10-301/601: Introduction to Machine Learning Lecture 24 – Ensemble Methods

Matt Gormley & Henry Chai 4/14/25

Front Matter

- Announcements
 - HW8 released 4/8, due 4/16 at 11:59 PM

Recall: AdaBoost

- Intuition: iteratively reweight inputs, giving more weight to inputs that are difficult-to-predict correctly
- Analogy:
 - You all have to take a test () ...
 - ... but you're going to be taking it one at a time.
 - After you finish, you get to tell the next person the questions you struggled with.
 - Hopefully, they can cover for you because...
 - ... if "enough" of you get a question right, you'll all receive full credit for that problem

• For t = 1, ..., T

a

B

- 1. Train a weak learner, h_t , by minimizing the weighted training error
- 2. Compute the weighted training error of h_t :

$$\epsilon_t = \sum_{n=1}^N \omega_{t-1}^{(n)} \mathbb{1} \left(y^{(n)} \neq h_t(\mathbf{x}^{(n)}) \right)$$

3. Compute the **importance** of h_t :

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

4. Update the data point weights:

$$\omega_t^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(\boldsymbol{x}^{(n)}) = y^{(n)} \\ e^{\alpha_t} & \text{if } h_t(\boldsymbol{x}^{(n)}) \neq y^{(n)} \end{cases}$$

Output: an aggregated hypothesis

$$g_T(\mathbf{x}) = \operatorname{sign}(H_T(\mathbf{x}))$$

$$= \operatorname{sign}\left(\sum_{t=1}^{I} \alpha_t h_t(\boldsymbol{x})\right)$$

Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Poll Question 1:

How does the importance of a very bad/mostly incorrect weak learner compare to the importance of a very good/mostly correct weak learner?

- A. Similar magnitude, same sign (TOXIC)
- B. Similar magnitude, different sign
- C. Different magnitude, same sign
- D. Different magnitude, different sign

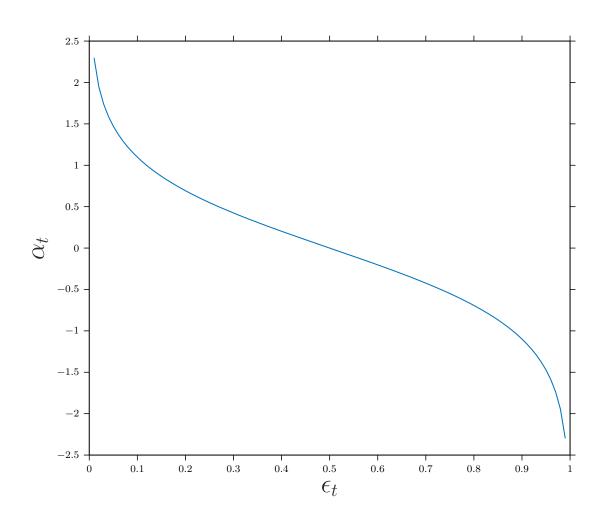
Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$



Updating $\omega^{(n)}$

 Intuition: we want incorrectly classified inputs to receive a higher weight in the next round

$$\omega_t^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_t} \times \begin{cases} e^{-\alpha_t} \text{ if } h_t(\mathbf{x}^{(n)}) = y^{(n)} \\ e^{\alpha_t} \text{ if } h_t(\mathbf{x}^{(n)}) \neq y^{(n)} \end{cases} = \frac{\omega_{t-1}^{(n)} e^{-\alpha_t y^{(n)} h_t(\mathbf{x}^{(n)})}}{Z_t}$$

• If
$$\epsilon_t < \frac{1}{2}$$
, then $\frac{1-\epsilon_t}{\epsilon_t} > 1$

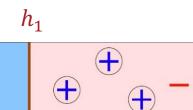
• If
$$\frac{1-\epsilon_t}{\epsilon_t} > 1$$
, then $\alpha_t = \frac{1}{2} \log \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$

• If $\alpha_t > 0$, then $e^{-\alpha_t} < 1$ and $e^{\alpha_t} > 1$

AdaBoost: Example

$$\epsilon_1 = 0.3$$

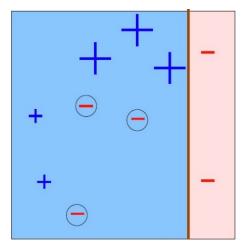
$$\alpha_1 = 0.42$$



$$\epsilon_2 = 0.21$$

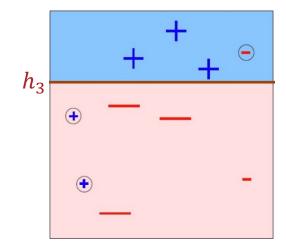
$$\alpha_2 = 0.65$$

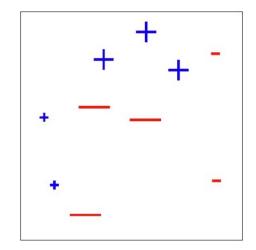
 h_2



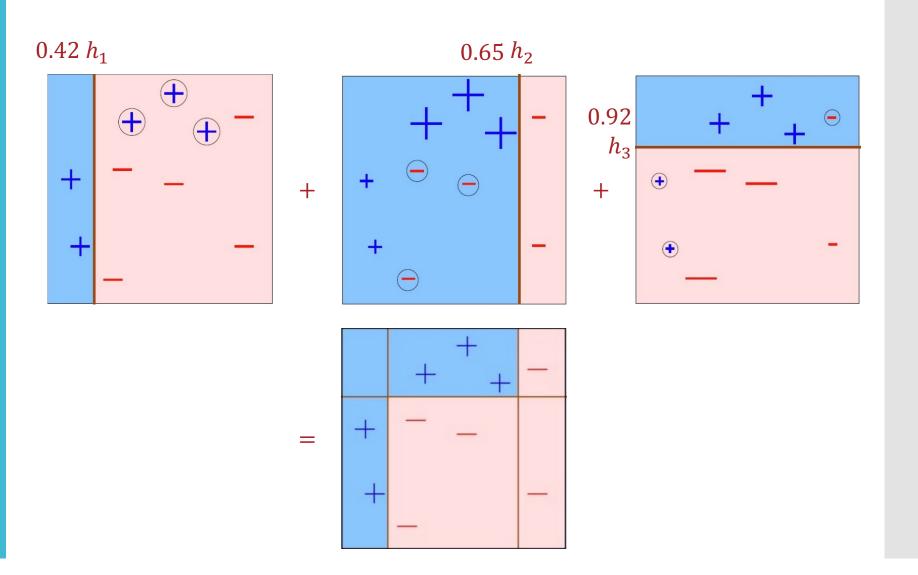
$$\epsilon_3 = 0.14$$

$$\alpha_3 = 0.92$$





AdaBoost: Example



Why AdaBoost?

- 1. If you want to use weak learners ...
- ... and want your final
 hypothesis to be a
 weighted combination of
 weak learners, ...
- 3. ... then Adaboost greedily minimizes the exponential loss: $e(h(x), y) = e^{(-yh(x))}$

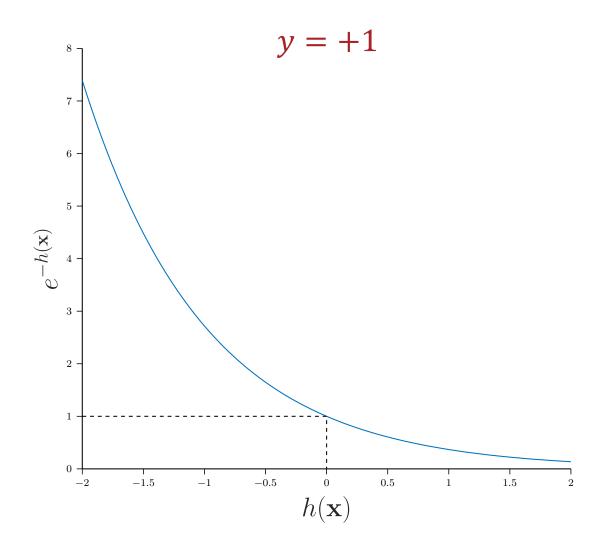
- Because they're low variance / computational constraints
- Because weak learners are not great on their own

3. Because the exponential loss upper bounds binary error

Exponential Loss

$$e(h(\mathbf{x}), y) = e^{(-yh(\mathbf{x}))}$$

The more h(x) "agrees with" y, the smaller the loss and the more h(x) "disagrees with" y, the greater the loss



12

True Error (Freund & Schapire, 1995)

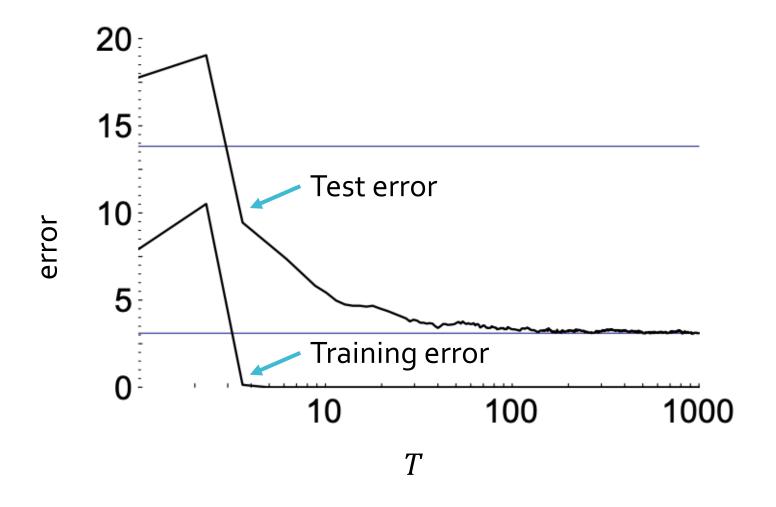
For AdaBoost, with high probability:

True Error
$$\leq$$
 Training Error $+ \tilde{O}\left(\sqrt{\frac{d_{vc}(\mathcal{H})T}{N}}\right)$

where $d_{vc}(\mathcal{H})$ is the VC-dimension of the weak learners and T is the number of weak learners.

• Empirical results indicate that increasing T does not lead to overfitting as this bound would suggest!

Test Error (Schapire, 1989)

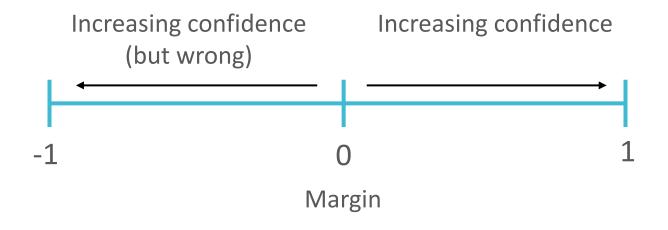


Margins

• The margin of training point $(x^{(i)}, y^{(i)})$ is defined as:

$$m(\mathbf{x}^{(i)}, y^{(i)}) = \frac{y^{(i)} \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}^{(i)})}{\sum_{t=1}^{T} \alpha_t}$$

• The margin can be interpreted as how confident g_T is in its prediction: the bigger the margin, the more confident.



True Error (Schapire, Freund et al., 1998)

For AdaBoost, with high probability:

True Error
$$\leq \frac{1}{N} \sum_{i=1}^{N} \left[m(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \leq \epsilon \right] + \tilde{O}\left(\sqrt{\frac{d_{vc}(\mathcal{H})}{N\epsilon^2}}\right)$$

where $d_{vc}(\mathcal{H})$ is the VC-dimension of the weak learners and $\epsilon>0$ is a tolerance parameter.

• Even after AdaBoost has driven the training error to 0, it continues to target the "training margin"

Learning Objectives: Boosting

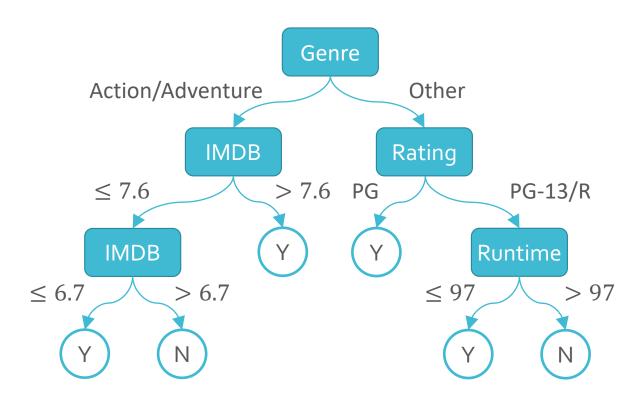
You should be able to...

- 1. Explain how a weighted majority vote over linear classifiers can lead to a non-linear decision boundary
- 2. Implement AdaBoost
- Describe a surprisingly common empirical result regarding Adaboost train/test curves

Decision Trees: Pros & Cons

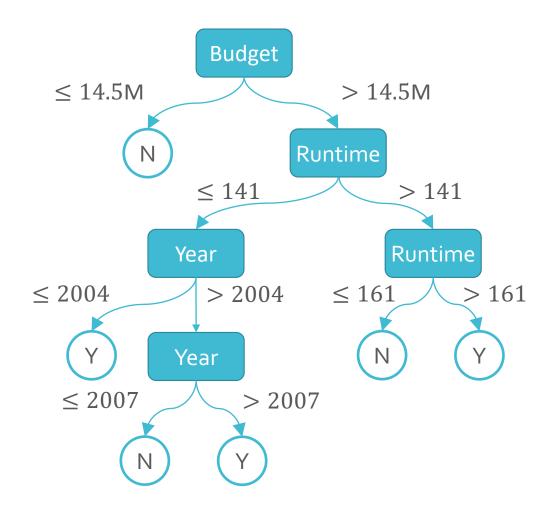
- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - Limited expressivity (especially short trees, i.e., stumps)
 - Can be addressed via boosting
 - Highly variable
 - Can be addressed via bagging → random forests

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
Movield	Runtime	Genre	Duuget	icai	מסוויוו	Nating	LIKEU:
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ

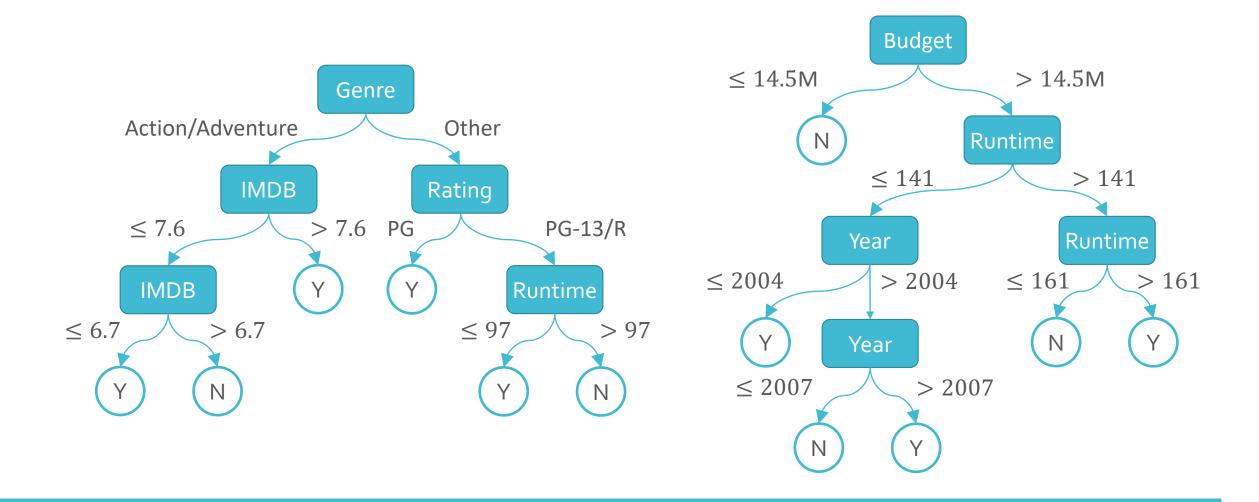


Decision Trees

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	Y
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ



Decision Trees



Decision Trees

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging

- + split-feature randomization
- = **b**ootstrap **agg**regat**ing** + split-feature randomization

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, \dots, x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B}\sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging

+ split-feature randomization

= bootstrap aggregating + split-feature randomization

Aggregating

- How can we combine multiple decision trees, $\{t_1, t_2, ..., t_B\}$, to arrive at a single prediction?
- Regression average the predictions:

$$\bar{t}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} t_b(\mathbf{x})$$

• Classification - plurality (or majority) vote; for binary labels encoded as $\{-1, +1\}$:

$$\bar{t}(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{B} \sum_{b=1}^{B} t_b(\mathbf{x})\right)$$

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B}\sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging + split-feature randomization
 - = bootstrap aggregating + split-feature randomization

Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times with replacement

MovielD	•••
1	•••
2	•••
3	•••
:	:
19	•••
20	•••

_		•	1 .
Ira	In	Ina	Mata
II a		1112	data

MovielD	•••
1	•••
1	•••
1	•••
:	÷
14	•••
19	•••

Bootstrapped Sample 1

MovielD	•••	
4	•••	
4	•••	
5	•••	
:	÷	
16	•••	
16	•••	

Bootstrapped Sample 2

Bootstrapping

- Idea: resample the data multiple times with replacement
 - Each bootstrapped sample has the same number of data points as the original data set
 - Duplicated points cause different decision trees to focus on different parts of the input space

MovielD	•••
1	•••
2	•••
3	•••
•	÷
19	•••
20	•••

Training data	Tra	ini	ng	data
---------------	-----	-----	----	------

MovielD	•••
1	•••
1	•••
1	•••
:	:
14	•••
19	•••

Bootstrapped Sample 1

MovielD	•••	
4	•••	
4	•••	
5	•••	
:	:	
16	•••	
16	•••	

Bootstrapped ... Sample 2

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

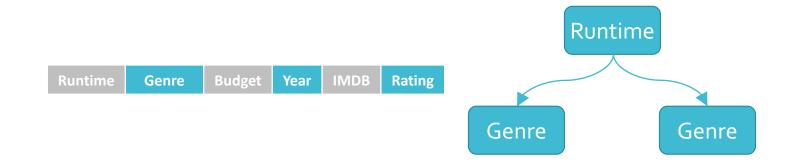
4/14/25 **28**

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

4/14/25 **30**

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset



Random Forests

• Input:
$$\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, B, \rho$$

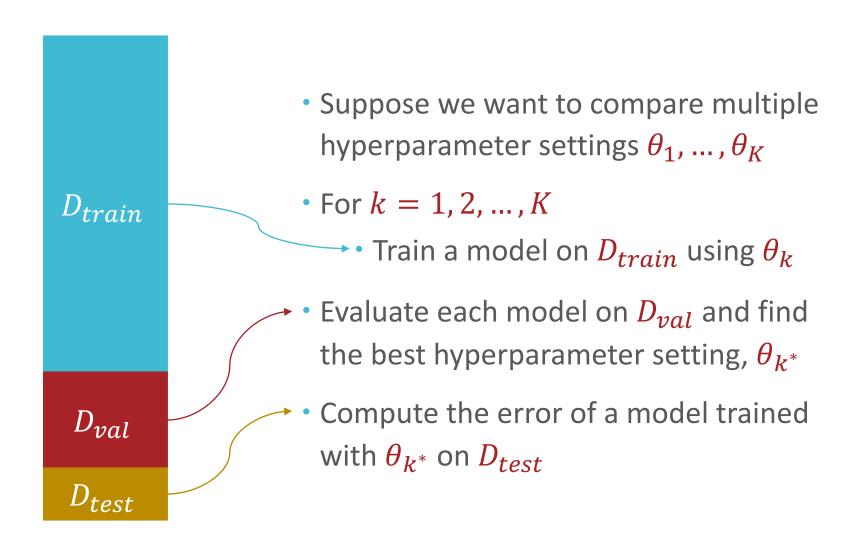
- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, ..., t_B)$, the aggregated hypothesis

How can we set B and ρ ?

• Input:
$$\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, B, \rho$$

- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, ..., t_B)$, the aggregated hypothesis

Recall: Validation Sets



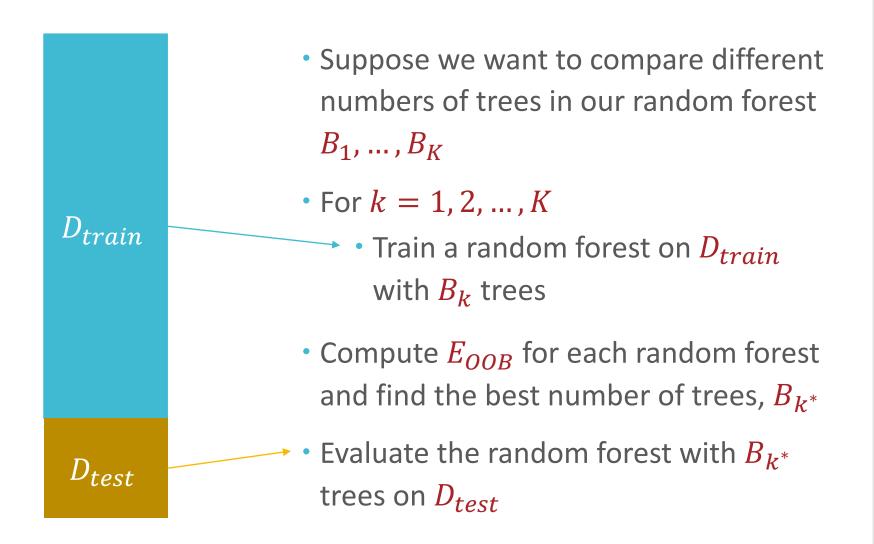
- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)} \right\}$
- Compute an aggregated prediction for each ${\it x}^{(n)}$ using the trees in $t^{(-n)}$, ${\bar t}^{(-n)}({\it x}^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for regression

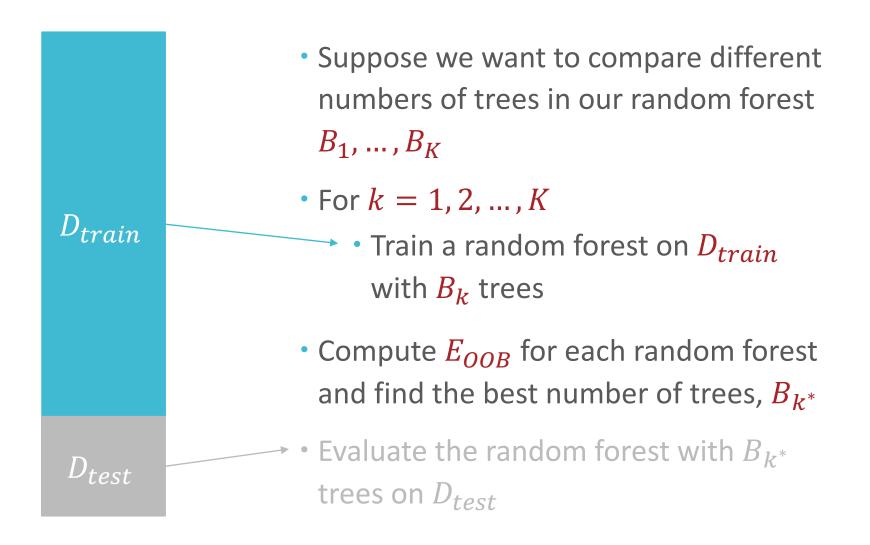
$$E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} (\bar{t}^{(-n)}(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

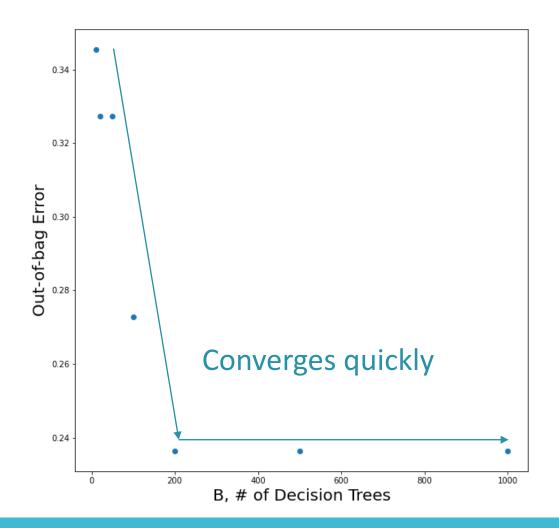
- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)} \right\}$
- Compute an aggregated prediction for each $x^{(n)}$ using the trees in $t^{(-n)}$, $\bar{t}^{(-n)}(x^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for classification

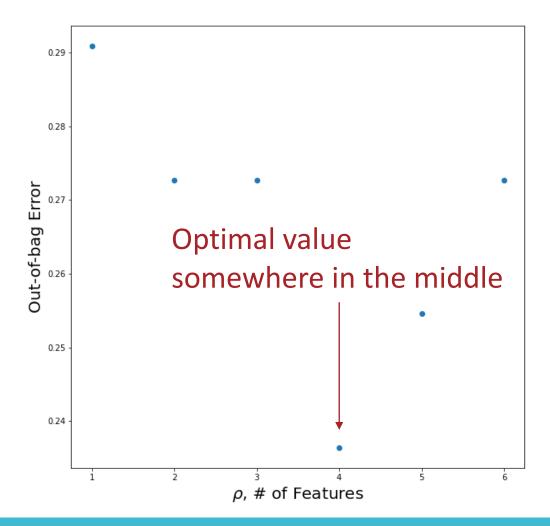
$$E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(\bar{t}^{(-n)}(x^{(n)}) \neq y^{(n)})$$

• E_{OOB} can be used for hyperparameter optimization!









Setting Hyperparameters

Learning Objectives: Bagging

You should be able to...

- 1. Distinguish between (sample) bagging, split-feature randomization, and random forests.
- 2. Implement (sample) bagging for an arbitrary base classifier/regressor.
- 3. Implement the split-feature randomization for an arbitrary base classifier/ regressor.
- 4. Implement random forests.
- 5. Contrast out-of-bag error with cross-validation error.
- 6. Differentiate boosting from bagging.
- 7. Compare and contrast weighted and unweighted majority votes of a collection of classifiers.
- 8. Discuss the relationship between sample size and variance of the base classifier/regressor in the context of bagging