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Front Matter

 Announcements

 HW9 released 4/17, due 4/24 (Thursday) at 11:59 PM 

 You may only use at most 2 late days on HW9

 Exam 3 on 5/1 from 1 PM to 3 PM

 We will not use the full 3-hour window

 All topics from Lectures 17 to 25 (inclusive) are in-

scope, excluding the MLE/MAP portion of Lecture 17

 Exam 1 and 2 content may be referenced but will not 

be the primary focus of any question

 Please watch Piazza carefully for your room and seat 

assignments

 You are allowed to bring one letter-size sheet of 

notes; you may put whatever you want on both sides4/21/25 2



Q: So how do 
we actually 
solve for 
principal 
components?

 A: By maximizing the variance of our projections (which 

is equivalent is to minimizing the reconstruction error)

4/21/25 4

ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

 𝒗𝑇 𝑋𝑇𝑋 𝒗

• ෝ𝒗 is an eigenvector of 𝑋𝑇𝑋 and 𝜆 is the 

corresponding eigenvalue! 

ℒ 𝒗, 𝜆 =  𝒗𝑇 𝑋𝑇𝑋 𝒗 − 𝜆 𝒗 2
2 − 1

ℒ 𝒗, 𝜆 =  𝒗𝑇 𝑋𝑇𝑋 𝒗 − 𝜆 𝒗𝑇𝒗 − 1

𝜕ℒ

𝜕𝒗
= 𝑋𝑇𝑋 𝒗 − 𝜆𝒗

𝜕ℒ

𝜕𝒗
→ 𝑋𝑇𝑋 ෝ𝒗 − 𝜆ෝ𝒗 = 0 → 𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗



Background: 
Eigenvectors & 
Eigenvalues

 Given a square matrix 𝐴 ∈ ℝ𝑁×𝑁, a vector 𝒗 ∈ ℝ𝑁×1 is an 

eigenvector of 𝐴 iff there exists some scalar 𝜆 such that

𝐴𝒗 = 𝜆𝒗

 Key property: the eigenvectors of symmetric matrices 

(e.g., the covariance matrix of a data set) are orthogonal! 

11/25/24 5

𝒗
𝐴𝒗 = 𝜆𝒗

Intuition: 𝐴 scales or stretches 
𝒗 but does not rotate it  



Maximizing the
Variance

11/25/24

ෝ𝒗 = argmax
𝒗: 𝒗 2

2=1

 𝒗𝑇 𝑋𝑇𝑋 𝒗

𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗  →  ෝ𝒗𝑇 𝑋𝑇𝑋 ෝ𝒗 = 𝜆ෝ𝒗𝑇ෝ𝒗 = 𝜆

• The first principal component is the eigenvector ෝ𝒗1 that 

corresponds to the largest eigenvalue 𝜆1

• The second principal component is the eigenvector ෝ𝒗2 

that corresponds to the second largest eigenvalue 𝜆1

• ෝ𝒗1 and ෝ𝒗2 are orthogonal 

• Etc … 

• 𝜆𝑖  is a measure of how much variance falls along ෝ𝒗𝑖
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Singular Value 
Decomposition 
(SVD) for PCA

 Every real-valued matrix 𝑋 ∈ ℝ𝑁×𝐷 can be expressed as

𝑋 = 𝑈𝑆𝑉𝑇  

where:

1.  𝑈 ∈ ℝ𝑁×𝑁 - columns of 𝑈 are eigenvectors of 𝑋𝑋𝑇

2.  𝑉 ∈ ℝ𝐷×𝐷 - columns of 𝑉 are eigenvectors of 𝑋𝑇𝑋

3.  𝑆 ∈ ℝ𝑁×𝐷 - diagonal matrix whose entries are the   

eigenvalues of 𝑋 → squared entries are the 

eigenvalues of 𝑋𝑋𝑇  and 𝑋𝑇𝑋
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Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

84/21/25



Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

94/21/25 Source: https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf 

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

104/21/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 

 Given an image, predict a single 

label and a bounding box, 

represented as position (𝑥, 𝑦) 

and height/width ℎ, 𝑤 .

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257


 Given an image, for each 

object predict a bounding box 

and a label, 𝑙: (𝑥, 𝑦, 𝑤, ℎ, 𝑙)

Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

114/21/25 Source: https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf 

https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf


Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

124/21/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 

 Given an image, predict a label 

for every pixel in the image

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257


Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

134/21/25 Source: https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

 Predict per-pixel labels as in 

semantic segmentation, but 

differentiate between different 

instances of the same label 

e.g., given two people, one 

should be labeled person-1 and 

one should be labeled person-2

https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

144/21/25 Source: https://dl.acm.org/doi/pdf/10.1145/3295748 

 Take an image as input, and 

generate a sentence describing 

it as output 

 Dense captioning 

generates one description 

per bounding box

 Typical methods use both a 

CNN and some sort of 

language model

https://dl.acm.org/doi/pdf/10.1145/3295748


Common Tasks 
in Computer 
Vision

 Image Classification

 Object Localization

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Image Captioning

 Image Generation

154/21/25

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation



Image 
Generation

164/21/25 Source: https://arxiv.org/pdf/1906.00446.pdf 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation

sea anemone

brain coral

slug

• Given a class label, sample a new 

image from that class

• Image classification takes an 

image and predicts its label 

𝑝 𝑦 𝒙)

• Class-conditional generation 

is doing this in reverse 𝑝(𝑥|𝑦)

https://arxiv.org/pdf/1906.00446.pdf


Image 
Generation

174/21/25 Source: https://arxiv.org/pdf/2104.14951.pdf 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation
• Given a low-resolution image, 

generate a high-resolution 

reconstruction of the image

https://arxiv.org/pdf/2104.14951.pdf


Image 
Generation

184/21/25 Source: https://arxiv.org/pdf/2111.05826.pdf 

• Inpainting fills in the (pre-specified) missing pixels

• Colorization restores color to a greyscale image

• Uncropping creates a photo-realistic reconstruction 

of a missing side of an image

 Class-conditional 

generation

 Super resolution

 Image Editing

https://arxiv.org/pdf/2111.05826.pdf


Image 
Generation

194/21/25 Source: https://arxiv.org/pdf/1508.06576.pdf 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation

• Given two images, present the 

semantic content of the source 

image in the style of the 

reference image

https://arxiv.org/pdf/1508.06576.pdf


Image 
Generation

204/21/25 Source: https://arxiv.org/pdf/2307.01952.pdf 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation
• Given a text description, sample 

an image that depicts the prompt

Prompt: A propaganda poster depicting 

a cat dressed as French emperor 

napoleon holding a piece of cheese.

https://arxiv.org/pdf/2307.01952.pdf


Slide 
Generation?

214/21/25 Source: https://stablediffusionweb.com/app/image-generator 

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation

Prompt: powerpoint slide explaining 

variational autoencoders for an intro to 

ML course, easy to follow, with an 

explanation of the evidence lower bound

https://stablediffusionweb.com/app/image-generator


Slide 
Generation!

224/21/25 Source: https://chatgpt.com/ (4/18/25)

 Class-conditional 

generation

 Super resolution

 Image Editing

 Style transfer

 Text-to-image (TTI) 

generation

Prompt: powerpoint slide explaining 

variational autoencoders for an intro to 

ML course, easy to follow, with an 

explanation of the evidence lower bound

https://chatgpt.com/


Image 
Generation

 Fundamental challenge: images are incredibly high-

dimensional objects with complex relationships 

between elements

 Idea: learn a low-dimensional representation of images, 

sample points in the low-dimensional space and project 

them up to the original image space

4/21/25 23



11/25/24 Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png

Deep
Autoencoders

24

https://en.wikipedia.org/wiki/Autoencoder


PCA (A) vs. Autoencoders (B)
(Hinton and Salakhutdinov, 2006)

11/25/24 Source: https://www.science.org/doi/10.1126/science.1127647   25

https://www.science.org/doi/10.1126/science.1127647


Autoencoder Latent Space
4/21/25 26Source: https://www.science.org/doi/10.1126/science.1127647   

 Issue: latent space is sparse…

 Sampling from latent space of an 

autoencoder creates outputs 

that are effectively identical to 

images in the training dataset 

https://www.science.org/doi/10.1126/science.1127647


Autoencoder Latent Space
4/21/25 27Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf 

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Variational 
Autoencoder Latent Space

4/21/25 28Source: https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2 

https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2


Variational 
Autoencoder: 
Network 
Perspective

4/21/25 29Figure courtesy of Zack Lipton



Variational 
Autoencoder: 
Network 
Perspective

4/21/25 30Figure courtesy of Zack Lipton

 Encoder learns a mean vector and 

a (diagonal) covariance matrix for 

each input

 These are used to sample a latent 

representation e.g.,

𝒛 𝑖 ∣ 𝒙 𝑖 ∼ 𝒩 𝜇𝜃 𝒙 𝑖 , 𝜎𝜃
2 𝒙 𝑖



Variational 
Autoencoder: 
Network 
Perspective

4/21/25 31Figure courtesy of Zack Lipton

 Decoder tries to minimize the 

reconstruction error in 

expectation between 𝒙 𝑖  and a 

sample from another (conditional) 

distribution e.g., 

ෝ𝒙 𝑖 ∣ 𝒛 𝑖 ∼ 𝒩 𝜇𝜙 𝒛 𝑖 , 𝜎𝜙
2 𝒛 𝑖



Variational 
Autoencoder: 
Network 
Perspective

4/21/25 32Figure courtesy of Zack Lipton

 Objective: minimize the expected reconstruction error 

plus a regularizer that encourages a dense latent space

ℒ 𝜃, 𝜙 = ෍

𝑖=1

𝑁

−𝔼𝑞𝜃 𝒛∣𝒙 𝑖 log 𝑝𝜙 𝒙 𝑖 𝒛

ℒ 𝜃, 𝜙 = ෍

𝑖=1

𝑁

+ 𝐾𝐿 𝑞𝜃 𝒛 𝒙 𝑖 ∥ 𝑝 𝒛



Variational 
Autoencoder: 
Latent Space
Visualization

4/21/25 33Source: https://arxiv.org/pdf/1312.6114.pdf 

https://arxiv.org/pdf/1312.6114.pdf


Variational 
Autoencoder: 
Generated 
Samples

4/21/25 34Source: https://arxiv.org/pdf/1312.6114.pdf 

https://arxiv.org/pdf/1312.6114.pdf


Variational 
Autoencoder: 
Generated 
Samples?

4/21/25 35Source: https://arxiv.org/pdf/1312.6114.pdf? 

https://arxiv.org/pdf/1312.6114.pdf


Can we encode 
the idea that 
samples should 
be 
indistinguishable 
from real 
observations into 
the objective 
function?

4/21/25 36

Source: https://arxiv.org/pdf/1312.6114.pdf Source: MNIST

https://arxiv.org/pdf/1312.6114.pdf


Generative 
Adversarial 
Networks 
(GANs)

374/21/25

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 

input, and generates an image 

 a discriminator that takes in an image classifies 

whether it is real (label = 1) or fake (label = 0) 

 Both models are typically (but not necessarily) neural 

networks

 During training, the GAN plays a two-player minimax game: 

the generator tries to create realistic images to fool the 

discriminator and the discriminator tries to identify the 

real images from the fake ones



Generative 
Adversarial 
Networks 
(GANs)

384/21/25

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 

input, and generates an image 

 Example generator: DCGAN

 An inverted CNN with four fractionally-strided 

convolution layers that grow the size of the image from 

layer to layer; final layer has three channels to 

generate color images

 During training, the GAN plays a two-player minimax game: 

the generator tries to create realistic images to fool the 

discriminator and the discriminator tries to identify the 

real images from the fake ones
Source: https://arxiv.org/pdf/1511.06434.pdf 

https://arxiv.org/pdf/1511.06434.pdf


Generative 
Adversarial 
Networks 
(GANs)

394/21/25

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 

input, and generates an image 

 a discriminator that takes in an image classifies 

whether it is real (label = 1) or fake (label = 0) 

 Example discriminator: PatchGAN

 Traditional CNN that looks 

at each patch of the image 

and tries to predict whether 

it is real or fake; can help 

encourage to generator to 

avoid creating blurry images
Source: https://arxiv.org/pdf/1803.07422.pdf 

https://arxiv.org/pdf/1803.07422.pdf


Generative 
Adversarial 
Networks 
(GANs): 
Training

404/21/25

 A GAN consists of two (deterministic) models:

 a generator that takes a vector of random noise as 

input, and generates an image 

 a discriminator that takes in an image classifies 

whether it is real (label = 1) or fake (label = 0)

 Both models are typically (but not necessarily) neural 

networks

 During training, the GAN plays a two-player minimax game: 

the generator tries to create realistic images to fool the 

discriminator and the discriminator tries to identify the 

real images from the fake ones



GANs: Architecture 

4/21/25 41

𝒛

Generator

fake image

𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

𝜃

Figure courtesy of Matt Gormley



GANs: Architecture 
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fake image

Discriminator p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛) 𝐷𝜙

𝜙

Figure courtesy of Matt Gormley



GANs: Architecture 
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real image

Discriminator p(real | image)

𝒙 ~ 𝒟

𝜙

𝐷𝜙

𝐷𝜙 𝒙

Figure courtesy of Matt Gormley



GANs: Architecture 
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fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0

𝜙

𝐷𝜙

𝐷𝜙 𝒙

Figure courtesy of Matt Gormley



GANs: Architecture 
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𝒛

Generator

fake image

real image

Discriminator

Discriminator

p(real | image)

𝐷𝜙 𝒙′
𝒙′  =  𝐺𝜃(𝒛)𝐺𝜃

p(real | image)

𝐷𝜙

𝒙 ~ 𝒟

𝑦 = 1

𝑦 = 0

𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

𝜃 𝜙

𝐷𝜙

𝐷𝜙 𝒙

Figure courtesy of Matt Gormley



GANs: Architecture 
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𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

The discriminator is trying to maximize the usual cross-entropy 

loss for binary classification with labels {real = 1, fake = 0}

The generator is trying to maximize the likelihood of its generated 

(fake) image being classified as real, according to a fixed discriminator



GANs: Architecture 
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𝐽′ = log(1 –  𝐷𝜙(𝐺𝜃(𝒛)))

𝐽 = log(𝐷𝜙(𝒙))

ℒ =  𝐽 + 𝐽’

Both objectives (and hence, their sum) are differentiable

Training alternates between: 

1. Keeping 𝜃 fixed and backpropagating through 𝐷𝜙

2. Keeping 𝜙 fixed and backpropagating through 𝐺𝜃 



GANs: 
Training

484/21/25

 Optimization is like block coordinate descent but instead of 

exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf 

https://arxiv.org/pdf/1406.2661.pdf


GANs 
Everywhere!

494/21/25 Source: https://github.com/hindupuravinash/the-gan-zoo/tree/master 

https://github.com/hindupuravinash/the-gan-zoo/tree/master


The rise of 
vision 
transformers 
and diffusion 
models

504/21/25 Source: https://arxiv.org/pdf/2309.00810.pdf 

https://arxiv.org/pdf/2309.00810.pdf


But wait, what 
the heck are 
“vision 
transformers” 
and “diffusion”?

Take 10-423/623 
next semester to 
find out!

514/21/25 Source: https://arxiv.org/pdf/2309.00810.pdf 

https://arxiv.org/pdf/2309.00810.pdf
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