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* Announcements
* HWO released 4/17, due 4/24 (Thursday) at 11:59 PM
* You may only use at most 2 late days on HW9
* Exam 3 on 5/1 from 1 PM to 3 PM

- We will not use the full 3-hour window

* All topics from Lectures 17 to 25 (inclusive) are in-
Front Matter scope, excluding the MLE/MAP portion of Lecture 17

* Exam 1 and 2 content may be referenced but will not

be the primary focus of any question

* Please watch Piazza carefully for your room and seat

assignments

* You are allowed to bring one letter-size sheet of

4/21/25

notes; you may put whatever you want on both sides 2



Q: So how do
we actually

solve for
principal
components?

4/21/25

* A: By maximizing the variance of our projections (which

is equivalent is to minimizing the reconstruction error)

D = argmax v (XTX)v
vivll3=1

Lw,D) = v"X"X)v-A(lvll5 - 1)
= vIXTX)v - A(vTv-1)

0L
— —(xT _
p X' X)v— v

S XX - w=0-X'X)D=1p

AN .

- D is an eigenvector of X' X and A is the

corresponding eigenvalue!



Background:

Eigenvectors &
Eigenvalues

11/25/24

* Given a square matrix A €

NXN NX1 ;
R R

,avectorv € is an

eigenvector of A iff there exists some scalar A such that

Av = Av
A
Av = v Intuition: A scales or sjcretches
- v but does not rotate it
>

* Key property: the eigenvectors of symmetric matrices

(e.g., the covariance matrix of a data set) are orthogonal!



Maximizing the

Variance

11/25/24

D = argmax v (XTX)v
vi|lv|l5=1

XTX)o =10 - T XTX)p=9"Dp=2

- The first principal component is the eigenvector v, that
corresponds to the largest eigenvalue 14
- The second principal component is the eigenvector v,
that corresponds to the second largest eigenvalue 14
- V1 and D, are orthogonal
- Etc...

- A; is a measure of how much variance falls along v;



]RNXD

* Every real-valued matrix X € can be expressed as

X=USsvT
- where:
Singular Value
Decomposition 1. U € R¥*N _columns of U are eigenvectors of XX T
(SVD) for PCA 2. Ve RP*P - columns of V are eigenvectors of XTX

3. S € RM*P _djagonal matrix whose entries are the

eigenvalues of X — squared entries are the
eigenvalues of XX and XTX

11/25/24



Common Tasks

iIn Computer
Vision

4/21/25

* Image Classification

* Object Localization

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation



- Image Classification

* Object Localization

Common Tasks * Object Detection
In ComPUter * Semantic Segmentation
Vision

* Instance Segmentation

* Image Captioning

* Image Generation

4/21/25 Source: https://proceedings.neurips.cc/paper/2012/file/c399862d3bqd6b76c8436e924a68cs45b-Paper.pdf



https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

* Image Classification

- Object Localization

Common Tasks * Object Detection
In Computer - Semantic Segmentation : "o
Vi Si O n (b) Strong false positive

* Instance Segmentation , , , ,
* Given an image, predict a single

* Image Captioning label and a bounding box,

- Image Generation represented as position (x, y)
and height/width (h, w).

4/21/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257



https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257

Common Tasks

iIn Computer
Vision

4/21/25

* Image Classification

* Object Localization

- Object Detection

.
\ , 1 F_
< 0
o8
N .
i f

1. Input
image

* Given an image, for each
object predict a bounding box

and a label, I: (x,y,w, h,[)

R-CNN: Regions with CNN features

3\
.\

2. Extract region
proposals (~2k)

aeroplane? no.

person? yes.

tvmonitor? no.

3. Compute 4. Classify
CNN features regions

Source: https://openaccess.thecvf.com/content cvpr 2014/papers/Girshick Rich Feature Hierarchies 2014 CVPR paper.pdf

10


https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

Input image Ground-truth

* Image Classification

* Object Localization

Common Tasks * Object Detection

N Computer * Semantic Segmentation

Vision * Instance Segmentation
* Image Captioning * Given an image, predict a label
* Image Generation for every pixel in the image

4/21/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 11



https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257

* Image Classification

* Object Localization

Common Tasks - Object Detection

in ComPUter * Semantic Segmentation
Vision * Instance Segmentation
* Image Captioning

* Image Generation

* Predict per-pixel labels as in
semantic segmentation, but
differentiate between different
instances of the same label
e.g., given two people, one
should be labeled person-1 and

one should be labeled person-2

4/21/25 Source: https://openaccess.thecvf.com/content ICCV 2017/papers/He Mask R-CNN ICCV 2017 paper.pdf 12



https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

o —"! Ground Truth Caption: A little boy runs away from the
- approaching waves of the ocean.

~ Generated Caption: A young boy is running on the beach.

* Image Classification

Ground Truth Caption: A brunette girl wearing sunglasses
and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses
smiles.

- Take an image as input, and

* Object Localization

Common Tasks * Object Detection
: generate a sentence describing
IN Computer * Semantic Segmentation ,
L it as output
Vision |
* Instance Segmentation - Dense captioning
- Image Captioning generates one description

, per bounding box
* Image Generation

* Typical methods use both a

CNN and some sort of

4/21/25 Source: https://dl.acm.org/doi/pdf/10.1145/3295748 13

language model


https://dl.acm.org/doi/pdf/10.1145/3295748

* Image Classification

* Object Localization

Common Tasks * Object Detection
N Computer * Semantic Segmentation
Vision * Instance Segmentation
* Image Captioning

* Image Generation

4/21/25

* Class-conditional

generation
* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

14



Image

Generation

4/21/25

Seéa anemone

brain coral

slug

* G@Given a class label, sample a new
image from that class
* Image classification takes an
image and predicts its label
p(yl|x)
* Class-conditional generation

is doing this in reverse p(x|y)

Source: https://arxiv.org/pdf/1906.00446.pdf

 Class-conditional

generation
* Super resolution
* Image Editing
» Style transfer

* Text-to-image (TTI)

generation

15


https://arxiv.org/pdf/1906.00446.pdf

Image

Generation

4/21/25

LR

* Given a low-resolution image,
generate a high-resolution

reconstruction of the image

Source: https://arxiv.org/pdf/2104.14951.pdf

* Class-conditional

generation
* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

16


https://arxiv.org/pdf/2104.14951.pdf

Inpainting

* Class-conditional

Colorization

generation

* Super resolution

Image

Uncropping

. * Image Editin
Generation 8 8

* Inpainting fills in the (pre-specified) missing pixels
* Colorization restores color to a greyscale image
* Uncropping creates a photo-realistic reconstruction

of a missing side of an image

4/21/25 Source: https://arxiv.org/pdf/2111.05826.pdf 17



https://arxiv.org/pdf/2111.05826.pdf

Image

Generation

* Given two images, present the

semantic content of the source

image in the style of the

reference image

4/21/25 Source: https://arxiv.org/pdf/1508.06576.pdf

* Class-conditional

generation
* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

18


https://arxiv.org/pdf/1508.06576.pdf

Image

Generation

4/21/25

Prompt: A propaganda poster depicting
a cat dressed as French emperor

napoleon holding a piece of cheese.

* Given a text description, sample

an image that depicts the prompt

Source: https://arxiv.ora/pdf/2307.01952.pdf

* Class-conditional

generation

* Super resolution
* Image Editing
» Style transfer

* Text-to-image (TTI)

generation

19


https://arxiv.org/pdf/2307.01952.pdf

Image

Generation

4/21/25

Prompt: Epic long distance cityscape
photo of New York City flooded by the
ocean and overgrown buildings and
jungle ruins in rainforest, at sunset,

cinematic shot, highly detailed, 8k,

golden light

Source: https://arxiv.org/pdf/2307.01952.pdf

* Class-conditional

generation

* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

20


https://arxiv.org/pdf/2307.01952.pdf

Image

Generation

4/21/25

Prompt: close up headshot, futuristic
young woman, wild hair sly smile in

front of gigantic UFO, dslr, sharp focus,

dynamic composition

Source: https://arxiv.org/pdf/2307.01952.pdf

* Class-conditional

generation

* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

21


https://arxiv.org/pdf/2307.01952.pdf

Prompt: powerpoint slide explaining
variational autoencoders for an intro to
ML course, easy to follow, with an

explanation of the evidence lower bound

Powrepnt Slale rationencers= for variicoorder
autondberVariiina Leaurs

Slide

Generation?

4/21/25 Source: https://stablediffusionweb.com/app/image-generator

* Class-conditional

generation
* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

22


https://stablediffusionweb.com/app/image-generator

* Fundamental challenge: images are incredibly high-
dimensional objects with complex relationships

Image between elements

Generation * Idea: learn a low-dimensional representation of images,
sample points in the low-dimensional space and project

them up to the original image space

23
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Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder structure.png
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https://en.wikipedia.org/wiki/Autoencoder
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+ 0O+ +B++006
CONODOEWN 2O

PCA (A) vs. Autoencoders (B)

(Hinton and Salakhutdinov, 2006)

Source: https://www.science.org/doi/10.1126/science.1127647

25


https://www.science.org/doi/10.1126/science.1127647

4/21/25

* |ssue: latent space is sparse...

* Sampling from latent space of an
autoencoder creates outputs

that are effectively identical to

images in the training dataset

Autoencoder Latent Space

Source: https://www.science.org/doi/10.1126/science.1127647

26


https://www.science.org/doi/10.1126/science.1127647
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*
. .
B
0 L4 0
B
s
2 2
b ' " .
3 -
% -4 2 0 2 o - - <t 0 2
What we require What we may inadvertently end up with

Autoencoder Latent Space

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

27
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Latent space of VAE with KL loss Latent space of VAE without KL loss
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Variational

Autoencoder Latent Space

4/21/25 Source: https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2
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Variational

Autoencoder:

Network
Perspective

4/21/25

NN encoder

Figure courtesy of Zack Lipton

29



Variational
Autoencoder:

Network
Perspective

4/21/25

NN encoder

* Encoder learns a mean vector and

a (diagonal) covariance matrix for

each input

* These are used to sample a latent

representation e.g.,
PONBVONS N(ue(x(i)), ag(x(i)))

Figure courtesy of Zack Lipton

30



Variational
Autoencoder:

Network
Perspective

4/21/25

NN decoder

P¢

* Decoder tries to minimize the
reconstruction error in
expectation between x® and a
sample from another (conditional)

distribution e.g.,
7O | 7O o N(u »(z), aq%(z@))

Figure courtesy of Zack Lipton

31



Variational
Autoencoder:

Network
Perspective

4/21/25

NN encoder

- Objective: minimize the expected reconstruction error

plus a regularizer that encourages a dense latent space
N

L(6,¢) = z (—qu(m(i))[log P¢(x(i)|z)])

=1

+ KL (C[g (z|x(i)) | p(z))

Figure courtesy of Zack Lipton 32
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Source: https://arxiv.org/pdf/1312.6114.pdf
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Can we encode
the idea that
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observations into

the objective

indistinguishable
function?

samples should
from real

be

e: MNIST

Sourc

rg/pdf/1312.6114.pdf

e: https://arxiv.o

Sourc
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Generative
Adversarial

Networks
(GANS)

4/21/25

* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies

whether it is real (label = 1) or fake (label = 0)

- Both models are typically (but not necessarily) neural

networks

° During training, the GAN plays a two-player minimax game:
the generator tries to create realistic images to fool the
discriminator and the discriminator tries to identify the

real images from the fake ones

37



* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- Example generator: DCGAN

Generative
Adversarial

* An inverted CNN with four fractionally-strided

convolution layers that grow the size of the image from
Networks layer to layer; final layer has three channels to
(GANS) generate color images

AN
[T
1]t

oom e

Project and reshape

4/21/25 Source: https://arxiv.orq/pdf/1511.06434.pdf

38
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Generative
Adversarial

Networks
(GANS)

4/21/25

* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies

whether it is real (label = 1) or fake (label = 0)

- Example discriminator: PatchGAN
* Traditional CNN that looks
at each patch of the image

and tries to predict whether

it is real or fake; can help

encourage to generator to

avoid creating blurry images

Source: https://arxiv.ora/pdf/1803.07422.pdf

39
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Generative
Adversarial

Networks
(GANSs):
Training

4/21/25

* A GAN consists of two (deterministic) models:
* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies

whether it is real (label = 1) or fake (label = 0)

* Both models are typically (but not necessarily) neural

networks

* During training, the GAN plays a two-player minimax game:
the generator tries to create realistic images to fool the
discriminator and the discriminator tries to identify the

real images from the fake ones

40
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1/25

Go

Z
Generator

0

x' = GQ(Z)

fake image

GANSs: Architecture

ure courtesy of Matt Gormley
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x' = Gy(2) Dy

D ) (x ,)
Discriminator

fake image

¢

GANSs: Architecture

4/21/25
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1/25

D¢ (x)
Discriminator

real image

GANSs: Architecture

rtesy of Matt Gormley
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Dy

D¢ (x ,)
Discriminator
fake image
¢
x~D D é
‘ | Discriminator
real image

GANSs: Architecture

Figure courtesy of Matt Gormley
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Z
Generator
fake image <
x~D é

4/21/25

Go

0

7

x' = Gy(2) Dy

Discriminator

J' =1log(1 - Dy(G(2)))

®

\

L=]+]

d

real image

¢
D
e,
| Discriminator
N J

= log(Dy(x))

GANSs: Architecture

Figure courtesy of Matt Gormley
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The discriminator is trying to maximize the usual cross-entropy

loss for binary classification with labels {real = 1, fake = 0}

- e — J' =log(1 - Dy(Go(2)))
m(bin log (D¢ (X(i))) + log (1 — D¢(G9(z(i)))) \
meaxlog (1 — D¢(G9(Z(i)))) L=J+7

N— g

~
The generator is trying to maximize the likelihood of its generated

J = log(Dy(x))

(fake) image being classified as real, according to a fixed discriminator

GANSs: Architecture

4/21/25



Both objectives (and hence, their sum) are differentiable

¢

0

min log (D(b(x(i))) + log (1 — ch(Ge(Z(i))))

max log (1 — Dy (Go (Z(i))))

Training alternates between:

4/21/25

1. Keeping 6 fixed and backpropagating through D
2. Keeping ¢ fixed and backpropagating through G,

GANSs: Architecture

J' =1log(1 - Dy(G(2)))

\

L=]+]

d

J = log(Dy(x))

47



GANSs:

Training

4/21/25

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our

experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(*)| ... 2(")} from noise prior p,(z).
e Sample minibatch of m examples {x'*,... 2™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:
1 m ) )
Vo“; Z [logD (:z:(’)) + log (1 - D (G (z(’))))] .

end for
e Sample minibatch of m noise samples {z*), ..., z("™)} from noise prior Py(2).

e Update the generator by descending its stochastic gradient:

m

Vggéglog (1 - D (G (z(i)))) :

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

* Optimization is like block coordinate descent but instead of

exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf
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GANS

Everywhere!

4/21/25

Cumulative number of named GAN papers by month

Total number of papers
N
o

2014 2015 2016 2017 2018
Year

Source: https://github.com/hindupuravinash/the-gan-zoo/tree/master
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The rise of
vision

transformers
and diffusion
models
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® PARTI-20B 208

® DALLE 10B
® GAN method SEET
® Imagen ® Muse3B
@ Transformer method o
Cogview2 g 1.50900M
® Glide ® DALLE2 5B
@ Diffusion method P S a—
S Eoguien ® PARTI-38
® ControlNet
™
LOM ® sD 1B
® GigaGAN
® PARTI-750M
@ DALLE-MINI 0.5B
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE 0.1B
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN 0B
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots

are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are
calculated without the involvement of their text encoders.

Source: https://arxiv.org/pdf/2309.00810.pdf
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But wait, what
the heck are
“vision
transformers”
and “diffusion”?

Take 10-423/623
next semester to
find out!

4/21/25 Source:

® PARTI-20B 20B

® DALLE 10B

©® eDiff-1
® Imagen

® GAN method
® Muse3B

@ Transformer method o
Cogview2 g \1,,56900M

® Glide ® DALLE2 5B
© Diffusion method e ® Rotmagen”
- e ® PARTI-38
® ControlNet
°
LDM -~ 1B
® GigaGAN
® PARTI-750M
® DALLE-MINI 0.5B
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE 0.1B
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AttnGAN ® DMGAN 0B
2016 2018 2020 2022

Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are

calculated without the involvement of their text encoders.

https://arxiv.orag/pdf/2309.00810.pdf
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