10-301/601: Introduction
to Machine Learning
Lecture 24 — Ensemble

Methods

Matt Gormley & Henry Chai
4/14/25

* Announcements

* HWS8 released 4/8, due 4/16 at 11:59 PM

Front Matter

4/14/25

Recall:

AdaBoost

4/14/25

* Intuition: iteratively reweight inputs, giving more weight

to inputs that are difficult-to-predict correctly

- Analogy:

* You all have to take a test () ...
* ... but you’re going to be taking it one at a time.

- After you finish, you get to tell the next person the
guestions you struggled with.

* Hopefully, they can cover for you because...

- ... if “enough” of you get a question right, you’ll all
receive full credit for that problem

* Input: D (y(”) € {—1, +1}), T ™~

* Initialize data point weights: a)(). ,a)(gN) ==

A *Fort=1,..,T
1. Train a weak learner, h¢, by minimizing the weighted
d training error
3 2. Compute the weighted training error of h;: * Output: an
aggregated
B €, = z a)(") 1 y(n) £ ht(x("))) > hypothesis
O — sion(H
3. Compute the importance of h;: gr(x) = sign(Hr(x))
O
S
t

_ 11 (1 — et) T
e = 5108 € = sign (Z atht(x)>

4. Update the data point weights: t=1

.
(n) (Ut(ﬁ)l e %t if ht(x(n)) - y(n)

Zs \eat ifht(x(n)) + y(n)

Setting a;

a; determines the contribution of h;
to the final, aggregated hypothesis:

T
g(x) = sign (Z atht<x>)

t=1

Intuition: we want good weak

learners to have high importances

1 1_Et
%t zzlog(€t)

4/14/25

Setting a;

a; determines the contribution of h;
to the final, aggregated hypothesis:

T
g(x) = sign (Z atht<x>)

t=1

Intuition: we want good weak

learners to have high importances

1 1_Et
%t =Elog(€)

4/14/25

Poll Question 1:

How does the importance of a very
bad/mostly incorrect weak learner
compare to the importance of a very

good/mostly correct weak learner?

Similar magnitude, same sign (TOXIC)
Similar magnitude, different sign

Different magnitude, same sign

O 0O w P

Different magnitude, different sign

Setting a;

a; determines the contribution of h;
to the final, aggregated hypothesis:

T
g(x) = sign (Z atht<x>)

t=1

Intuition: we want good weak

learners to have high importances

1 1_Et
%t =§108(€)

4/14/25

T
0.1

T
0.2

T
0.3

T
0.4

0.5

T
0.6

T
0.7

T
0.8

T
0.9

* Intuition: we want incorrectly classified inputs to receive a

higher weight in the next round

(n n
wgr_l?]_ e—at lf ht(x(n)) — y(n) _ wigtl)le_aty()ht(x())

w™ = =1y =
: (n) t Zt et if ht(x(")) =y Z;
Updating w \
‘If ; < =, then —£ > 1
2 €t
. 1_Et _ l 1_Et
If -, >1,thenat—210g(Et)>0

“Ifay > 0,thene ™ < lande% > 1

4/14/25

6;2 == ().:Zjl 6;3 == ().:1‘}

AdaBoost:
Example

4/14/25

AdaBoost:
Example

4/14/25

0.65 h,

10

Why

AdaBoost?

4/14/25

1.

If you want to use weak 1.

learners ...

... and want your final
hypothesis to be a 2.
weighted combination of

weak learners, ...

... then Adaboost greedily 3
minimizes the

exponential loss:
e(h(x),y) = e(-¥h(®)

Because they’re low
variance / computational

constraints

Because weak learners

are not great on their own

Because the exponential
loss upper bounds binary

error

11

Exponential Loss

e(h(x),y) = e(-yh®)

The more h(x) “agrees with” y,
the smaller the loss and the more
h(x) “disagrees with” y, the

greater the loss

4/14/25

12

* For AdaBoost, with high probability:

. ~ [[|Quc(F)T
True Error < Training Error + O N
True Error \

(Freund &

where d,.(H) is the VC-dimension of the weak learners

Schapire, 1995)

and T is the number of weak learners.

* Empirical results indicate that increasing T does not

lead to overfitting as this bound would suggest!

4/14/25 Source: http://rob.schapire.net/papers/FreundScqs.pdf 13

http://rob.schapire.net/papers/FreundSc95.pdf

Test Error
(Schapire, 1989)

4/14/25

20:

o Test error

error

\:/ Training error

T

Source: http://rob.schapire.net/papers/msri.pdf

10 100

~ 1000

14

http://rob.schapire.net/papers/msri.pdf

Margins

4/14/25

* The margin of training point (x(i),y(i)) is defined as:

o D YT - o h (2D
m(x(‘),y(l)) _ y Zt—; At t(x)
t=1 ¢

* The margin can be interpreted as how confident g7 is in

its prediction: the bigger the margin, the more confident.

Increasing confidence Increasing confidence
(but wrong)

Margin

15

True Error
(Schapire,

Freund et al.,
1998)

4/14/25

* For AdaBoost, with high probability:

N
1 . . | d
True Error < —Z[[m(x(l),y(l)) < E]] +0 vc()
N ¢) \ Ne?
L=

where d,.(H) is the VC-dimension of the weak learners

and € > 0 is a tolerance parameter.

* Even after AdaBoost has driven the training error to O, it

continues to target the “training margin”

Source: http://rob.schapire.net/papers/SchapireFrBaleg8.pdf

16

http://rob.schapire.net/papers/SchapireFrBaLe98.pdf

Learning

Objectives:
Boosting

4/14/25

You should be able to...

1. Explain how a weighted majority vote over linear
classifiers can lead to a non-linear decision boundary

2. Implement AdaBoost

3. Describe a surprisingly common empirical result
regarding Adaboost train/test curves

17

Decision Trees:
Pros & Cons

4/14/25

* Pros

* Interpretable

* Efficient (computational cost and storage)

* Can be used for classification and regression tasks

* Compatible with categorical and real-valued features

* Cons

* Learned greedily: each split only considers the
immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number
of splits) tree that achieves a training error rate of 0.

* Prone to overfit
* Limited expressivity (especially short trees, i.e., stumps)
- Can be addressed via boosting
* Highly variable
* Can be addressed via bagging — random forests 18

oo | rutime | Gere | sudet | e | M08 | g | et
18M 8.7 PG Y

1 124 Action 1980

2 105 Action 30M 1984 7.8 PG Y

3 103 Comedy eM 1986 7.8 PG-13 N

4 98 Adventure 16M 1987 8.1 PG Y .

5 128 Comedy 164M 1989 8.1 PG Y Action/Adventure Other

6 120 Comedy 11M 1992 7.6 R N

7 120 Drama 14.5M 1996 6.7 PG-13 N .

8 136 Action 115M 1999 6.5 PG Y IMDB Ratlng

9 90 Action 90M 2001 6.6 PG-13 Y > 76 PG PG-13/R
10 161 Adventure 100M 2002 7.4 PG N

11 201 Action 94M 2003 8.9 PG-13 Y

12 94 Comedy 26M 2004 7.2 PG-13 Y ° ° Runtime

13 157 Biography 100M 2007 7.8 R N

14 128 Action 110M 2007 7.1 PG-13 N <97 > 97
15 107 Drama 39M 2009 7.1 PG-13 N

16 158 Drama 61M 2012 7.6 PG-13 N

17 169 Adventure 165M 2014 8.6 PG-13 Y ° m
18 100 Biography 9IM 2016 6.7 R N

19 130 Action 180M 2017 7.9 PG-13 Y

20 141 Action 275M 2019 6.5 PG-13 Y

Decision Trees

4/14/25 Source: https://www.kaggle.com/datasets/danielgrijalvas/movies

https://www.kaggle.com/datasets/danielgrijalvas/movies

oo | rutime | Gere | sudet | e | M08 | g | et
18M 8.7 PG Y

1 124 Action 1980

2 105 Action 30M 1984 7.8 PG %

3 103 Comedy 6M 1986 7.8 PG-13 N < 14.5M > 14.5M

4 98 Adventure 16M 1987 8.1 PG Y

5 128 Comedy 164M 1989 8.1 PG % RuNtime

6 120 Comedy 11M 1992 7.6 R N

7 120 Drama 145M 1996 6.7 PG-13 N > 141

8 136 Action 115M 1999 6.5 PG Y

9 90 Action ~ 90M 2001 6.6 PG-13 %

10 161 Adventure 100M 2002 7.4 PG N Runtime

11 201 Action 94M 2003 89 PG-13 Y

12 94 Comedy 26M 2004 7.2 PG-13 Y < 2004 > 2004 <161l > 161
13 157 Biography 100M 2007 7.8 R N

14 128 Action 110M 2007 7.1 PG-13 N

15 107 Drama 39M 2009 7.1 PG-13 N ° Year m °
16 158 Drama 61M 2012 7.6 PG-13 Y

17 169 Adventure 165M 2014 8.6 PG-13 Y S 2007 > 2007

18 100 Biography 9IM 2016 6.7 R N

19 130 Action ~ 180M 2017 7.9 PG-13 % m °

20 141 Action 275M 2019 65 PG-13 Y

Decision Trees

4/14/25 Source: https://www.kaggle.com/datasets/danielgrijalvas/movies

https://www.kaggle.com/datasets/danielgrijalvas/movies

< 14.5M > 14.5M

Action/Adventure Other

Runtime
< 141 > 141

IMDB

Rating

<76

>7.6 PG PG-13/R RuNtime

> 161

Year

° ° Runtime < 2004 > 2004 < 161
<

IMDB
< 6.7 > 6.7

97

Year

> 97 °
@ < 2007

> 2007

Decision Trees

4/14/25

21

Random

Forests

4/14/25

* Combines the prediction of many diverse decision trees to reduce

their variability

- If B independent random variables x(), x(2), ... x®B) 3|l have

B
: 2 : 1 (b) - o’
variance g4, then the variance of 3 z x\7 s 7
b=1

* Random forests = bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization

22

- Combines the prediction of many diverse decision trees to reduce

their variability

* If B independent random variables x(l),x(z), ...,x(B) all have

Random

B
1 2
Forests variance o2, then the variance of 3 z x®) s %
b=1

- Random forests = bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization

4/14/25 23

Aggregating

4/14/25

* How can we combine multiple decision trees,

{t, t,, ..., tg}, to arrive at a single prediction?

- Regression - average the predictions:

B
3 1
() =%) 6,0
b=1

» Classification - plurality (or majority) vote; for binary

labels encoded as {—1, +1}:

B
1
£(x) = sign (E bzl) (x)>

24

* Combines the prediction of many diverse decision trees to reduce

their variability

- If B independent random variables x, x(2) . x5 3|l have

Random

B
1 2
Forests variance o2, then the variance of 3 Z x(®) s %
b=1

- Random forests = bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization

4/14/25 25

* Insight: one way of generating different decision trees is
by changing the training data set

* Issue: often, we only have one fixed set of training data

* ldea: resample the data multiple times with replacement

 MovieiD | [l MovieiD | - [MovielD | -
1 1 4

Bootstrapping

2 1
3 1
19 oo 14 oo 16
Training data Bootstrapped Bootstrapped
Sample 1 Sample 2

4/14/25 26

Bootstrapping

4/14/25

* ldea: resample the data multiple times with replacement

* Each bootstrapped sample has the same number of
data points as the original data set

* Duplicated points cause different decision trees to
focus on different parts of the input space

 MovieiD | [l MovieiD | - [MovielD | -
1 1 4

2 1
3 1
19 “e 14 oo 16
20 000 19 000 16
Training data Bootstrapped Bootstrapped

Sample 1 Sample 2

27

Split-feature
Randomization
(a.k.a. Feature

Bagging or
Random

Subspace
Methods)

4/14/25

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

- Each time a split is being considered, limit the possible

features to a randomly sampled subset

unime | Gerre | Budget | vear | 08 | g

28

Split-feature
Randomization
(a.k.a. Feature

Bagging or
Random

Subspace
Methods)

4/14/25

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

- Each time a split is being considered, limit the possible

features to a randomly sampled subset

29

Split-feature
Randomization
(a.k.a. Feature

Bagging or
Random

Subspace
Methods)

4/14/25

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

- Each time a split is being considered, limit the possible

features to a randomly sampled subset

Runtime

unime | Genre| oudser | Yar | e | g

30

Split-feature
Randomization
(a.k.a. Feature

Bagging or
Random

Subspace
Methods)

4/14/25

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

- Each time a split is being considered, limit the possible

features to a randomly sampled subset

Runtime

31

* Input: D = {(x(”),y("))}zzl, B, p

*Forb=1,2,..,B
* Create a dataset, Dy, by sampling N points from the
Random original training data D with replacement

Forests

* Learn a decision tree, tp, using Dy, and the ID3
algorithm with split-feature randomization,

sampling p features for each split

* Qutput: t = f(tq, ..., tg), the aggregated hypothesis

4/14/25 32

* Input: D = {(x(”),y("))}zzl, B, p

*Forb=1,2,..,B
* Create a dataset, Dy, by sampling N points from the
How can we original training data D with replacement

set B and p?

* Learn a decision tree, tp, using Dy and the ID3
algorithm with split-feature randomization,

sampling p features for each split

* Qutput: t = f(tq, ..., tg), the aggregated hypothesis

4/14/25 33

Recall:

Validation Sets

4/14/25

- Suppose we want to compare multiple

hyperparameter settings 04, ..., Og

‘Fork=1,2,.., K

* Train @ model on D¢,y USING Oy

* Evaluate each model on D,,;; and find

the best hyperparameter setting, 6,

* Compute the error of a model trained

W|th Hk* on Dtest

34

Out-of-bag

Error

4/14/25

* For each training point, x(™) there are some decision trees

which x(™ was not used to train (roughly B/e trees or 37%)

- Let these be t(™™) = {tfn), tg_n), . t,E,__:)}

- Compute an aggregated prediction for each x (™ using the

trees in t™, §(=1) (x(n))

* Compute the out-of-bag (OOB) error, e.g., for regression

N
1,
Epop = Nz(t('")(x(’”) —ym)?
n=1

35

Out-of-bag

Error

4/14/25

* For each training point, x(™) there are some decision trees

which x™ was not used to train (roughly B /e trees or 37%)

- Let these be t(-™ = {ti_n), té_n), . t,E,__:)}

- Compute an aggregated prediction for each x (™ using the

trees in t™, §-1) (x(n))

* Compute the out-of-bag (OOB) error, e.g., for classification

N
1 z : _
EOOB — N ﬂ(t(_n)(x(n)) + y(n))

n=1

* Epop can be used for hyperparameter optimization!

36

* Suppose we want to compare different
numbers of trees in our random forest

‘Fork=1,2,.., K
* Train a random forest on D¢yqin
with By, trees

Out-of-bag

Error

- Compute Eypp for each random forest
and find the best number of trees, B+

° Evaluate the random forest with B,
trees on D¢,pqt

4/14/25 37

* Suppose we want to compare different
numbers of trees in our random forest

‘Fork=1,2,.., K
* Train a random forest on D¢yqin
with By, trees

Out-of-bag

Error

- Compute Eypp for each random forest
and find the best number of trees, B+

* Evaluate the random forest with B+
trees on Dy¢pgt

4/14/25 38

4/14/25

Out-of-bag Error

Converges quickly

200 400 600 800
B, # of Decision Trees

1000

Out-of-bag Error

Optimal value
somewhere in the middle

3 4
p, # of Features

Setting Hyperparameters

39

Learning

Objectives:
Bagging

4/14/25

You should be able to...

1.

N o Uk

Distinguish between (sample) bagging, split-feature
randomization, and random forests.

Implement (sample) bagging for an arbitrary base
classifier/regressor.

Implement the split-feature randomization for an arbitrary
base classifier/ regressor.

Implement random forests.
Contrast out-of-bag error with cross-validation error.
Differentiate boosting from bagging.

Compare and contrast weighted and unweighted majority
votes of a collection of classifiers.

Discuss the relationship between sample size and variance
of the base classifier/regressor in the context of bagging .

