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Reminders

• Homework 8: Deep RL
– Out: Tue, Apr. 8
– Due: Wed, Apr. 16 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Wed, Apr. 16
– Due: Thu, Apr. 24 at 11:59pm
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CLUSTERING
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Clustering

Motivation
• Goal: automatically 

partition unlabeled data 
into groups of similar 
points

• Algorithms: 
– hierarchical agglomerative 

clustering
– top-down divisive 

clustering
– Gaussian mixture models
– spectral clustering
– K-Means 

Applications
• Topic modeling: Cluster news articles or 

web pages or search results by topic.
• Gene expression analysis: Cluster protein 

sequences by function or genes 
according to expression profile.

• Community detection: Cluster users of 
social networks by interest (community 
detection).

• Fraud detection: Spot unusual 
transaction clusters for fraud detection.

• Sloan Digital Sky Survey analysis: Group 
galaxies or nearby stars
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Slide adapted from Nina Balcan



Clustering

Question: Which of these partitions is “better”?
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OPTIMIZATION BACKGROUND
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Block Coordinate Descent
• Goal: minimize some objective 

"⃗∗ = argmin
"

* "⃗

• Idea: iteratively pick one variable and minimize the objective w.r.t. 
just that one variable, keeping all the others fixed. 
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Block Coordinate Descent
• Goal: minimize some objective (with 2 blocks)

+⃗∗, -⃗∗ = argmin
",$

* +⃗, -⃗

• Idea: iteratively pick one block of variables (+⃗	or	-⃗) and minimize the 
objective w.r.t. that block, keeping the other(s) fixed. 
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#⃗ 	= argmin
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.⃗ = argmin
&

, #⃗, .⃗

while not converged:



K-MEANS
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K-Means Algorithm (Derivation)
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Recipe for K-Means Derivation:

1) Define a Model.
2) Choose an objective function.
3) Optimize it!



K-Means Algorithm (Derivation)
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)



K-Means Algorithm (Derivation)
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Poll Question 1: In 
English, what is 
this quantity?

Answer:



K-Means Algorithm (Derivation)
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K-Means Algorithm (Derivation)
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K-Means Algorithm (Derivation)
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Now apply 
Block Coordinate Descent!



1) Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) z ← argminz J(C, z)
(pick each cluster assignment to minimize distance)

b) C ← argminC J(C, z)
(pick each cluster center to minimize distance)

K-Means Algorithm

17

This is an application of
Block Coordinate Descent!

The only remaining step is to figure out 
what the argmins boil down to…



Likewise, the 
minimization over 

cluster centers 
decomposes, so we 

can find each cj 
independently

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
  z(i) ← argminj (|| x(i) - cj ||2)2

b) for j in {1,…,K}
  cj ← argmin ∑                 (|| x(i) - cj ||2)2
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cj
i:z(i) = j

The minimization 
over cluster 
assignments 

decomposes, so 
that we can find 

each z(i) 
independently of 

the others



K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
  z(i) ← index j of cluster center nearest to x(i) 

b) for j in {1,…,K}
  cj ← mean of all points assigned to cluster j
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K-MEANS EXAMPLE
K=3 cluster centers

22



Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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K-MEANS EXAMPLE
K=2 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means

37



Example: K-Means
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Example: K-Means
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Example: K-Means
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INITIALIZING K-MEANS
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Initialization of K-Means
K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
  z(i) ← index j of cluster center nearest to x(i) 

b) for j in {1,…,K}
  cj ← mean of all points assigned to cluster j

42

Remaining Question:
How should we initialize the cluster centers?

Three Solutions:
1. Random centers (picked from the data 

points)
2. Furthest point heuristic
3. K-Means++



Initialization for K-Means
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Example 1:
• Initialized randomly such 

that each cluster center is 
in a well separated 
Gaussian 

• Good overall performance

Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.



Initialization for K-Means
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.

Example 1:
• Initialized randomly such 

that each cluster center is 
in a well separated 
Gaussian 

• Good overall performance



Initialization for K-Means
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.

Example 2:
• Initialized 

randomly such 
that two centers 
are in the same 
Gaussian cluster

• Poor performance
• Can be arbitrarily 

bad (imagine the 
final red cluster 
points moving 
arbitrarily far 
away!)



Initialization for K-Means
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
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Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.

Example 2:
• Initialized 

randomly such 
that two centers 
are in the same 
Gaussian cluster
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points moving 
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away!)



Initialization for K-Means

• For k equal-sized Gaussians, 

  Pr[each initial center is in a different Gaussian] ≈ !!
!! ≈

#
$!

• Becomes unlikely as k gets large. 

K-Mean Performance (with Random Initialization)
If we do random initialization, as k increases, it becomes more likely we 
won’t have perfectly picked one center per Gaussian in our initialization 

(so K-Means will output a bad solution).

Slide courtesy of Nina Balcan



Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1 

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance



Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1 

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance



Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1 

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 2:
• One outlier 

throws off 
the algorithm

• Poor 
performance



Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
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Initialization for K-Means
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Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point ' and its nearest center. Chose 
the next center proportional to D"(*).



Initialization for K-Means
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Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point ' and its nearest center. Chose 
the next center proportional to D"(*).

• Choose "% at random.

• Pick "& among #(%), #()), … , #(*) according to the distribution
• For j = 2,… , K

%('! = )(#)) ∝ ,-.!!%! )(#) − '!!
&
D+(#,)

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal 
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point ' and its nearest center. Chose 
the next center proportional to D"(*).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point ' and its nearest center. Chose 
the next center proportional to D"(*).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point ' and its nearest center. Chose 
the next center proportional to D"(*).

Observations:
• Interpolates between random and 

farthest point initialization
• Solves the problem with Gaussian 

data
• And solves the outlier problem



Q&A
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Q: In k-Means, since we don’t have a validation set, how do we 
pick k?

A: Look at the training objective 
function as a function of k 
and pick the value at the 
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor 
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10 
times and pick the run that gives the lowest training objective 
function value.
The objective function is nonconvex, so we’re just looking for 
the best local minimum.

J(c, z)

k



Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block coordinate 

descent
2. Define an objective function that gives rise to a "good" 

clustering
3. Apply block coordinate descent to an objective function 

preferring each point to be close to its nearest objective 
function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective function 

with the (possibly) poor performance of random initialization
59



DIMENSIONALITY REDUCTION
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High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
– Multilingual News Stories 

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)

64
Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)



Learning Representations
Dimensionality Reduction Algorithms: 
Powerful (often unsupervised) learning techniques for extracting hidden 
(potentially lower dimensional) structure from high dimensional datasets.

Examples: 
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, VAEs

Useful for:
• Visualization 
• More efficient use of resources (e.g., time, memory, communication)
• Statistical: fewer dimensions à better generalization
• Noise removal (improving data quality)

66
Slide adapted from Nina Balcan



This section in one slide…

72

1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either…
1. minimizes reconstruction error
2. consists of the K eigenvectors with 

largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we’ll focus on: 

Run Singular Value 
Decomposition (SVD) to 
obtain all the eigenvectors. 
Keep just the top-K to form V. 
Play some tricks to keep 
things efficient.

5. An Example



DIMENSIONALITY REDUCTION BY RANDOM 
PROJECTION
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2D input data
Example: 2D to 1D

Random Projection
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Goal:  project from M-dimensions down 
to K-dimensions

Data:

D = {x(i)}Ni=1 where x(i) ∈ RM

Algorithm:

1. Randomly sample matrix: V ∈ RK×M

Vkm ∼ Gaussian(0, 1)

2. Project down: u(i)
︸︷︷︸

K×1

= V
︸︷︷︸

K×M

x(i)
︸︷︷︸

M×1

3. Project up: x̃(i)
︸︷︷︸

M×1

= VT

︸︷︷︸

M×K

u(i)
︸︷︷︸

K×1

= VT (Vx(i))

V ∈ℝ1x2

x

y

x(1) ∈ℝ1x2

x(2)

x(3)

x(4)

x(5)

x(6)

x̃(1) ∈ℝ1x2

x̃(2)

x̃(3)
x̃(4)

x̃(5)
x̃(6)

1D projection onto the real line

u(1) ∈ℝ u(2) u(3) u(4) u(5) u(6)



2D input data
Example: 2D to 1D

Random Projection
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Goal:  project from M-dimensions down 
to K-dimensions

Data:

D = {x(i)}Ni=1 where x(i) ∈ RM

Algorithm:

1. Randomly sample matrix: V ∈ RK×M

Vkm ∼ Gaussian(0, 1)

2. Project down: u(i)
︸︷︷︸

K×1

= V
︸︷︷︸

K×M

x(i)
︸︷︷︸

M×1

3. Project up: x(i)
︸︷︷︸

M×1

= VT

︸︷︷︸

M×K

u(i)
︸︷︷︸

K×1

= VT (Vx(i))

V ∈ℝ1x2

x

y

Problem: a random projection might give 
us a poor low dimensional 
representation of the data



Johnson-Lindenstrauss Lemma
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http://www.cs.cmu.edu/~anupamg/papers/jl.pdf

A: Even random projection enjoys some surprisingly impressive properties. 
In fact, a standard of the J-L lemma starts by assuming we have a random 
linear projection obtained by sampling each matrix entry from a 
Gaussian(0,1).

Q: But how could we ever hope to preserve any useful information 
by randomly projecting into a low-dimensional space?



DEFINITION OF PRINCIPAL COMPONENT 
ANALYSIS (PCA)
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Principal Component Analysis (PCA)
• Assumption: the data 

lies on a low K-
dimensional linear 
subspace 

• Goal: identify the axes 
of that subspace, and 
project each point 
onto hyperplane

• Algorithm: find the K 
eigenvectors with 
largest eigenvalue 
using classic matrix 
decomposition tools

78
https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg

PCA Example: 2D Gaussian Data



Data for PCA
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We assume the data is centered, 
i.e. the sample mean is zero

s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����

D = {t(i)}N
i=1

Q: What if 
your data is 

not centered?

µ̂ =
1

N

N∑

i=1

x(i)
= 0

A: Subtract off the sample mean

x̃(i)
= x(i)

− µ̂, ∀i



Sample Covariance Matrix
The sample covariance matrix
 is given by:
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�jk =
1

N

N�

i=1

(x(i)
j � µj)(x

(i)
k � µk)

Since the data matrix is centered, we can rewrite as:

� =
1

N
sT s

s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����

Supposewehavea sequenceof ran‐
domsamples{x(1), . . . , x(N)} from
a random variableX .

The (biased) sample variance σ̂2 is
given by:

σ̂2 =
1

N

N∑

i=1

(x(i) − µ̂)2

where µ̂ is the sample mean.

Background: Sample Variance

where



Principal Component Analysis (PCA)
Linear Projection:
Given KxM matrix V, and Mx1 
vector x(i) we obtain the Kx1 
projection u(i) by:
  u(i) = V x(i)

Definition of PCA:
PCA repeatedly chooses a next vector vj that minimizes the 
reconstruction error s.t. vj is orthogonal to v1, v2,..., vj-1. 

Vector vj is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = 0. 
èthe K-dimensions in PCA are uncorrelated
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V =

⎡

⎢

⎢

⎢

⎣

— vT

1
—

— vT

2
—

...
— vT

K
—

⎤

⎥

⎥

⎥

⎦

u(i)
=













u
(i)
1

u
(i)
2
...

u
(i)
k













=











v!
1 x(i)

v!
2 x(i)

...
v!
k

x(i)











= Vx(i)



Vector Projection
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length of projection of x onto v

a =
(v!x)
‖v‖2

2

if ‖v‖2 = 1

otherwise

projection of x onto v

u =
(v!x)v
‖v‖2

2

if ‖v‖2 = 1

otherwise



Objectives for PCA
Minimize the Reconstruction Error Maximize the Variance
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v1 = argmin
v

1

N

N
∑

i=1

distance
(

x(i), x̂(i)
)2

= argmin
v

1

N

N
∑

i=1

∥

∥

∥

∥

x(i)
−

(

vector projection
of x(i) onto v

)
∥

∥

∥

∥

2

2

= argmin
v s.t. ‖v‖2=1

1

N

N
∑

i=1

∥

∥

∥
x(i)

− (v"x(i))v
∥

∥

∥

2

2

v1 = argmax
v

1

N

N
∑

i=1

(

length of vector
projection of x(i) onto v

)2

= argmax
v s.t. ‖v‖2=1

1

N

N
∑

i=1

(

v"x(i)
)2

= argmax
v s.t. ‖v‖2=1

1

N

(

v"X"
)

(Xv)

= argmax
v s.t. ‖v‖2=1

v"
Σv



Objectives for PCA
Minimize the Reconstruction Error Maximize the Variance
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v1 = argmin
v

1

N

N
∑

i=1

distance
(

x(i), x̂(i)
)2

= argmin
v

1

N

N
∑

i=1

∥

∥

∥

∥

x(i)
−

(

vector projection
of x(i) onto v

)
∥

∥

∥

∥

2

2

= argmin
v s.t. ‖v‖2=1

1

N

N
∑

i=1

∥

∥

∥
x(i)

− (v"x(i))v
∥

∥

∥

2

2

v1 = argmax
v

1

N

N
∑

i=1

(

length of vector
projection of x(i) onto v

)2

= argmax
v s.t. ‖v‖2=1

1

N

N
∑

i=1

(

v"x(i)
)2

= argmax
v s.t. ‖v‖2=1

1

N

(

v"X"
)

(Xv)

= argmax
v s.t. ‖v‖2=1

v"
Σv



Answer:

Below are two plots of the same dataset D. Consider the 
two projections shown.

1. Poll Question 2: Which maximizes the variance?
2. Poll Question 3: Which minimizes the reconstruction error?

Projection Example

85

Option A Option B

1 2 3

1
2

3

1 2 3
1

2
3



PCA Objective Functions
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What is the Ƥrst principal component v1 chosen by PCA?

v1 = argmin
v:||v||2=1

1

N

N∑

i=1

||x(i) − (vT x(i))v||2

Option 1: The vector that minimizes the reconstruction error

Option 2: The vector that maximizes the variance

v1 = argmax
v:||v||2=1

1

N

N∑

i=1

(vT x(i))2



PCA
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Equivalence of Maximizing 
Variance and Minimizing  

Reconstruction Error



PCA EXAMPLES

104



Projecting MNIST digits
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Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it 

down to K components (i.e. a vector u(i))
2. Report percent of variance explained for K components
3. Then project back up to 28x28 image (i.e. a vector x̃(i) of length 784) to 

visualize how much information was preserved

Takeaway:
Using fewer 

principal 
components K 
leads to higher 
reconstruction 

error.
But even a 

small number 
(say 43) still 

preserves a lot 
of information 

about the 
original image.



Projecting MNIST digits
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Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it 

down to K=2 components (i.e. a vector u(i))
2. Plot the 2 dimensional points u(i) and label with the (unknown to PCA) label y(i) 

as the color
3. Here we look at all ten digits 0 - 9

Takeaway:
Even with a 

tiny number of 
principal 

components 
K=2, PCA 
learns a 

representation 
that captures 

the latent 
information 

about the type 
of digit



Projecting MNIST digits
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Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it 

down to K=2 components (i.e. a vector u(i))
2. Plot the 2 dimensional points u(i) and label with the (unknown to PCA) label y(i) 

as the color
3. Here we look at just four digits 0, 1, 2, 3

Takeaway:
Even with a 

tiny number of 
principal 

components 
K=2, PCA 
learns a 

representation 
that captures 

the latent 
information 

about the type 
of digit



Learning Objectives
Dimensionality Reduction / PCA

You should be able to…
1. Define the sample mean, sample variance, and sample covariance of a 

vector-valued dataset
2. Identify examples of high dimensional data and common use cases for 

dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction error with 

maximization of variance
5. Given a set of principal components, project from high to low dimensional 

space and do the reverse to produce a reconstruction
6. Explain the connection between PCA, eigenvectors, eigenvalues, and 

covariance matrix
7. Use common methods in linear algebra to obtain the principal components
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