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* Announcements
* HW9 released 4/17, due 4/24 (Thursday) at 11:59 PM
- You may only use at most 2 late days on HW9
* Exam 3 on 5/1 from 1 PM to 3 PM

* We will not use the full 3-hour window

* All topics from Lectures 17 to 25 (inclusive) are in-
Front Matter scope, excluding the MLE/MAP portion of Lecture 17

* Exam 1 and 2 content may be referenced but will not

be the primary focus of any question

* Please watch Piazza carefully for your room and seat

assignments

* You are allowed to bring one letter-size sheet of

4/21/25 notes; you may put whatever you want on both sides  ?



* A: By maximizing the variance of our projections (which
is equivalent is to minimizing the reconstruction error)

D = argmax v (XTX)v
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Background:

Eigenvectors &
AENEITES

11/25/24

- Given a square matrix A € RV*N 3 vector v € RM*! is an

eigenvector of A iff there exists some scalar A such that
Av = Av

Intuition: A scales or stretches
Av = Av

/ v but does not rotate it
>

- Key property: the eigenvectors of symmetric matrices

(e.g., the covariance matrix of a data set) are orthogonal!



Maximizing the

Variance

11/25/24

D = argmax v (XTX)v
villvl2=1 \w___,

XX =20 - "X X)v =" =1

- The first principal component is the eigenvector v, that
corresponds to the largest eigenvalue A,
- The second principal component is the eigenvector v,
that corresponds to the second largest eigenvalue 4
- Y, and Y, are orthogonal
- Etc...

- A; is a measure of how much variance falls along v;



]RNXD

* Every real-valued matrix X € can be expressed as

X =USVT
: where:
Singular Value
Decomposition 1. U € RY*N - columns of U are eigenvectors of XX
(SVD) for PCA 2. Ve RP*P . columns of V are eigenvectors of X7 X

3. S € RV*P _diagonal matrix whose entries are the
eigenvalues of X — squared entries are the

eigenvalues of XX and XTX

11/25/24



Common Tasks

iIn Computer
Vision

4/21/25

* Image Classification

* Object Localization

* Object Detection

- Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation



- Image Classification

* Object Localization

Common Tasks * Object Detection

N Computer * Semantic Segmentation
Vision * Instance Segmentation

* Image Captioning

* Image Generation

4/21/25



https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

* Image Classification

- Object Localization

Common Tasks * Object Detection

N Computer * Semantic Segmentation

- | (b) Strong false positive
Vision .
* Instance Segmentation , , . :
* Given an image, predict a single

* Image Captioning label and a bounding box,

- Image Generation represented as position (x,y)

and height/width (h,w).

4/21/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 10


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257

* Given an image, for each
* Image Classification

* Object Localization and a label, I: (x,y,w, h, 1)
Common Tasks * Object Detection
in Computer R-CNN: Regions with CNN features

object predict a bounding box

Vision

aeroplane? no.

person? yes.

< | i =
y ir =i
P o i |24
. : | AR ] pe
1 |'&
\ - N
: / -

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

4/21/25
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https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

Input image Ground-truth

* Image Classification

* Object Localization

Common Tasks * Object Detection

N Computer * Semantic Segmentation

Vision * Instance Segmentation
* Image Captioning * Given an image, predict a label
- Image Generation for every pixel in the image

4/21/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 12


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257

* Image Classification

* Object Localization

Common Tasks * Object Detection

N Computer * Semantic Segmentation
Vision * Instance Segmentation
* Image Captioning

* Image Generation

4/21/25

* Predict per-pixel labels as in

semantic segmentation, but
differentiate between different
instances of the same label
e.g., given two people, one
should be labeled person-1 and

one should be labeled person-2

13


https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

~ = Ground Truth Caption: A little boy runs away from the
” approaching waves of the ocean.

Generated Caption: A young boy is running on the beach.

* Image Classification

Ground Truth Caption: A brunette girl wearing sunglasses
and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses
smiles.

- Take an image as input, and

* Object Localization

Common Tasks * Object Detection
: generate a sentence describing
IN Computer - Semantic Segmentation ,
L it as output
Vision .
* Instance Segmentation - Dense captioning
- Image Captioning generates one description

_ per bounding box
* Image Generation

* Typical methods use both a

CNN and some sort of

4/21/25 Source: https://dl.acm.org/doi/pdf/10.1145/3295748 14

language model


https://dl.acm.org/doi/pdf/10.1145/3295748

* Image Classification

* Object Localization

Common Tasks - Object Detection

N Computer * Semantic Segmentation
Vision * Instance Segmentation

* Image Captioning

* Image Generation

4/21/25

* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation

15



Image

Generation

4/21/25

S€a anemone

brain coral

slug

* Given a class label, sample a new
image from that class
* Image classification takes an
image and predicts its label
p(ylx)
* Class-conditional generation

is doing this in reverse p(x|y)
Source: https://arxiv.org/pdf/1906.00446.pdf

* Class-conditional

generation
* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation

16


https://arxiv.org/pdf/1906.00446.pdf

Image

Generation

4/21/25

SRDiff

* Given a low-resolution image,
generate a high-resolution

reconstruction of the image

Source: https://arxiv.org/pdf/2104.14951.pdf

* Class-conditional

generation
* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation

17


https://arxiv.org/pdf/2104.14951.pdf

Inpainting

* Class-conditional

Colorization

generation

* Super resolution

Image

Uncropping

. * Image Editin
Generation & 8

* Inpainting fills in the (pre-specified) missing pixels
* Colorization restores color to a greyscale image

* Uncropping creates a photo-realistic reconstruction

of a missing side of an image

4/21/25 Source: https://arxiv.org/pdf/2111.05826.pdf 18


https://arxiv.org/pdf/2111.05826.pdf

Image

Generation

* Given two images, present the
semantic content of the source

image in the style of the

reference image

4/21/25 Source: https://arxiv.org/pdf/1508.06576.pdf

* Class-conditional

generation
* Super resolution
* Image Editing
- Style transfer

* Text-to-image (TTI)

generation

19


https://arxiv.org/pdf/1508.06576.pdf

Image

Generation

4/21/25

* Given a text description, sample

an image that depicts the prompt

Source: https://arxiv.org/pdf/2307.01952.pdf

* Class-conditional

generation

* Super resolution
* Image Editing
* Style transfer

- Text-to-image (TTI)

generation

20


https://arxiv.org/pdf/2307.01952.pdf

Slide
Generation?

4/21/25

Prompt: powerpoint slide explaining
variational autoencoders for an intro to
ML course, easy to follow, with an

explanation of the evidence lower bound

Powrepnt Slale rationencers= for variicooider
autondberVariiina Leaurs

* Class-conditional

generation
* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation

21


https://stablediffusionweb.com/app/image-generator

Slide

Generation!

4/21/25

Prompt: powerpoint slide explaining
variational autoencoders for an intro to
ML course, easy to follow, with an

explanation of the evidence lower bound

Variational Autoencoders (VAE)

e Unsupervised generative model
that learns a latent space

e Encoder: maps input x to dstribution

q(zlx) Encoder —»(atentz)
e Decoder: maps latent z to reconstructed | ne
x from p(x|z) Reconstructed
o S —_ . image
¢ Training objective: maximize Evidence
Lower Bound (ELBO)

log p(x) > Eq(4x) ) [log p(x|z) — KLq(z|x)|p(2))
e Reconstruction term (likelihood) encourages X ~ x
e KL divergence regularizes latent distribution towards prior p(z)

Reconstructed
image

Intro to Machine Learning | Your Name | Date

Source: https://chatgpt.com/(4/18/25)

* Class-conditional

generation
* Super resolution
* Image Editing
* Style transfer

* Text-to-image (TTI)

generation

22


https://chatgpt.com/

* Fundamental challenge: images are incredibly high-

dimensional objects with complex relationships

Image between elements

Generation * Idea: learn a low-dimensional representation of images,
sample points in the low-dimensional space and project

them up to the original image space

23
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Deep

Autoencoders

11/25/24
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https://en.wikipedia.org/wiki/Autoencoder
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+00++0++00
COENODONBWN—=O

PCA (A) vs. Autoencoders (B)

(Hinton and Salakhutdinov, 2006)

Source: https://www.science.org/doi/10.1126/science.1127647

25


https://www.science.org/doi/10.1126/science.1127647

4/21/25

* Issue: latent space is sparse...

* Sampling from latent space of an
autoencoder creates outputs
that are effectively identical to

images in the training dataset

Autoencoder Latent Space

Source: https://www.science.org/doi/10.1126/science.1127647
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https://www.science.org/doi/10.1126/science.1127647
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o 0 o -

4 O ,,
‘ | " »
5 -
+ - 2 0 2 i B < 2 0 2
What we require What we may inadvertently end up with

Autoencoder Latent Space

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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Latent space of VAE with KL loss Latent space of VAE without KL loss
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Variational

Autoencoder Latent Space

Source: https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be 1c038f2
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https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2

Variational

Autoencoder:

Network
Perspective

4/21/25

NN encoder

Figure courtesy of Zack Lipton

NN decoder

P¢

29



Variational
Autoencoder:

Network
Perspective

4/21/25

NN encoder

* Encoder learns a mean vector and

a (diagonal) covariance matrix for

each input

* These are used to sample a latent

representation e.g.,
70 | x® - N(ug(x“)),ag(x(i)))

Figure courtesy of Zack Lipton

30



Variational
Autoencoder:

Network
Perspective

4/21/25

NN decoder

P¢

* Decoder tries to minimize the
reconstruction error in
expectation between x(9 and a
sample from another (conditional)

distribution e.g.,
7D | 720 N(uqb(z(")),aj,(z(")))

Figure courtesy of Zack Lipton
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Variational

Autoencoder:

Network
Perspective

4/21/25

NN encoder

* Objective: minimize the expected reconstruction error

plus a regulgrizer that encourages a dense latent space

L(.@f§5> = LZ; (" E(T

\\éﬂ'\'&fttﬂ h I (lﬁ
Pf_az\_':a\-b'llfb éx&’*ﬁb&mn) + kz_ (ﬁie H, P)>> E};;].
AN _ o~ CD/I)
Figure courtesy of Zack Lipton '\&U_CQ_ e\\S’l’ﬂ L
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Source: https://arxiv.org/pdf/1312.6114.pdf
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observations into

the objective

Can we encode
function?

the idea that
indistinguishable

samples should
from real

ol
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https://arxiv.org/pdf/1312.6114.pdf

Generative
Adversarial

Networks
(GANS)

4/21/25

* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies
whether it is real (label = 1) or fake (label = 0)

* Both models are typically (but not necessarily) neural

networks

* During training, the GAN plays a two-player minimax game:
the generator tries to create realistic images to fool the
discriminator and the discriminator tries to identify the

real images from the fake ones

37



* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- Example generator: DCGAN

Generative
Adversarial

- An inverted CNN with four fractionally-strided

convolution layers that grow the size of the image from
Networks layer to layer; final layer has three channels to
(GANS) generate color images

3
[a}

1024

- | "E

Project and reshape

CONV 4
4/21/25 Source: https://arxiv.org/pdf/1511.06434.pdf G(2) 38


https://arxiv.org/pdf/1511.06434.pdf

Generative
Adversarial

Networks
(GANS)

4/21/25

* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies

whether itis real (label = 1) or fake (label = 0)

- Example discriminator: PatchGAN

* Traditional CNN that looks
at each patch of the image
and tries to predict whether

it is real or fake; can help

encourage to generator to

avoid creating blurry images
Source: https://arxiv.org/pdf/1803.07422.pdf

39


https://arxiv.org/pdf/1803.07422.pdf

Generative
Adversarial

Networks
(GANS):
Training

4/21/25

* A GAN consists of two (deterministic) models:

* a generator that takes a vector of random noise as

input, and generates an image

- a discriminator that takes in an image classifies
whether it is real (label = 1) or fake (label = 0)

* Both models are typically (but not necessarily) neural

networks

* During training, the GAN plays a two-player minimax game:
the generator tries to create realistic images to fool the
discriminator and the discriminator tries to identify the

real images from the fake ones

40



G@ x, - GQ(Z)

V4
I—> Generator

/ fake image
0

GANSs: Architecture

4/21/25



x, - GQ(Z) D(],')

Dg(x")
Discriminator

fake image /
¢

GANSs: Architecture

4/21/25
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Dy (x)

l_{oiscﬂmmm, plreal | image)

real image

GANSs: Architecture

Figure courtesy of Matt Gormley
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D,

Dy (x')

Discriminator

fake image
¢
x~D D,
Dy (x)
‘ —»| Discriminator
real image

GANSs: Architecture

Figure courtesy of Matt Gormley
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G@ x, - GQ(Z) D

¢
z Dy (x")
I—> Generator Discriminator
w J' =1og(1- Dy(Gy(2)))

/ fake image
0 ¢
x~7D D, L=]+T

Dy (x)
‘ —»| Discriminator

real image

J =1log(Dy(x))

GANSs: Architecture

4/21/25 Figure courtesy of Matt Gormley



The discriminator is trying to maximize the usual cross-entropy

loss for binary classification with labels {real = 1, fake = 0}

- — " — — J' = log(1 - Dy(Ge(2)))
: (¢) _ (4)
m(;n log (D¢(X )) + log <1 Dy (Go(z ))) \
max log (1 — D¢(G9(z(i)))) L=J+7
N— 7
~
The generator is trying to maximize the likelihood of its generated

J =1log(Dy(x))

(fake) image being classified as real, according to a fixed discriminator

GANSs: Architecture

4/21/25



Both objectives (and hence, their sum) are differentiable

J' =1log(1 - Dy(Ge(2)))

: (4) _ (%)
m(;n log (D¢(X )) + log <1 Dy (Go(z ))) \
max log (1 _ D¢(G9(z<i>))) L=J+7
Training alternates between: /
1. Keeping @ fixed and backpropagating through D, J = log(Dy(x))

2. Keeping ¢ fixed and backpropagating through G,

GANSs: Architecture

4/21/25



GANSs:

Training

4/21/25

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k. is a hyperparameter. We used & = 1, the least expensive option, in our

experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {2V, ..., z("™)} from noise prior p,(z).
e Sample minibatch of m examples {:1:(1}, e ,m{m}} from data generating distribution
Pdaa ().

e Update the discriminator by ascending its stochastic gradient:

o 2o e () +1og (10 (6 (=)))]

1=

end for
e Sample minibatch of m noise samples {z*) ... 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3o (120 (6 (1))

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

* Optimization is like block coordinate descent but instead of

exact optimization, we take a step of mini-batch SGD

Source: https://arxiv.org/pdf/1406.2661.pdf
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GANS

Everywhere!

4/21/25

Cumulative number of named GAN papers by month

Total number of papers
5
o

2014 2015 2016 2017 2018
Year

Source: https://github.com/hindupuravinash/the-gan-zoo/tree/master
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The rise of
vision

transformers
and diffusion
models

4/21/25

® PARTI-20B 20B

® DALLE 10B

® GAN method

@ Transformer method

® eDiff-l
® Imagen ® Muse3B

® Cogview2 g p1use900M
® Glide ® DALLE2 5B

® Diffusion method

® Make-a-scene ® Re-Imagen*

® BridgeGAN
® ObjGAN

® AttnGAN ® DMGAN

® StackGAN ® StackGAN++
® GAN-CLS @ StyleGAN

S Cogiew: ® PARTI-3B
® ControlNet
® DM
® sSD 1B
® GigaGAN
® PARTI-750M
® DALLE-MINI 0.5B
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE 0.1B
® XMC-GAN ® VQ-Diffusion-S*

0B

calculated without the involvement of their text encoders.

Source: https://arxiv.org/pdf/2309.00810.pdf

2016 2018 2020

2022

Fig. 5. Timeline of TTl model development, where green dots are GAN TT| models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their compaonents. Models with asterisk are
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But wait, what
the heck are
“vision
transformers”
and “diffusion”?

Take 10-423/623

next semester to
find out!

® PARTI-20B 208

® DALLE 10B

® eDiff-l
® Imagen

® GAN method
® Muse3B

Transformer method .
® ® Cogview2 g p1use900M

® Glide ® DALLE2 5B

® Diffusion method

® Make-a-scene ® Re-Imagen*

® Cogview ® PARTI-3B
® ControlNet
® LDM
® sSD 1B
® GigaGAN
® PARTI-750M
® DALLE-MINI 0.5B
® VQ-Diffusion*
® PARTI-350M
® GALIP
® LAFITE 0.1B
® XMC-GAN ® VQ-Diffusion-S*
® BridgeGAN
® StackGAN ® StackGAN++ ® ObjGAN
® GAN-CLS ® StyleGAN ® AtnGAN ® DMGAN 0B
2016 2018 2020 2022

Fig. 5. Timeline of TTl model development, where green dots are GAN TT| models, blue dots are autoregressive Transformers and orange dots
are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their compaonents. Models with asterisk are

calculated without the involvement of their text encoders.

4/21/25 Source: https://arxiv.org/pdf/2309.00810.pdf
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