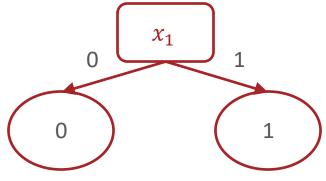
D. Neither x_1 nor x_2

1/22/25 **28**

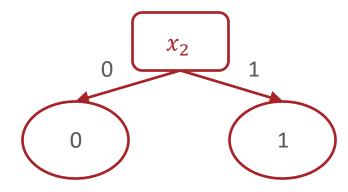
Poll Question 3:

Which feature would you split on using mutual information as the splitting criterion?

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1



Mutual Information: 0



Mutual Information:
$$-\frac{2}{8}\log_2\frac{2}{8} - \frac{6}{8}\log_2\frac{6}{8} - \frac{1}{2}(1) - \frac{1}{2}(0) \approx 0.31$$

Decision Tree Questions

1. How can we pick which feature to split on?

- 2. Why stop at just one feature?
 - a) If we split on more than one feature, how do we decide the order to spilt on?

Decision Tree: Pseudocode

```
def train(\mathcal{D}):
    store root = tree recurse(\mathcal{D})
def tree_recurse (\mathcal{D}'):
    q = new node()
    base case - if (SOME CONDITION):
     recursion - else:
             find the best attribute to split on x
             9. split = X1
            For V in V(x_a), all possible values of x_a:

D_v = \{(x^{(n)}, y^{(n)}) \in D^1 | x_a^{(n)} = V\}

q. children(v) = free recurse(Pv)
     return q
```

Decision Tree: Pseudocode

```
def train(D):
   store root = tree recurse(\mathcal{D})
def tree_recurse(\mathcal{D}'):
   q = new node()
   base case - if (all labels in D' are the
                       Same OR
                     D) is empty OR all feature vectors in D' are the same ):
                  q. label = majority_vote(D1)
   recursion - else:
   return q
```