
K-Means
+

Principal Component Analysis (PCA)

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 25

Apr. 16, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 8: Deep RL
– Out: Tue, Apr. 8
– Due: Wed, Apr. 16 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Wed, Apr. 16
– Due: Thu, Apr. 24 at 11:59pm

2

CLUSTERING

3

Clustering

Motivation
• Goal: automatically

partition unlabeled data
into groups of similar
points

• Algorithms:
– hierarchical agglomerative

clustering
– top-down divisive

clustering
– Gaussian mixture models
– spectral clustering
– K-Means

Applications
• Topic modeling: Cluster news articles or

web pages or search results by topic.
• Gene expression analysis: Cluster protein

sequences by function or genes
according to expression profile.

• Community detection: Cluster users of
social networks by interest (community
detection).

• Fraud detection: Spot unusual
transaction clusters for fraud detection.

• Sloan Digital Sky Survey analysis: Group
galaxies or nearby stars

4
Slide adapted from Nina Balcan

Clustering

Question: Which of these partitions is “better”?

5

OPTIMIZATION BACKGROUND

6

Block Coordinate Descent
• Goal: minimize some objective

"⃗∗ = argmin
"

* "⃗

• Idea: iteratively pick one variable and minimize the objective w.r.t.
just that one variable, keeping all the others fixed.

7

!!

!"

!⃗ #

!⃗ !

!⃗ " !⃗ $

Block Coordinate Descent
• Goal: minimize some objective (with 2 blocks)

+⃗∗, -⃗∗ = argmin
",$

* +⃗, -⃗

• Idea: iteratively pick one block of variables (+⃗	or	-⃗) and minimize the
objective w.r.t. that block, keeping the other(s) fixed.

8

#⃗ 	= argmin
%

, #⃗, .⃗

.⃗ = argmin
&

, #⃗, .⃗

while not converged:

K-MEANS

9

K-Means Algorithm (Derivation)

10

Recipe for K-Means Derivation:

1) Define a Model.
2) Choose an objective function.
3) Optimize it!

K-Means Algorithm (Derivation)

11

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

12

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Poll Question 1: In
English, what is
this quantity?

Answer:

K-Means Algorithm (Derivation)

13

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

14

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

15

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Now apply
Block Coordinate Descent!

1) Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) z ← argminz J(C, z)
(pick each cluster assignment to minimize distance)

b) C ← argminC J(C, z)
(pick each cluster center to minimize distance)

K-Means Algorithm

17

This is an application of
Block Coordinate Descent!

The only remaining step is to figure out
what the argmins boil down to…

Likewise, the
minimization over

cluster centers
decomposes, so we

can find each cj
independently

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
 z(i) ← argminj (|| x(i) - cj ||2)2

b) for j in {1,…,K}
 cj ← argmin ∑ (|| x(i) - cj ||2)2

18

cj
i:z(i) = j

The minimization
over cluster
assignments

decomposes, so
that we can find

each z(i)
independently of

the others

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
 z(i) ← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
 cj ← mean of all points assigned to cluster j

19

K-MEANS EXAMPLE
K=3 cluster centers

22

Example: K-Means

23

Example: K-Means

24

Example: K-Means

25

Example: K-Means

26

Example: K-Means

27

Example: K-Means

28

Example: K-Means

29

Example: K-Means

30

K-MEANS EXAMPLE
K=2 cluster centers

31

Example: K-Means

32

Example: K-Means

33

Example: K-Means

34

Example: K-Means

35

Example: K-Means

36

Example: K-Means

37

Example: K-Means

38

Example: K-Means

39

Example: K-Means

40

INITIALIZING K-MEANS

41

Initialization of K-Means
K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
 z(i) ← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
 cj ← mean of all points assigned to cluster j

42

Remaining Question:
How should we initialize the cluster centers?

Three Solutions:
1. Random centers (picked from the data

points)
2. Furthest point heuristic
3. K-Means++

Initialization for K-Means

43

Example 1:
• Initialized randomly such

that each cluster center is
in a well separated
Gaussian

• Good overall performance

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Initialization for K-Means

44

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 1:
• Initialized randomly such

that each cluster center is
in a well separated
Gaussian

• Good overall performance

Initialization for K-Means

45

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 2:
• Initialized

randomly such
that two centers
are in the same
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the
final red cluster
points moving
arbitrarily far
away!)

Initialization for K-Means

46

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 2:
• Initialized

randomly such
that two centers
are in the same
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the
final red cluster
points moving
arbitrarily far
away!)

Initialization for K-Means

• For k equal-sized Gaussians,

 Pr[each initial center is in a different Gaussian] ≈ !!
!! ≈

#
$!

• Becomes unlikely as k gets large.

K-Mean Performance (with Random Initialization)
If we do random initialization, as k increases, it becomes more likely we
won’t have perfectly picked one center per Gaussian in our initialization

(so K-Means will output a bad solution).

Slide courtesy of Nina Balcan

Initialization for K-Means

48

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance

Initialization for K-Means

49

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance

Initialization for K-Means

50

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 2:
• One outlier

throws off
the algorithm

• Poor
performance

Initialization for K-Means

51

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 2:
• One outlier

throws off
the algorithm

• Poor
performance

Initialization for K-Means

52

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point ' and its nearest center. Chose
the next center proportional to D"(*).

Initialization for K-Means

53

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point ' and its nearest center. Chose
the next center proportional to D"(*).

• Choose "% at random.

• Pick "& among #(%), #()), … , #(*) according to the distribution
• For j = 2,… , K

%('! =)(#)) ∝ ,-.!!%!)(#) − '!!
&
D+(#,)

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

54

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point ' and its nearest center. Chose
the next center proportional to D"(*).

• Choose "% at random.

• Pick "& among #(%), #()), … , #(*) according to the distribution
• For j = 2,… , K

%('! =)(#)) ∝ ,-.!!%!)(#) − '!!
&

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

55

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point ' and its nearest center. Chose
the next center proportional to D"(*).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

56

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point ' and its nearest center. Chose
the next center proportional to D"(*).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

57

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point ' and its nearest center. Chose
the next center proportional to D"(*).

Observations:
• Interpolates between random and

farthest point initialization
• Solves the problem with Gaussian

data
• And solves the outlier problem

Q&A

58

Q: In k-Means, since we don’t have a validation set, how do we
pick k?

A: Look at the training objective
function as a function of k
and pick the value at the
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.
The objective function is nonconvex, so we’re just looking for
the best local minimum.

J(c, z)

k

Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block coordinate

descent
2. Define an objective function that gives rise to a "good"

clustering
3. Apply block coordinate descent to an objective function

preferring each point to be close to its nearest objective
function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective function

with the (possibly) poor performance of random initialization
59

DIMENSIONALITY REDUCTION

60

High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)

62

High Dimension Data

Examples of high dimensional data:
– Multilingual News Stories

(vocabulary of hundreds of thousands of words)

63

High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)

64
Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)

Learning Representations
Dimensionality Reduction Algorithms:
Powerful (often unsupervised) learning techniques for extracting hidden
(potentially lower dimensional) structure from high dimensional datasets.

Examples:
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, VAEs

Useful for:
• Visualization
• More efficient use of resources (e.g., time, memory, communication)
• Statistical: fewer dimensions à better generalization
• Noise removal (improving data quality)

66
Slide adapted from Nina Balcan

This section in one slide…

72

1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either…
1. minimizes reconstruction error
2. consists of the K eigenvectors with

largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we’ll focus on:

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.
Play some tricks to keep
things efficient.

5. An Example

DIMENSIONALITY REDUCTION BY RANDOM
PROJECTION

73

2D input data
Example: 2D to 1D

Random Projection

74

Goal: project from M-dimensions down
to K-dimensions

Data:

D = {x(i)}Ni=1 where x(i) ∈ RM

Algorithm:

1. Randomly sample matrix: V ∈ RK×M

Vkm ∼ Gaussian(0, 1)

2. Project down: u(i)
︸︷︷︸

K×1

= V
︸︷︷︸

K×M

x(i)
︸︷︷︸

M×1

3. Project up: x̃(i)
︸︷︷︸

M×1

= VT

︸︷︷︸

M×K

u(i)
︸︷︷︸

K×1

= VT (Vx(i))

V ∈ℝ1x2

x

y

x(1) ∈ℝ1x2

x(2)

x(3)

x(4)

x(5)

x(6)

x̃(1) ∈ℝ1x2

x̃(2)

x̃(3)
x̃(4)

x̃(5)
x̃(6)

1D projection onto the real line

u(1) ∈ℝ u(2) u(3) u(4) u(5) u(6)

2D input data
Example: 2D to 1D

Random Projection

75

Goal: project from M-dimensions down
to K-dimensions

Data:

D = {x(i)}Ni=1 where x(i) ∈ RM

Algorithm:

1. Randomly sample matrix: V ∈ RK×M

Vkm ∼ Gaussian(0, 1)

2. Project down: u(i)
︸︷︷︸

K×1

= V
︸︷︷︸

K×M

x(i)
︸︷︷︸

M×1

3. Project up: x(i)
︸︷︷︸

M×1

= VT

︸︷︷︸

M×K

u(i)
︸︷︷︸

K×1

= VT (Vx(i))

V ∈ℝ1x2

x

y

Problem: a random projection might give
us a poor low dimensional
representation of the data

Johnson-Lindenstrauss Lemma

76
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf

A: Even random projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random
linear projection obtained by sampling each matrix entry from a
Gaussian(0,1).

Q: But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

DEFINITION OF PRINCIPAL COMPONENT
ANALYSIS (PCA)

77

Principal Component Analysis (PCA)
• Assumption: the data

lies on a low K-
dimensional linear
subspace

• Goal: identify the axes
of that subspace, and
project each point
onto hyperplane

• Algorithm: find the K
eigenvectors with
largest eigenvalue
using classic matrix
decomposition tools

78
https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg

PCA Example: 2D Gaussian Data

Data for PCA

79

We assume the data is centered,
i.e. the sample mean is zero

s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����

D = {t(i)}N
i=1

Q: What if
your data is

not centered?

µ̂ =
1

N

N∑

i=1

x(i)
= 0

A: Subtract off the sample mean

x̃(i)
= x(i)

− µ̂, ∀i

Sample Covariance Matrix
The sample covariance matrix
 is given by:

80

�jk =
1

N

N�

i=1

(x(i)
j � µj)(x

(i)
k � µk)

Since the data matrix is centered, we can rewrite as:

� =
1

N
sT s

s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����

Supposewehavea sequenceof ran‐
domsamples{x(1), . . . , x(N)} from
a random variableX .

The (biased) sample variance σ̂2 is
given by:

σ̂2 =
1

N

N∑

i=1

(x(i) − µ̂)2

where µ̂ is the sample mean.

Background: Sample Variance

where

Principal Component Analysis (PCA)
Linear Projection:
Given KxM matrix V, and Mx1
vector x(i) we obtain the Kx1
projection u(i) by:
 u(i) = V x(i)

Definition of PCA:
PCA repeatedly chooses a next vector vj that minimizes the
reconstruction error s.t. vj is orthogonal to v1, v2,..., vj-1.

Vector vj is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = 0.
èthe K-dimensions in PCA are uncorrelated

81

V =

⎡

⎢

⎢

⎢

⎣

— vT

1
—

— vT

2
—

...
— vT

K
—

⎤

⎥

⎥

⎥

⎦

u(i)
=













u
(i)
1

u
(i)
2
...

u
(i)
k













=











v!
1 x(i)

v!
2 x(i)

...
v!
k

x(i)











= Vx(i)

Vector Projection

82

length of projection of x onto v

a =
(v!x)
‖v‖2

2

if ‖v‖2 = 1

otherwise

projection of x onto v

u =
(v!x)v
‖v‖2

2

if ‖v‖2 = 1

otherwise

Objectives for PCA
Minimize the Reconstruction Error Maximize the Variance

83

v1 = argmin
v

1

N

N
∑

i=1

distance
(

x(i), x̂(i)
)2

= argmin
v

1

N

N
∑

i=1

∥

∥

∥

∥

x(i)
−

(

vector projection
of x(i) onto v

)
∥

∥

∥

∥

2

2

= argmin
v s.t. ‖v‖2=1

1

N

N
∑

i=1

∥

∥

∥
x(i)

− (v"x(i))v
∥

∥

∥

2

2

v1 = argmax
v

1

N

N
∑

i=1

(

length of vector
projection of x(i) onto v

)2

= argmax
v s.t. ‖v‖2=1

1

N

N
∑

i=1

(

v"x(i)
)2

= argmax
v s.t. ‖v‖2=1

1

N

(

v"X"
)

(Xv)

= argmax
v s.t. ‖v‖2=1

v"
Σv

Objectives for PCA
Minimize the Reconstruction Error Maximize the Variance

84

v1 = argmin
v

1

N

N
∑

i=1

distance
(

x(i), x̂(i)
)2

= argmin
v

1

N

N
∑

i=1

∥

∥

∥

∥

x(i)
−

(

vector projection
of x(i) onto v

)
∥

∥

∥

∥

2

2

= argmin
v s.t. ‖v‖2=1

1

N

N
∑

i=1

∥

∥

∥
x(i)

− (v"x(i))v
∥

∥

∥

2

2

v1 = argmax
v

1

N

N
∑

i=1

(

length of vector
projection of x(i) onto v

)2

= argmax
v s.t. ‖v‖2=1

1

N

N
∑

i=1

(

v"x(i)
)2

= argmax
v s.t. ‖v‖2=1

1

N

(

v"X"
)

(Xv)

= argmax
v s.t. ‖v‖2=1

v"
Σv

Answer:

Below are two plots of the same dataset D. Consider the
two projections shown.

1. Poll Question 2: Which maximizes the variance?
2. Poll Question 3: Which minimizes the reconstruction error?

Projection Example

85

Option A Option B

1 2 3

1
2

3

1 2 3
1

2
3

PCA Objective Functions

86

What is the Ƥrst principal component v1 chosen by PCA?

v1 = argmin
v:||v||2=1

1

N

N∑

i=1

||x(i) − (vT x(i))v||2

Option 1: The vector that minimizes the reconstruction error

Option 2: The vector that maximizes the variance

v1 = argmax
v:||v||2=1

1

N

N∑

i=1

(vT x(i))2

PCA

87

Equivalence of Maximizing
Variance and Minimizing

Reconstruction Error

PCA EXAMPLES

104

Projecting MNIST digits

105

Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it

down to K components (i.e. a vector u(i))
2. Report percent of variance explained for K components
3. Then project back up to 28x28 image (i.e. a vector x̃(i) of length 784) to

visualize how much information was preserved

Takeaway:
Using fewer

principal
components K
leads to higher
reconstruction

error.
But even a

small number
(say 43) still

preserves a lot
of information

about the
original image.

Projecting MNIST digits

106

Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it

down to K=2 components (i.e. a vector u(i))
2. Plot the 2 dimensional points u(i) and label with the (unknown to PCA) label y(i)

as the color
3. Here we look at all ten digits 0 - 9

Takeaway:
Even with a

tiny number of
principal

components
K=2, PCA
learns a

representation
that captures

the latent
information

about the type
of digit

Projecting MNIST digits

107

Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it

down to K=2 components (i.e. a vector u(i))
2. Plot the 2 dimensional points u(i) and label with the (unknown to PCA) label y(i)

as the color
3. Here we look at just four digits 0, 1, 2, 3

Takeaway:
Even with a

tiny number of
principal

components
K=2, PCA
learns a

representation
that captures

the latent
information

about the type
of digit

Learning Objectives
Dimensionality Reduction / PCA

You should be able to…
1. Define the sample mean, sample variance, and sample covariance of a

vector-valued dataset
2. Identify examples of high dimensional data and common use cases for

dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction error with

maximization of variance
5. Given a set of principal components, project from high to low dimensional

space and do the reverse to produce a reconstruction
6. Explain the connection between PCA, eigenvectors, eigenvalues, and

covariance matrix
7. Use common methods in linear algebra to obtain the principal components

108

