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* Announcements
* HWO released 4/17, due 4/24 (Thursday) at 11:59 PM
* You may only use at most 2 late days on HW9
* Exam 3 0on 5/1 from 1 PMto 3 PM

- We will not use the full 3-hour window

* All topics from Lectures 17 to 25 (inclusive) are in-
Front Matter scope, excluding the MLE/MAP portion of Lecture 17

* Exam 1 and 2 content may be referenced but will not

be the primary focus of any question

* Please watch Piazza carefully for your room and seat

assignments

* You are allowed to bring one letter-size sheet of

4/23/25 notes; you may put whatever you want on both sides *?



(Univariate) Gaussians:
x ~N(;u=00%=1)

CENNNERDS

* Multivariate Gaussians:
_ T D
x = [xq, ...,xD]/,7 R
\5 IRDHD

Covarenlie m,c:[-r;y(
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* Closure under linear transformations:
0 X~ N(p, 2)
s ATHE ~ W(ApHL, AZAT)
Some fun Lilos
facts about * Closure under addltlon - S)
Gaussians I %~ NC}U %) )/ N

—[—};M X+>f ~ /\J(/u-l-m Z—[-,S)

* Closure under conditioning:

it) [:;]~M([~; : Zil‘ z“?;j‘])
e =0 wN( A .57 (e ),
4/23/25 Z’-’n HZFL Z’z-; ZZJ')




Some old Gaussian process =

friends

Bayesian linear regression + Kernels
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Some old (Gaussian process =

friends

Bayesian linear regression + Kernels
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Recall:
MAP for

Linear
Regression

4/23/25

* If we assume a linear model with additive Gaussian noise
y =Xw + ewheree ~ N(0y,0%Iy) =y ~ NXw,c?ly)

and independent identical Gaussian priors on the weights...
g’ 1
w~N (WD+1;71D+1> - p(w) o« exp (‘ 252 (AWTW)>

* ... then, the MAP of w is the ridge regression solution!
Wy ap = argmin (Xw — y)T(Xw — y) + Aw'w
w

= X"X +Apy) Xy



* Assume a linear model with additive Gaussian noise and a

~
zero-mean Gaussian prior on the weights: [ ¢5. M
y — XW + EWhere €~ N(ON, O-ZIN) and w ~ N(OD+1, Z)

then, A ]M+7
Bayesian y ~N(X0pyq + 0y = 0y, XIXT + 021y)

Linear
Regression

4/23/25



* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

y = Xw + e where e ~ N(0y, 0%Iy) andw ~ N(0p,{,2)

then, //
Bayesian

g S5 o)
2/

Cov Cu ) CC‘)\/(\._!:J?) :?-l——é‘}) = Co\ \;TXXC-:J-?)J
= Xeow (S )
- =%25

4/23/25 9

Linear
Regression




Bayesian

Linear
Regression

4/23/25

* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0y, 0%Iy) andw ~ N(0p,{,2)

then,

Bl (Cor] b o+ o)
y X XZXT + o2l

10



* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0y, 0%Iy) andw ~ N(0p,{,X)

then,
BayeS|an w |y ~ N(Uposr,Zpost)

Linear
Regression

where

Ppost = ZXT(XZX" + 021y) ™y,
Ypost = = — XXT(XZXT + 02Iy)~1X2

4/23/25
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- Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0y,0%Iy) andw ~ N(0p,¢,X)
then given a new test data point x’, the prediction is
Bayesian @| y=x"w|y~ N pposr, X Zposrx’)

Linear . here N 7
Regression

XT(XzXT + o21y) 1y, \S(
Ypost = = — XXT(XZXT + 021y)~1X2
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

3? = Xw + e where e ~ N(0y,0%Iy) andw ~ N(0p,1,2)

then given a new test data point x’, the prediction is
I ’ 1T
BayeS|an y | y=x W | y ~ N(Uprep, ZprED)

Linear
Regression

where

HprED = x"IXT(XEXT + o’Iy)"ty,
Spppp = X 2x" — x' IXT(XTXT + 021y) " 1XZx’

4/23/25
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Some old

friends

4/23/25

(Gaussian process =

Bayesian linear regression + Kernels
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Some new

friends

4/23/25

(Gaussian process =

Bayesian linear regression + Kernels
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Bayesian
Linear
Regression

4/23/25

* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + € where e ~ N(0y, 02%Iy) andw ~ N(0p, ¢, %)
then given a new test data point x’, the prediction is
y' | y = x'w | y ~ N(Uprep, ZprED)
where
Morep = &' EXT(XIXT + 021) "1y,
Spppp = X 2x" — x' IXT(XTXT + 021) " 1XZx’

17



- Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:

Bayesian

Non-linear

Regression...

y = ®w + € where € ~ N(0y,0%Iy) and w ~ N(0pr,4, %)

then given a new test data point x’, the prediction is
v Iy=¢&) |y~ NWprep, Zprep)

where

1 ¢(x(1))T
1 ¢(x(2))T

1 ¢(x(N>)T

Uprep = (X)) ZDT (DZDT + 041y) 1y,

z:PRED
= p(x)TzP(x) —p(x)TZPT(DPZDT + o2Iy) "1 dIp(x")

4/23/25 18



Bayesian
Non-linear
Regression can
be “kernelized”

4/23/25

* Assume a linear model with additive Gaussian noise and a
zero-mean Gaussian prior on the weights:
y = ®w + € where € ~ N(0y,0%Iy) and @ ~ N(0p/, 4, X)
then given a new test data point x’, the prediction is
v y=¢&) " w|y~ Nprep, ZpreD)
where
Pppep = @OXD)TEOT (DT +o71,) 1y,

ZPRED
= p(xNTIP(x) — p(XNTEDT(DEDT + 571, ' PIPH(x")

* Define a kernel function as K (X; ?() ZQZQT
K(x,x") = ¢p(x)"2p(x")

19



Bayesian
Linear
Regression can
be kernelized!

4/23/25

* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®w + € where € ~ N(0y,0%Iy) and @ ~ N(0p/, 4, X)

then given a new test data point x’, the prediction is
Vi iy=9¢ox)'wl|y~ N(MPREDIZPRE,\"D)

where /'7 W‘

Uprep = K(x', X)(K(X,X) + O-ZIN]@”;
L- v

Soeen = K&, %) — K(x', X)(K(X, X) + 021, YK (X, x)

* Define the kernel function to be

K(x,x") = ¢(x)"Zp(x")

20



* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

Wait, what y = ®w + € where e ~ N(0y,0%Iy) and w ~ N(0pr, 4, %)

happened to then given a new test data point x’, the prediction is
the WEIghtS? v |y=¢&) " w|y~ Nprep, ZpreD)
N

where

Uprep = K(xX', X)(K(X,X) + a%Iy) "1y,

ZPRED — K(x’,x’) - K(x,,X)(K(X,X) + O'ZIN)_lK(X,X)

* Define the kernel function to be

K(x,x") = ¢(x)"Zp(x")

4/23/25 21




Some old

friends

4/23/25

Gaussian process =

Bayesian linear regression + Kernels
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A new

perspective
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Gaussian process =

The extension of a Gaussian

distribution to functions

23



Gaussians

4/23/25

* (Univariate) Gaussians:
x ~N(;u=0,02=1)

* Multivariate Gaussians:

X = [xl, ...,XD]T

24



Gaussian

Process (GP)

4/23/25

‘{\4

fiRP = R~ GP(f;ulx)  Z(xx)

—Mean 1+ 2 Standard Deviations

X

f~GP(2) = fx) ~ N (u(x),Z(x, x))

25



Gaussians

4/23/25

* (Univariate) Gaussians:
x ~N(;u=0,02=1)

* Multivariate Gaussians:

X = [xl, ...,XD]T

26



S \

f: RP » R ~ g«‘P(fuu(x) — O,Z(x,x') - eXp(_('x - XIB)

=

——Samples —Mean 3+ 2 Standard Deviations

Gaussian K /}@
Process (GP) W
X

f~GP(2) = fx) ~ N (u(x),Z(x, x))

4/23/25 27



fiRP > R~ GP(f; u(x) = 0,5(x,x") = exp(—|x — x'|))

——Samples —Mean 3+ 2 Standard Deviations

|
Gaussian M& w T
Process (GP) o TH 1 .V

N ’l”‘: w i '

f~GP(2) = fx) ~ N (u(x),Z(x, x))

4/23/25



GP Prior

4/23/25

fiRP & R~ GP(f; u(x) = 0,2(x, x") = exp(—(x — x")?))

—Mean 1+ 2 Standard Deviations

29



GP Posterior

4/23/25

f 1D~ GP(f; up, Zp)

eD = Data —Mean

1+ 2 Standard Deviations

30



GP Posterior

4/23/25

f 1D~ GP(f; up, Zp)

——Samples oD = Data — Mean

1+ 2 Standard Deviations

31



GP Posterior

4/23/25

f 1D~ GP(f; up, Zp)

——Samples D= Data —Mean [C—*2 Standard Deviations

f(x*) ~ N(HD(JC*),ZD(X*,X*))

JAN

X x*

32



oD = Data — Mean 1+ 2 Sandard Deviations

o

Active 4 /
Learning (T

4/23/25 33



Suppose you
can add one
data point to
your training

dataset.

Which value of

X would you
add and why?

4/23/25

\/\N

oD = Data — Mean 1+ 2 Sandard Deviations

s




——Samples oD = Data —Mean C—=+2 Standard Deviations ——Samples oD = Data —Mean C—3+2 Standard Deviations

fI:c:g-LikeWod of D: \) Log-Likelihood of D:
log N(y; u(X),2(X,X)) = —6.82 log N(y; u(X),2(X, X)) = —8.26

f~GP (f; 0, (12) exp (_ (x —1;')2)) f~GP (f; 0, (22) exp (_ (x _sz’)2>>

Can be set via MILE

Ke r n e I * Aslongas and aredifferentiable,

H yp e rp a ra m ete rS the log-likelihood is differentiable with

respect to the kernel hyperparameters

4/23/25 35



Log-Likelihood of D:
log N(y; u(X),2(X,X)) = —6.82

Log-Likelihood of D:
log N(y; u(X), 2(X,X)) = —8.26

X X

o N2
f~GP (f; 0,(12) exp (- S )) f~67 (f 02 (_ = >>

Wait doesn’t this always get zero

training error???

4/23/25 36




* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®w + e where € ~ N(Oy,0%Iy) and w ~ N(0,/, %)

then given a new test data point x', the prediction is
V' Iy=¢(x)'w|y~ NWprep, ZpreD)

where

Uprep = K(xX', X)(K(X,X) + 6%1y) "'y,

Yprep = K(x',x") — K(x', X)(K(X,X) + 6%Iy)"'K(X, x)

- 02 is another hyperparameter we can tune

- 0% = 0 is a noiseless fit: the mean will always pass through

4/23/25 the observations exactly; % > 0 allows for deviations -



——Samples oD = Data —Mean [C%2 Standard Deviations ——Samples oD = Data —Mean C+2 Standard Deviations

og-Likelihood of D
log N(y; u(X),2(X,X)) = —5.1

og-Likelihood of D:
log N(y; u(X),2(X,X)) = —7.84

X X

o =0.1 0% =0.5
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