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Front Matter � Announcements

� HW8 released 4/8, due 4/16 at 11:59 PM
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Recall: 
AdaBoost

� Intuition: iteratively reweight inputs, giving more weight 
to inputs that are difficult-to-predict correctly

� Analogy: 
� You all have to take a test (     ) …

� … but you’re going to be taking it one at a time. 

� After you finish, you get to tell the next person the 
questions you struggled with.

� Hopefully, they can cover for you because…

� … if “enough” of you get a question right, you’ll all 
receive full credit for that problem
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� Input: 𝒟 𝑦 ! ∈ −1,+1 , 𝑇	

� Initialize data point weights: 𝜔"
($), … , 𝜔"

& = $
&

� For 𝑡 = 1,… , 𝑇
1. Train a weak learner, ℎ', by minimizing the weighted 

training error
2. Compute the weighted training error of ℎ': 

𝜖' = 0
!($

&

𝜔')$
! 𝟙 𝑦 ! ≠ ℎ' 𝒙 !

3. Compute the importance of ℎ': 

𝛼' =
1
2
log

1 − 𝜖'
𝜖'

4. Update the data point weights: 

𝜔'
! =

𝜔')$
!

𝑍'
×;

𝑒)*! 	if	ℎ' 𝒙 ! = 𝑦 !

𝑒*! 	 if	ℎ' 𝒙 ! ≠ 𝑦 ! =
𝜔')$

! 𝑒)*!+ " ,! 𝒙 "

𝑍'

A
d
a
B
o
o
s
t

𝑔. 𝒙 = sign 𝐻. 𝒙

= sign 0
'($

.

𝛼'ℎ' 𝒙

� Output: an 
aggregated 
hypothesis



Setting 𝛼!
� 𝛼' determines the contribution of ℎ' 

to the final, aggregated hypothesis:

𝑔 𝒙 = sign 0
'($

.

𝛼'ℎ' 𝒙

� Intuition: we want good weak 
learners to have high importances

𝛼' =
1
2
log

1 − 𝜖'
𝜖'
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Setting 𝛼!
� 𝛼' determines the contribution of ℎ' 

to the final, aggregated hypothesis:

𝑔 𝒙 = sign 0
'($

.

𝛼'ℎ' 𝒙

� Intuition: we want good weak 
learners to have high importances

𝛼' =
1
2
log

1 − 𝜖'
𝜖'

64/14/25

Poll Question 1:

How does the importance of a very 
bad/mostly incorrect weak learner 

compare to the importance of a very 
good/mostly correct weak learner?

A. Similar magnitude, same sign (TOXIC)

B. Similar magnitude, different sign
C. Different magnitude, same sign
D. Different magnitude, different sign



Setting 𝛼!
� 𝛼' determines the contribution of ℎ' 

to the final, aggregated hypothesis:

𝑔 𝒙 = sign 0
'($

.

𝛼'ℎ' 𝒙

� Intuition: we want good weak 
learners to have high importances

𝛼' =
1
2
log

1 − 𝜖'
𝜖'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�2.5

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

2.5

✏t

↵
t

74/14/25



Updating 𝜔 "

� Intuition: we want incorrectly classified inputs to receive a 
higher weight in the next round

𝜔'
! =

𝜔')$
!

𝑍'
×;

𝑒)*! 	if	ℎ' 𝒙 ! = 𝑦 !

𝑒*! 	 if	ℎ' 𝒙 ! ≠ 𝑦 ! =
𝜔')$

! 𝑒)*!+ " ,! 𝒙 "

𝑍'

� If 𝜖' <
$
/, then $)0!0!

> 1

� If $)0!0!
> 1, then 𝛼' =

$
/ log

$)0!
0!

> 0

� If 𝛼' > 0, then 𝑒)*! < 1 and 𝑒*! > 1
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AdaBoost: 
Example
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ℎ! ℎ"

ℎ#

𝜖! = 0.3
𝛼! = 0.42

𝜖" = 0.21
𝛼" = 0.65

𝜖# = 0.14
𝛼# = 0.92



AdaBoost: 
Example
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Why 
AdaBoost?

1. If you want to use weak 
learners …

2. … and want your final 
hypothesis to be a 

weighted combination of 
weak learners, …

3. … then Adaboost greedily 
minimizes the 

exponential loss:

𝑒 ℎ 𝒙 , 𝑦 = 𝑒 )+, 𝒙

1. Because they’re low 
variance / computational 
constraints

2. Because weak learners 
are not great on their own

3. Because the exponential 

loss upper bounds binary 
error
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Exponential Loss

The more ℎ 𝒙  “agrees with” 𝑦, 
the smaller the loss and the more 
ℎ 𝒙  “disagrees with” 𝑦, the 

greater the loss 
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True Error
(Freund & 
Schapire, 1995) 

� For AdaBoost, with high probability:

True	Error ≤ Training	Error + M𝑂
𝑑?@ ℋ 𝑇

𝑁

where 𝑑?@ ℋ  is the VC-dimension of the weak learners 
and 𝑇 is the number of weak learners.

� Empirical results indicate that increasing 𝑇 does not 
lead to overfitting as this bound would suggest!

134/14/25 Source: http://rob.schapire.net/papers/FreundSc95.pdf 

http://rob.schapire.net/papers/FreundSc95.pdf
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Test Error
(Schapire, 1989)
 

𝑇
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Training error

Test error

Source: http://rob.schapire.net/papers/msri.pdf 

http://rob.schapire.net/papers/msri.pdf


Margins

� The margin of training point 𝒙 A , 𝑦 A  is defined as:

� The margin can be interpreted as how confident 𝑔. is in 

its prediction: the bigger the margin, the more confident.

15

𝑚 𝒙 A , 𝑦 A =
𝑦 A ∑'($. 𝛼'ℎ' 𝒙 A

∑'($. 𝛼'
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True Error
(Schapire, 
Freund et al., 
1998) 

16

True	Error ≤
1
𝑁
0
A($

&

𝑚 𝒙 A , 𝑦 A ≤ 𝜖 + M𝑂
𝑑?@ ℋ
𝑁𝜖/

4/14/25 Source: http://rob.schapire.net/papers/SchapireFrBaLe98.pdf 

� For AdaBoost, with high probability:

where 𝑑?@ ℋ  is the VC-dimension of the weak learners 
and 𝜖 > 0 is a tolerance parameter.

� Even after AdaBoost has driven the training error to 0, it 
continues to target the “training margin”

http://rob.schapire.net/papers/SchapireFrBaLe98.pdf


Learning 
Objectives: 
Boosting

You should be able to…

1. Explain how a weighted majority vote over linear 
classifiers can lead to a non-linear decision boundary

2. Implement AdaBoost

3. Describe a surprisingly common empirical result 
regarding Adaboost train/test curves
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Decision Trees: 
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� Limited expressivity (especially short trees, i.e., stumps)

� Can be addressed via boosting
� Highly variable

� Can be addressed via bagging → random forests 184/14/25



Decision Trees
194/14/25

MovieID Runtime Genre Budget Year IMDB Rating Liked?

1 124 Action 18M 1980 8.7 PG Y
2 105 Action 30M 1984 7.8 PG Y
3 103 Comedy 6M 1986 7.8 PG-13 N
4 98 Adventure 16M 1987 8.1 PG Y
5 128 Comedy 16.4M 1989 8.1 PG Y
6 120 Comedy 11M 1992 7.6 R N
7 120 Drama 14.5M 1996 6.7 PG-13 N
8 136 Action 115M 1999 6.5 PG Y
9 90 Action 90M 2001 6.6 PG-13 Y
10 161 Adventure 100M 2002 7.4 PG N
11 201 Action 94M 2003 8.9 PG-13 Y
12 94 Comedy 26M 2004 7.2 PG-13 Y
13 157 Biography 100M 2007 7.8 R N
14 128 Action 110M 2007 7.1 PG-13 N
15 107 Drama 39M 2009 7.1 PG-13 N
16 158 Drama 61M 2012 7.6 PG-13 N
17 169 Adventure 165M 2014 8.6 PG-13 Y
18 100 Biography 9M 2016 6.7 R N
19 130 Action 180M 2017 7.9 PG-13 Y
20 141 Action 275M 2019 6.5 PG-13 Y

Source: https://www.kaggle.com/datasets/danielgrijalvas/movies 

Genre

RatingIMDB

Action/Adventure Other

Runtime

PG PG-13/R

YIMDB

≤ 7.6 > 7.6

Y

≤ 6.7 > 6.7

NY NY

≤ 97 > 97

https://www.kaggle.com/datasets/danielgrijalvas/movies


Decision Trees
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MovieID Runtime Genre Budget Year IMDB Rating Liked?

1 124 Action 18M 1980 8.7 PG Y
2 105 Action 30M 1984 7.8 PG Y
3 103 Comedy 6M 1986 7.8 PG-13 N
4 98 Adventure 16M 1987 8.1 PG Y
5 128 Comedy 16.4M 1989 8.1 PG Y
6 120 Comedy 11M 1992 7.6 R N
7 120 Drama 14.5M 1996 6.7 PG-13 N
8 136 Action 115M 1999 6.5 PG Y
9 90 Action 90M 2001 6.6 PG-13 Y
10 161 Adventure 100M 2002 7.4 PG N
11 201 Action 94M 2003 8.9 PG-13 Y
12 94 Comedy 26M 2004 7.2 PG-13 Y
13 157 Biography 100M 2007 7.8 R N
14 128 Action 110M 2007 7.1 PG-13 N
15 107 Drama 39M 2009 7.1 PG-13 N
16 158 Drama 61M 2012 7.6 PG-13 Y
17 169 Adventure 165M 2014 8.6 PG-13 Y
18 100 Biography 9M 2016 6.7 R N
19 130 Action 180M 2017 7.9 PG-13 Y
20 141 Action 275M 2019 6.5 PG-13 Y

Source: https://www.kaggle.com/datasets/danielgrijalvas/movies 

Budget

Runtime

Runtime

YN

≤ 161 > 161

≤ 14.5M > 14.5M

N

≤ 141 > 141

Year

Year

≤ 2004 > 2004

Y

≤ 2007 > 2007

YN

https://www.kaggle.com/datasets/danielgrijalvas/movies


Decision Trees
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Budget

Runtime

Runtime

YN

≤ 161 > 161

≤ 14.5M > 14.5M

N

≤ 141 > 141

Year

Year

≤ 2004 > 2004

Y

≤ 2007 > 2007

YN

Genre

RatingIMDB

Action/Adventure Other

Runtime

PG PG-13/R

YIMDB

≤ 7.6 > 7.6

Y

≤ 6.7 > 6.7

NY NY

≤ 97 > 97



Random 
Forests

� Combines the prediction of many diverse decision trees to reduce 

their variability  

� If 𝐵 independent random variables 𝑥 $ , 𝑥 / , … , 𝑥 E  all have  

variance 𝜎/, then the variance of                      is F
#

!

� Random forests = bagging              -            + split-feature randomization

                              - = bootstrap aggregating + split-feature randomization

22

1
𝐵
0
G($

E

𝑥 G 𝜎/

𝐵
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Random 
Forests

� Combines the prediction of many diverse decision trees to reduce 

their variability  

� If 𝐵 independent random variables 𝑥 $ , 𝑥 / , … , 𝑥 E  all have  

variance 𝜎/, then the variance of                      is F
#

!

� Random forests = bagging            -           + split-feature randomization

                              - = bootstrap aggregating + split-feature randomization

23

𝜎/

𝐵
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Aggregating

� How can we combine multiple decision trees, 

𝑡$, 𝑡/, … , 𝑡E , to arrive at a single prediction?

� Regression - average the predictions:

̅𝑡 𝒙 =
1
𝐵
0
G($

E

𝑡G 𝒙

� Classification - plurality (or majority) vote; for binary 

labels encoded as −1,+1 :

̅𝑡 𝒙 = sign
1
𝐵
0
G($

E

𝑡G 𝒙
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Random 
Forests

� Combines the prediction of many diverse decision trees to reduce 

their variability  

� If 𝐵 independent random variables 𝑥 $ , 𝑥 / , … , 𝑥 E  all have  

variance 𝜎/, then the variance of                      is F
#

!

� Random forests = bagging              -            + split-feature randomization

                              - = bootstrap aggregating + split-feature randomization

25

𝜎/

𝐵
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Bootstrapping

� Insight: one way of generating different decision trees is 
by changing the training data set

� Issue: often, we only have one fixed set of training data

� Idea: resample the data multiple times with replacement

264/14/25

MovieID ⋯
1 ⋯
2 ⋯
3 ⋯
⋮ ⋮

19 ⋯
20 ⋯

MovieID ⋯
1 ⋯
1 ⋯
1 ⋯
⋮ ⋮

14 ⋯
19 ⋯

MovieID ⋯
4 ⋯
4 ⋯
5 ⋯
⋮ ⋮

16 ⋯
16 ⋯

Training data Bootstrapped 
Sample 1

Bootstrapped 
Sample 2

⋯

⋯



Bootstrapping

274/14/25

� Idea: resample the data multiple times with replacement
� Each bootstrapped sample has the same number of 

data points as the original data set 
� Duplicated points cause different decision trees to 

focus on different parts of the input space
MovieID ⋯

1 ⋯
2 ⋯
3 ⋯
⋮ ⋮

19 ⋯
20 ⋯

MovieID ⋯
1 ⋯
1 ⋯
1 ⋯
⋮ ⋮

14 ⋯
19 ⋯

MovieID ⋯
4 ⋯
4 ⋯
5 ⋯
⋮ ⋮

16 ⋯
16 ⋯

Training data Bootstrapped 
Sample 1

Bootstrapped 
Sample 2

⋯

⋯



Split-feature 
Randomization 
(a.k.a. Feature 
Bagging or 
Random 
Subspace 
Methods)

� Issue: decision trees trained on bootstrapped samples 
still behave similarly

� Idea: in addition to sampling the data points (i.e., the 
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible 
features to a randomly sampled subset 

4/14/25 28
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Split-feature 
Randomization 
(a.k.a. Feature 
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Split-feature 
Randomization 
(a.k.a. Feature 
Bagging or 
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Subspace 
Methods)

� Issue: decision trees trained on bootstrapped samples 
still behave similarly
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Split-feature 
Randomization 
(a.k.a. Feature 
Bagging or 
Random 
Subspace 
Methods)

� Issue: decision trees trained on bootstrapped samples 
still behave similarly

� Idea: in addition to sampling the data points (i.e., the 
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible 
features to a randomly sampled subset 
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Random 
Forests

� Input: 𝒟 = 𝒙 ! , 𝑦 !
!($
&

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵

� Create a dataset, 𝒟G, by sampling 𝑁 points from the 
original training data 𝒟 with replacement

� Learn a decision tree, 𝑡G, using 𝒟G and the ID3 
algorithm with split-feature randomization, 
sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡$, … , 𝑡E , the aggregated hypothesis
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How can we 
set 𝐵 and 𝜌?

� Input: 𝒟 = 𝒙 ! , 𝑦 !
!($
&

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵

� Create a dataset, 𝒟G, by sampling 𝑁 points from the 
original training data 𝒟 with replacement

� Learn a decision tree, 𝑡G, using 𝒟G and the ID3 
algorithm with split-feature randomization, 
sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡$, … , 𝑡E , the aggregated hypothesis



Recall: 
Validation Sets

� Suppose we want to compare multiple 
hyperparameter settings 𝜃$, … , 𝜃J

� For 𝑘 = 1, 2, … , 𝐾
� Train a model on 𝐷'KLA! using 𝜃M

� Evaluate each model on 𝐷?LN and find 
the best hyperparameter setting, 𝜃M∗

� Compute the error of a model trained 
with 𝜃M∗  on 𝐷'OP'

4/14/25 34
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Out-of-bag 
Error

� For each training point, 𝒙 ! , there are some decision trees 

which 𝒙 ! 	was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 )! = 𝑡$
)! , 𝑡/

)! , … , 𝑡&%"
)!

� Compute an aggregated prediction for each 𝒙 ! 	using the 

trees in 𝑡 )! , ̅𝑡 )! 𝒙 !

� Compute the out-of-bag (OOB) error, e.g., for regression

35

𝐸QQE =
1
𝑁
0
!($

&

̅𝑡 )! 𝒙 ! − 𝑦 ! /

4/14/25



Out-of-bag 
Error

� For each training point, 𝒙 ! , there are some decision trees 

which 𝒙 ! 	was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 )! = 𝑡$
)! , 𝑡/

)! , … , 𝑡&%"
)!

� Compute an aggregated prediction for each 𝒙 ! 	using the 

trees in 𝑡 )! , ̅𝑡 )! 𝒙 !

� Compute the out-of-bag (OOB) error, e.g., for classification

� 𝐸QQE can be used for hyperparameter optimization!

364/14/25

𝐸QQE =
1
𝑁
0
!($

&

𝟙 ̅𝑡 )! 𝒙 ! ≠ 𝑦 !



Out-of-bag 
Error

� Suppose we want to compare different 
numbers of trees in our random forest 
𝐵$, … , 𝐵J

� For 𝑘 = 1, 2, … , 𝐾
� Train a random forest on 𝐷'KLA! 

with 𝐵M trees

� Compute 𝐸QQE for each random forest 
and find the best number of trees, 𝐵M∗  

� Evaluate the random forest with 𝐵M∗  
trees on 𝐷'OP'

4/14/25 37
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Out-of-bag 
Error

� Suppose we want to compare different 
numbers of trees in our random forest 
𝐵$, … , 𝐵J

� For 𝑘 = 1, 2, … , 𝐾
� Train a random forest on 𝐷'KLA! 

with 𝐵M trees

� Compute 𝐸QQE for each random forest 
and find the best number of trees, 𝐵M∗  

� Evaluate the random forest with 𝐵M∗  
trees on 𝐷'OP'
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Setting Hyperparameters
394/14/25

Converges quickly 

Optimal value 
somewhere in the middle



Learning 
Objectives: 
Bagging

You should be able to…

1. Distinguish between (sample) bagging, split-feature 
randomization, and random forests. 

2. Implement (sample) bagging for an arbitrary base 
classifier/regressor. 

3. Implement the split-feature randomization for an arbitrary 
base classifier/ regressor. 

4. Implement random forests. 

5. Contrast out-of-bag error with cross-validation error. 

6. Differentiate boosting from bagging. 

7. Compare and contrast weighted and unweighted majority 
votes of a collection of classifiers. 

8. Discuss the relationship between sample size and variance 
of the base classifier/regressor in the context of bagging 4/14/25 40




