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Reminders

* Homework 8: Deep RL
— Out: Tue, Apr. 8
— Due: Wed, Apr. 16 at 11:59pm

* Homework 9: Learning Paradigms
— Out: Wed, Apr. 16
— Due: Thu, Apr. 24 at 11:59pm




CLUSTERING



Clustering

Motivation Applications
* Goal: automatically * Topic modeling: Cluster news articles or
partition unlabeled data web pages or search results by topic.
Into groups of similar * Gene expression analysis: Cluster protein .=
points sequences by function or genes =
* Algorithms: according to expression profile. i
— hierarchical agglomerative ~ « Community detection: Cluster users of
clustering social networks by interest (community
— top-doyvn divisive detection).
clustering

_ Gaussian mixture models * Fraud detection: Spot unusual
: transaction clusters for fraud detection.
— spectral clustering

— K-Means * Sloan Digital Sky Survey analysis: Group
galaxies or nearby stars

Slide adapted from Nina Balcan



Clustering

Question: Which of these partitions is “better’”?
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OPTIMIZATION BACKGROUND



Coordinate Descent

* Goal: minimize some objective
g* = argmin](é)
6

* ldea: iteratively pick one variable and minimize the objective w.r.t.
just that one variable, keeping all the others fixed.




Block Coordinate Descent

* Goal: minimize some objective (with 2 blocks)

a*, [ = argmin J (&, E)
@B
* ldea: iteratively pick one block of variables (a or E) and minimize the
objective w.r.t. that block, keeping the other(s) fixed.

while not converged:

¢ = argmin](d, ﬁ)

>J\ L — g

p = argmin] (&, B)
B




K-MEANS



K-Means Algorithm (Derivation)




K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters
Model Paramters:
o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM
o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;




K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

Poll Question 1: In

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM English what is
. )
o clusterassignments: z = [z(1), 22 . (V] 200 € {1,... K} this quantity?

Decision Rule: assign each point x(%) to its nearest cluster center c;

——

Objective:
- / Answer:

N
C= argminz min |[x9 — c;]||2
= 1=1 J




K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM

o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

Objective:

N
C= argminz min |[x9 — c;]||2
c =’

N
= argmin g min ||x¥ — ¢,
C

(4)
i=1 °

2
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K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM

o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

Objective:

N
C= argminz min |[x9 — c;]||2
c =’

N
= argmin g min ||x¥ — ¢,
C

(4)
i=1 °

2
2

N
C,z = argmin E 1% — ¢
Cz =1

2
2




K-Means Algorithm (Derivation)

Input: unlabeled data D = {x(}¥ = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,Ca,...,Ck], ¢; € RM

o clusterassignments: z = [z(D), 2(2) .. (V] 0 c {1 .. K}

Decision Rule: assign each point x(%) to its nearest cluster center c;

Objective:

N
C = argminz min HX(i) — CjH%
C J

=1
N
— argmin min | (X — C._@
o ; O ! 2112 Now apply
Block Coordinate Descent!

N
C,z = argmin E 1% — ¢
Cz =

2
2

N>

= argmin J(C, z)
C,z




K-Means Algorithm

unlabeled feature vectors
D = {x(, x®),..., x(N}

cluster centers ¢ = {c,,..., ¢}

until convergence:
a) z« argmin, J(C,z)
(pick each cluster assignment to minimize distance)
b) C < argmingJ(C, 2)
(pick each cluster center to minimize distance)

—

This is an application of
Block Coordinate Descent!
The only remaining step is to figure out
what the argmins boil down to...

17



K-Means Algori

1) Given unlabeled feature vectors
D = {x(, x®),..., x(N}

2) Initialize cluster centers c = {c,,..., ¢k}

3) Repeat until convergence:
a) foriin{1,..., N}

z0) < argmin; (|| xO - ¢/ ||,)?
b) forjin{s,...,K}

SR argcl;nin Zizz(i) - (II x(® - G ”2)2

18



K-Means Algorithm

unlabeled feature vectors
D = {x(, x®),..., x(N}

cluster centers ¢ = {c,,..., ¢}

until convergence:
a) foriin{1,..., N}
z() « index j of cluster center nearest to x(
b) forjin{s,...,K}
¢, < mean of all points assigned to cluster |

19



K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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K-Means

Example

3, iter=0)
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K-Means

Example

3, iter=1)

- Clustering with K-Means (k
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K-Means

Example

3, iter=2)
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K-Means

Example

3, iter=3)

- Clustering with K-Means (k
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K-Means

Example

3, iter=4)

- Clustering with K-Means (k
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K-Means

Example

3, iter=5)

- Clustering with K-Means (k
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K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

- Clustering with K-Means (k=2, iter=0)
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Example: K-Means

~ Clustering with K-Means (k=2, iter=2)
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Example: K-Means

~ Clustering with K-Means (k=2, iter=3) |
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K-Means

Example

2, iter=4)

~ Clustering with K-Means (k
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K-Means

Example

2, iter=5)

~ Clustering with K-Means (k
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K-Means

Example

2, iter=6)

~ Clustering with K-Means (k
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K-Means

Example

2, iter=7)
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INITIALIZING K-MEANS



Initialization of K-Means

K-Means Algorithm

1) Given unlabeled feature vectors
D = {x(, x(),..., x(N)]

2) Initialize cluster centers c = {c,,..., ¢}
3) Repeat until

a) foriin{y,..., N;

z(0) « ind

b) forjin{s,...,K}
¢, < mea

42



Initialization for K-Means

Example 1:

 Initialized randomly such
that each cluster centeris
in a well separated
Gaussian

o0O
O O

43



Initialization for K-Means

O Example 1:
 Initialized randomly such
o that each cluster centeris
O o in a well separated
Gaussian
* Good overall performance

>
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Initialization for K-Means

Example 2:
e |nitialized

randomly such
that two centers
are in the same

Gaussian cluster

45



Initialization for K-Means

Example 2:

Initialized
randomly such
that two centers
are in the same
Gaussian cluster
Poor performance
Can be arbitrarily

sbad (imagine the

final red cluster
points moving
arbitrarily far

away!)

> 46




Initialization for K-Means

K-Mean Performance (with Random Initialization)
If we do random initialization, as k increases, it becomes more likely we

won’t have perfectly picked one center per Gaussian in our initialization

(so K-Means will output a bad solution).

* Fork equal-sized Gaussians,

- . . . K1
Prleach initial center is in a different Gaussian] = = ~ —

* Becomes unlikely as k gets large.

Slide courtesy of Nina Balcan



Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the

previously chosen centers ¢, ¢,,..., ¢, Example 1:
* No outliers
A  Good performance
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Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the

previously chosen centers ¢, ¢,,..., ¢, Example 1
* No outliers
A e Good performance
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Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the
previously chosen centers ¢, ¢,,..., ¢,

A
Example 2: O O O
* One outlier
throws off o 8
the algorithm O
* Poor
performance
o O
o O O
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Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the
previously chosen centers ¢, ¢,,..., ¢,

Example 2:

* One outlier
throws off
the algorithm

* Poor
performance

51



Initialization for K-Means

Algorithm #3: K-Means++
Let D(x) be the distance between a
point x and its nearest center. Chose 2.
the next center proportional to D? (X).C((D(x»

A o O
o O
OO
o O
o O O
O oo0©
@ O O




e i | D(x) | D*(x) | P(c, =x0) |
Initialization for K-\t 3 9 937

2 2 4 4137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose /74
the next center proportional to D?(x).

16 16/137

N 3 9 9/137

Sum: 137 1.0
A ()

* Choose ¢ at random.

* Forj=2,..,K
»  Pick ¢; among xM,x@), .. x™ according to the distribution

P& =) s@ing [« — [ p2(x)

I N O OV
Theorem: K-Means++ always attains an O(log k) approximation to optimal

K-Means solution in expectation.

I
>
Slide adapted from Nina Balcan
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e i | D(x) | D*(x) | P(c, =x0) |
Initialization for K-\t 3 9 937

2 2 4 4137

Algorithm #3: K-Means++

« Let D(x) be the distance between a
point x and its nearest center. Chose C U =456 3_(5/1’377S

the next center proportional to D%(x). .
R 5 wingo (e
Sum:(1)37 w’é C \/*‘
W bere

* Choose ¢ at random.
* Forj=2,..,K

»  Pick ¢; among xM,x@), .. x™ according to the distribution
Y o¢ mi 0 :
P(¢; =xV) « miny’ ; “x — cjr”

1 O N O OV
Theorem: K-Means++ always attains an O(log k) approximation to optimal
K-Means solution in expectation.

Slide adapted from Nina Balcan
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i D09 | D209 [P(ca=x0)_

Initialization for K-+ 3 9 937

2 2 4 4/137

Algorithm #3: K-Means++ = 2 2
Let D(x) be the distance between a > 19 lc( (?/ >7
point x and its nearest center. Chose /7 4 16 16/137
the next center proportional to D*(x). M |4 |4* WZ/\ 317

N 3 9 9/137
Sum: 137 1.0

Example 1: O %)
e One outlier K
* Good

performance
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e i | D(x) | D*(x) | P(c, =x0) |
Initialization for K-\t 3 9 937

2 2 4 4137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose /74
the next center proportional to D?(x).

16 16/137

N 3 9 9/137
Sum: 137 1.0

Example 1: t O O O
* One outlier

* Good 0‘8

performance O
o O
O
<0°O 0@ O
O o o
- 56




Initialization for K-Means

Algorithm #3: K-Means++ Observations:
* Let D(x) be the distance between a * Interpolates between random and
point x and its nearest center. Chose farthest point initialization

Solves the problem with Gaussian
data
* And solves the outlier problem

the next center proportional to D?(x).

A
Example 1: O O O
* One outlier 'Ye)
* Good o o
performance O




Q&A

In k-Means, since we don’t have a validation set, how do we
pick k?

Look at the training objective
function as a functionof k (¢, 2)
and pick the value at the

“elbo” of the curve.

A

ok =7
What if our random initialization for k-Means gives us poor
performance?

Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.

The objective function is nonconvex, so we’re just looking for
the best local minimum.



Learning Objectives

K-Means
You should be able to...

1. Distinguish between coordinate descent and block coordinate
descent

2. Define an objective function that gives rise to a "good"
clustering

3. Apply block coordinate descent to an objective function
preferring each point to be close to its nearest objective
function to obtain the K-Means algorithm

4. Implement the K-Means algorithm

Connect the non-convexity of the K-Means objective function
with the (possibly) poor performance of random initialization

4



DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)

62



Data

Imension

High D

| data
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— Multilingual News Stor
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Image from (Wehbe et al., 2014)

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

64



Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting hidden
(potentially lower dimensional) structure from high dimensional datasets.

Examples:
(PCA, Kernel PCA, ICA, CCA, SN E,@ VAES
Useful for:

* Visualization

* More efficient use of resources (e.g., time, memory, communication)
e Statistical: fewer dimensions = better generalization
* Noise removal (improving data quality)

Slide adapted from Nina Balcan



This section in one slide...

1. Dimensionality reduction: 2. Random Projection:

1. Randomly sample matrix: V € REXM
Viem ~ Gaussian(0, 1)

3. Definition of PCA:

Choose the matrix V that either...

1. minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

The above are equivalent definitions.

o
t-—® 2. Project down: u'” = x ()
i d ® o Kx1 KxMMx1
4. Algorithm for PCA:

The option we’ll focus on:

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.
Play some tricks to keep
things efficient.

5. An Example




DIMENSIONALITY REDUCTION BY RANDOM
PROJECTION



Random Projection

2D input data
Goal: project from M-dimensions down A o6  VER™

Example: 2D to 1D

to K-dimensions 4
25 DX
Data: @ @\.
; : / x(S)
D = {xN  wherex(® ¢ RM /
. %(4)
Algorithm: o 7
X 2
1. Randomly sample matrix: V ¢ R&*xM ,Q\. o
Vim ~ Gaussian(0,1) _/ N\ O
2. Projectdown: u'” = vV x /%0 eRve
~—~— —~ ~
éND Kx1 KxMMx1 / x() gR1*2
r——’_/ b
. . , >
3. Project up: 5 = VT y® = VT (Vx®) X
N~ N~~~
Mx1 — MXxKKXx1 1D projection onto the real line
u®erR u® u®® u u® u)

4« -0--0-0+-0--00-
0



Random Projection
Example: 2D to 1D

4a
2D input da
Goal: project from M-dimensions down A V ER™
to K-dimensions ®l\.

Data:
D = {xN  wherex(® ¢ RM

Algorithm:

|
|
|
>
1. Randomly sample matrix: V € RE*M M’
|
|

Viem ~ Gaussian(0, 1)

2. Project down: u® = v xO
N~ N
Kx1 KxMMx1

. . , : >
3. Project up: x() = VT yq® = VT (Vx®) X

Mx1 MxKKx1

Problem: a random projection might give
us a poor low dimensional
representation of the data



Johnson-Lindenstrauss Lemma

. But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

. Evenrandom projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random

linear projection obtained by sampling each matrix entry from a
Gaussian(0,1).

An Elementary Proof of a Theorem of
Johnson and Lindenstrauss

Sanjoy Dasgupta,’ Anupam Gupta®

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean space can be mapped into an O(log n/e*)-dimensional Euclidean space such
that the distance between any two points changes by only a factor of (1 * €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.

Alg., 22: 60-65, 2002

http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
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DEFINITION OF PRINCIPAL COMPONENT
ANALYSIS (PCA)



Principal Component Analysis (PCA)

¢ Assumption: the data 1st principal L
lies on a low K- ’
dimensional linear

2nd principal

subspace _ pr
* Goal: identify the axes L
of that subspace, and a e

project each point
onto hyperplane

* Algorithm: find the K
eigenvectors with
largest eigenvalue
using classic matrix
decomposition tools

https://commons.wikimedia.org/wiki/File:Scatter _diagram_for quality characteristic XXX.svg



D= {X(i)}fll

x(®) ¢ RM

Data for PCA

Alifas
(x(®)T

()T

We assume the data is centered,
l.e. the sample mean is zero

T
 — E (2) —
n = i:1X =0

A: Subtract off the sample mean
£ — xO _ g vi

Q: What if
your data is
not centered?

10 4

-10 4

-20 4

Centered Points Overlaid

a"a" ” .'“6'
o. ’c"'
L WLy
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Sample Covariance Matrix

Background: Sample Variance  The sample covariance matrix 33 ¢ R *XM
Suppose we have asequence ofran- IS given by: AO% Qmé ) 7[(“ od e cdls oF X

domsamples {1, ..., (™)} from

a random variable X. S (Z) \K (,L) \K
Jjk —
The (biased) sample variance 62 is S 1
given by: ,
Since the data matrix is centered we can rewrlte as:

1 .
62 == (aW - )’ where k

S
N ~— 1 (1) -
= » = —XTX o
where [i is the sample mean. & | )

(V)T




Principal Component Analysis (PCA)

Linear Projection:

Given KxM matrix V, and Mx1
vector x() we obtain the Kx1

projection u® by:
u® = v x®

Definition of PCA:

V =

PCA repeatedly chooses a next vector v; that

s.t. vjis orthogonal to v,, v,,..., Vj...

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = 0.

=»the K-dimensions in PCA are uncorrelated

_ugi)é; v x(V3—
(i)4—~ T (9)a—
NON 2 v
: : ) —
) vy x
\\
SO
\r‘i N\
e
Q\V \/7.
o NG
Q\\(ﬁ ~~
\\
/L \ \><
O ~




Vector Projection

length of projection of x onto v

VTX> if |[v]o =1

s
N |v]|2 otherwise

~
% projection of x onto v

T if —1
P v i

O v||5 otherwise

83
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Objectives for PCA

Minimize the Reconstruction Error

N\ 2
V] = argmm — Z distance ( (i ),fc(z))

=1
N

= argmin % Z

v i=1

Z H (i) _

i=1

of x() onto v

L) ( vector projection

2
= argmin v’ (z ||

vst |v]a=1 N 2

Y

2

Maximize the Variance

1
V] = argmax —

length of vector ?
v N

projection of x(¥) onto v

] =

=1
N

1 A 2
= argmax NZ(VTX(”)

v s.t. ||V||2:1 i=1

= argmax = (VTXT) (Xv)

vst ||v][2=1

— argmax v' Xv
vs.t ||v]2=1



Projection Example

Below are two plots of the same dataset D. Consider the
two projections shown.
1.  Poll Question 2: Which maximizes the variance? B

2. Poll Question 3: Which minimizes the reconstruction error? |2

Answer: D




PCA Objective Functions

What is the first principal component v; chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

N
1 . ,
Vi = argmin N E HX(Z) _ (VTX(Z))VHZ

vi||v|[?=1 i=1

Option 2: The vector that maximizes the variance

N

1 T ()2
vy = argmax — » (v'x'")
ve|fvl2=1 IV ;



Equivalence of Maximizing PC A

Variance and Minimizing
Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
x4 — (vTxD)v|? = |[x@P|]2 — (vTxD)? (1)

since viv = ||v|]? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

N
1 . .
v* = argmin — Z |[x® — (vTx®)v||? (2)
v:||v||2=1 i—1
1 X . .
— argmin > [lx[? - (vx)? G
v:||v]|[|?2=1 i—=1
| N
= argmax — > (vIx(9)2 (4)
viljv|2=1 IV 2

=1



PCA EXAMPLES



Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x() of length 784) and project it

1.

down to K components (i.e. a vector u®)

Report percent of variance explained for K components
Then project back up to 28x28 image (i.e. a vector X() of length 784) to

visualize how much information was preserved

Original Image 90% of Explained Variance

95% of Explained Variance
0

5

1
1
20
2

o

5 10 15 20 25 5 10 15 20 25 0 5 10 15 0 25 0 5 10

Original Image % of Explained Variance

5 10 15 20 25 5 10 15 20 25 10 15 20 25
784 components 154 components

Original Image 95% of Explained Variance 90% of Explained Variance

5 10 15 20

0 5 ] 25 10 15 20 25 5 10 15 20
784 components

5 1 0 5 0 25
154 components 87 components

80% of Explained Variance

0 0
5 5
10 10
15 15
20 20
25 L 25 L

784 components 154 components 87 components 43 components 11 components

90% of Explained Variance 80% of Explained Variance

5 0 0 5 10 15 20 0
87 components 43 components 11 components

80% of Explained Variance

0 15 20 25

50% of Explained Variance

15 20 25 0 5 10 15 20 25

% of Explained Variance

25 5 10 15 20 25

50% of Explained Variance

5 1C 5 10 15 20 25
43 components 11 components

Takeaway:
Using fewer
principal
components K
leads to higher
reconstruction
error.

But even a
small number
(say 43) still
preserves a lot
of information
about the
original image.



Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

1.

down to K=2 components (i.e. a vector u®)

Plot the 2 dimensional points u®) and label with the (unknown to PCA) label y(

as the color

Here we look at all ten digits 0-9

3

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit
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Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

1.

down to K=2 components (i.e. a vector u®)

Plot the 2 dimensional points u®) and label with the (unknown to PCA) label y(

as the color
Here we look at just four digits o, 1, 2, 3

3.0
3 4

2.5

'3‘.:: ‘.'.‘- - 2.0

oo "
1 yt't t"\" "" a 5
'}f"-’ ;‘" \_' .‘_ e B 1,5

if;w

- 1.0

0.5

. T 0.0

|
"
()
=
N
w

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit
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Learning Objectives

Dimensionality Reduction [ PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample covariance of a
vector-valued dataset

ldentify examples of high dimensional data and common use cases for
dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction error with
maximization of variance

Given a set of principal components, project from high to low dimensional
space and do the reverse to produce a reconstruction

Explain the connection between PCA, eigenvectors, eigenvalues, and
covariance matrix

Use common methods in linear algebra to obtain the principal components



