10-301/601: Introduction
to Machine Learning
Lecture 23 —
Recommender Systems

Matt Gormley & Henry Chai
4/9/25

* Announcements

* HWS8 released 4/8, due 4/16 at 11:59 PM

Front Matter

4/9/25

* A: | mean really the same things that you or | do,

like play video games!

Playing Atari with Deep RL:

* Agent observes the XN
7~ V()
. observation [/ /["3 e action
. pixels on the screen /{ AL
Qo SO What . . '\{\\-\\?-ﬂ"*\'\%ﬁ'\'\ 3
* Reward is tied to the YA

kinds of things

Score

can we do with
all this RL stuff
anyway?

e Actions are the

;ﬁ_—_:‘:_;:‘:

— 4

e{/v
reward | R,
S

joystick inputs

* No knowledge about
the rules/dynamics

of the game!

4/9/25 Source: https://www.davidsilver.uk/wp-content/uploads/2020/03/intro RL.pdf 3

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

A: | mean really the same things that you or | do,

like play video games!

ima.. — B

-
‘

3

m ’
~s

A

_ ‘

3

-~y

1

-

.

)

B

o

v

A

.

X

-

https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers

* A: | mean really the same things that you or | do,

like play video games!

L]

Q: SO wW h at Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider
kinds of things
B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
1 Random 354 1.2 0 —-20.4 157 110 179
Ca N We d O Wlth Sarsa [3] 996 5.2 129 —19 614 665 271
. Contingency [4] 1743 6 159 —17 960 723 268
all this RL stuff DQN 4092 | 168 470 | 20 | 1952 | 1705 581
Human 7456 31 368 -3 18900 | 28010 3690
ad nyway? HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with € = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with € = 0.05.

4/9/25 Source: https://arxiv.org/pdf/1312.5602

https://arxiv.org/pdf/1312.5602

Outline

4/9/25

Today, we're going to introduce two distinct topics:

1. Recommender Systems: produce recommendations
of what a user will like

(i.e. the solution to a particular task)

2. Ensemble Methods: combine or learn multiple
classifiers into one

(i.e. a broad, general family of algorithms)

We’ll use a prominent example of a recommender

systems to motivate both topics...

The Netflix

Prize

4/9/25

" &%
— X —)

X Prize

Home Rules Leaderboard Update

500,000 users
* 20,000 movies
e 100 million ratings

* Goal: To obtain lower
error than Netflix’s
existing system on 3

million held out ratings

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going 1o enjoy a

movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team "BellKor's
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

Source: https://web.archive.org/web/20090926213457/http://www.netflixprize.com/leaderboard

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard

* Setup: * Key Assumptions:

1. Items: * Can represent ratings
movies, songs, numerically as a
products, etc. user/item matrix
(often many thousands) * Users only rate a small
Recommender 2 Users: numl.oe-r of items: the
S watchers, listeners, matrix is (very) sparse
ys SHS buyers, etc. Dune: Anora Snhow
(often many millions) Part 2 White

3. Feedback:
5-star ratings, not-
clicking ‘next’,
purchases, etc.

4/9/25

Two Types of
Recommender

Systems

4/9/25

Content Filtering

* Example: Pandora.com

music recommendations
(Music Genome Project)

* Con: Assumes access to

metadata or “side
information” about
items (e.g. properties of
a song)

* Pro: Can make

recommendations of
new items, without
previous ratings

Collaborative Filtering

* Example: Netflix movie

recommendations

* Pro: Does not require

access to side
information about items
(e.g. does not need to
know about movie
genres or actors)

* Con: Does not work on

new items that have no
ratings

Collaborative

Filtering

4/9/25

* Collaborative filtering is everywhere!

- Examples:

* Bestseller lists

* Top 40 music lists
* The “recent returns” shelf at the library

- Unmarked but well-used paths thru the woods

- “Read any good books lately?”

* Insight: personal tastes are correlated

* If Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y
- especially (perhaps) if Bob knows Alice

10

1. Neighborhood 2. Latent Factor
Methods Methods

The Color Purple| [Amadeus |

Two Types of
Collaborative

Filtering

||Oeeads11| -~

S >
8
_.“ ,h
Ag Dave
- Dumb and
——ai Dumber
The Princess]

Independence| |-
Diaries Day e @

4/5/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Neighborhood

Methods

4/9/25

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

In the figure, a
green line indicates
the movie was liked

Algorithm:

1. Find neighbors
based on
similarity of
movie
preferences

2. Recommend
movies that
those neighbors
also liked

12

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

- Assume that both
| Braveheart movies and users
The Color Purple . A live in some low-
] dimensional space
describing their

Sense and — properties

Latent Factor

Sensibility

* Recommend a
movie based on its
proximity to the
e | user in the latent
space

Methods

The Princess Independence |- k-
Diaries Day "

- Example Algorithm:
Matrix Factorization

4/9/25 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Poll Question 1:

4/9/25

Which of the following methods always requires

side information? Select all that apply.

A. ensemble methods (TOXIC)
B. collaborative filtering

C. latent factor methods

D. ensemble methods

E. content filtering

F. neighborhood methods

G. recommender systems

14

Summary

Thus Far

4/9/25

Recommender Systems

Content Filtering

Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization

15

Summary

Thus Far

4/9/25

Recommender Systems

Content Filtering

Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization

16

Matrix
Factorization

4/9/25

* High-level idea: Decompose the ratings matrix, R,

into the product of two (low-dimensional) matrices:

- U, corresponding to users and

- I/, corresponding to items

* To do so, we’re going to follow our usual recipe for learning:

1. define a model
2. define an objective function

3. optimize the objective with SGD

17

Low-rank
Matrix
Factorization

4/9/25

* Insight: if R € R™* ™ has rank k < min(m,n), then

JU € RM™*k and
VeR"™k suchthatR = UVT

n

v

18

Low-rank
Matrix
Factorization

4/9/25

- ldea: even if R € R™*™ has rank | > k, then there still

33U € RM™*¥ and
VeR*k suchthatR = UVT

* Approach: pick some arbitrary (typically small) k and learn

rank-k matrices U and V such that R = UVT
n k

S

19

Low-rank
Matrix
Factorization

4/9/25

* Observation: R is just a bunch of real-valued ratings

* ldea: minimize the mean-squared error

-letE=R-UVT

* Objective function:

1 1 n -m 1 n m
2
JW V) =SIEI =5) Y By =53 % (Ry;— U} VE)

=1 j=1 =1 j=1

where U; . is the j™ row of U and V7; is the ith column of V7T

* Problem: the objective above is only defined if R is fully-

observed i.e., we have ratings from every user for every item

20

Partially
Observed

Low-rank
Matrix
Factorization

4/9/25

- Observation: R is just a bunch of real-valued ratings

* ldea: minimize the mean-squared error

LetE =R —UVT andlet Z = {(i,j): R; ; is known}

* Objective function:

1 1 1 2
JUV) =3 IEE =5 > EZ=> > (Ry—U,VE)
(i,j)ez (i,j)eZ

where U; . is the j™ row of U and V7; is the ith column of V7T

* Interpretation: Z is the “training dataset”; we can learn U

and IV via SGD by sampling a “data point” from Z and

computing the gradients w.r.t. to that single rating.

21

- while not converged:
- sample (i,j) from Z
- compute E; ; = R; ; — U; VL
SGD for dou

Partially- - update U;. and V;:
Observed . U]’ «— U]’ — anj,.]i,j(U) V)

Low-rank
Matrix

Factorization where J; ;(U, V) = %(Rz, = U VT

‘ V:I; «— V:I; — anT;]lJ(U’ V)

vUj,.]i,j(Ui V) — _El,]V:I;

U:

VV:IL_"]i’j(U, V) — _Ei,j j,

4/9/25

Regularized
SGD for
Partially-
Observed

Low-rank
Matrix
Factorization

4/9/25

- while not converged:

- sample (i,) from Z
- compute E; ; = Ry ; — U; .V}
- update U;. and V.%;:
Uj. < Uj. —nVy, Ji,j(U,V)

. V:I; «— V:I; — anT;]lJ(U’ V)

1 2 A
where J; ;(U,V) = 2 (Ry; = U;.V5)" + S (IUIE + IVII5)
vUj,.]i,j(U; V) — _ELJV:I; + AU]’

VV:IL_"]i’j(U, V) — _Ei,jUj,' +/1V.’i

23

- while not converged:

- sample (i,j) from Z

SGD for *compute E; j = R; j — Uj,.V.?;
P3 rtiaIIy— * update U; . and V,?g:
Observed ‘U, < Us.=nVy, J;,j(U,V)
kmr:i = Vo V=V (U)
Factorization with user and item bias terms O; and P; respectively:
oo | L [
U=| v : : andV' =11 1
Up, O 1. P P

4/9/25

Alternating

Least Squares for
Partially-
Observed

Low-rank
Matrix
Factorization

4/9/25

- Insight: if we knew either U or VT, then solving for the other

is easy! In fact, it is exactly the same as linear regression!

1 2
](U,V)=E z (R — U;.VI)

(i,j)ez

VS.

N
1 : A\ 2

* initialize U and VT

- while not converged:

- Fix VT and solve for U exactly using ordinary least squares

- Fix U and solve for VT exactly using ordinary least squares

25

Low-rank
Matrix
Factorization:
Comparison

4/9/25

/
A SGD
~ + ALS
—
N
—
%
= o
= i
(5]
s i
g- A 4
\ \
AA ++++
++4
S M% R o o S N SRR AR
(YN

! I l | | |
0 10 20 30 40 50

epoch

Source: https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf

|
60

26

https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf

Goal: to predict the values of the missing squares .

Regression Collaborative Filtering

X1 Xp X3 Xg X5 ¥ Iitem; Iitemeg

| user; 1

. TRAINING ***
Regression vs. rows
NO
DEMARCATION
CO”abO ratlve USErs BETWEEN
. . T TRAINING AND
Filtering ot nons
TEST
ROWS
L ! userg !
< > < >
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

4/9/25 Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3 4 #Bib1

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4

VINVI9VSYI ©|©o|©o|o o |0
NVINOM All3dd ©|©o|©o|o|o |©
3111v3S NI SS31d331S ©|©o|o|o|o |© "

ViilvdO31d oclo|F T |7
4vsavo sninnr ©o|lo|lo|o |0 |
Od3IN o|lo|lo|o|o|o

VONVIGVSY) | © |

NVYINOM ALl3Yd | © | -

31LIvIS NI SS31d3xis (o | -

VT

vdlvdoID |~ | -

IDNVINOY
AYOLSIH

dyvsavosninr | < | ©
OYIN |~ | ©
w
g S
= <
n 3
I O
-3
X
© |©o o e
= | -
- &N o™ n O N

VINV19VSY)
NVINOM All3dd
3111v3S NI SS31d331S
VidIvdO3 1]

4vsavo sninr

OYiN

1
1

1
1

1
1

7| 1
3

HISTORY |:

L
-
T x
L5
(O
=

5

6

211 1| 1

1|1

1111
BOTH[4111111%411

‘

ROMANCEI:
[]

7

-
RS,
©
N &
o Q
S E
O @©
m X
L

(b) Residual matrix

R
(a) Example of rank-2 matrix factorization

28

Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3 4#Bib1

4/9/25

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4

You should be able to...

1. Compare and contrast the properties of various
families of recommender system algorithms: content
filtering, collaborative filtering, neighborhood
methods, latent factor methods

Lea.rmr.]g 2. Formulate a squared error objective function for the

ObJECtIVESZ matrix factorization problem

Recommender 3. Implement unconstrained matrix factorization with a

Systems variety of different optimization techniques: gradient
descent, stochastic gradient descent, alternating least
squares

4. Offer intuitions for why the parameters learned by
matrix factorization can be understood as user factors
and item factors

4/9/25

Netflix Prize /

Home ‘ Rules Leaderboard

Update Download

l | |

Leaderboard

Showing Test Score. Click here to show quiz score

The Netflix

Rank Team Name Best Test Score % Improvement Best Submit Time

Prize: Winners

Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos

1 . BellKor's Pragmatic Chaos 0.8567 10.06 | 2009-07-26 18:18:28
2 | TheEnsemble : 0.8567 5 10.06 | 2009-07-26 18:38:22
3 Grand Prize Team 0.8582 9.90 ' 2009-07-10 21:24:40
4 i Opera Solutions and Vandelay United 0.8588 9.84 ' 2009-07-10 01:12:31
5 Vandelay Industries ! 0.8591 9.81 ' 2009-07-10 00:32:20
6 PragmaticTheory, : 0.8594 ; 9.77 ' 2009-06-24 12:06:56
7 . BellKor in BigChaos : 0.8601 i 9.70 ' 2009-05-13 08:14:09
8 . Dace_ 5 0.8612 ; 9.59 ' 2009-07-24 17:18:43
9 | Feeds? 5 0.8622 5 9.48 | 2009-07-12 13:11:51
10 | BigChaos ; 0.8623 5 9.47 | 2009-04-07 12:33:59
11 | Opera Solutions 0.8623 9.47 ' 2009-07-24 00:34:07
12 | BellKor 5 0.8624 ; 9.46 ' 2009-07-26 17:19:11

4/9/25 Source: https://web.archive.org/web/20090926213457/http://www.netflixprize.com/leaderboard

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard

Boosting

4/9/25

* An ensemble method combines the predictions of

multiple “weak” hypotheses to learn a single, more
powerful classifier

* Boosting is a meta-algorithm: it can be applied to a

variety of machine learning models

- Commonly used with decision trees

31

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL CAL ACC FSC LFT ROC APR BEP RMS MXE MEAN OPT-SEL

BST-DT PLT | .843*% .779 .939 | .963 .938 .929% | .880 .896 .896 917

RF PLT | .872* .805 .934* | 957 .931 .930 851 .858 .892 .898

BAG-DT - .846 .781 938*% | .962* .937* 918 .845 872 .887* .899

BST-DT S0 | .826*% .860* .929*% | .952 921 .925% | 854 815 .885 917*

. RF ~ .872 .790 .934* | 957 .931 .930 .829 .830 .884 .890

R a n k| n g BAG-DT pLT | .841 774 .938* | .962* .937* 918 .836 .852 .882 .895
RF S0 | .861* .861 923 .946 .910 .925 .836 776 .880 .895

- BAG-DT 180 | .826 .843*% .933* | 954 .921 .915 .832 .791 877 .894

C aSS| |ers ANN - .803 762 910 .936 .892 .899 811 .821 .854 .885
SVM so | .813 .836* .892 925 .882 911 814 744 .852 .882

ANN pLT | .815 .748 910 .936 .892 .899 783 .785 .846 .875

(C a ru a n a & ANN o | .803 .836 .908 .924 .876 .891 T 718 .842 .884
BST-DT - .834* 816 .939 | .963 .938 .929* | 598 .605 828 .851

. - KNN PLT | .757 707 .889 918 .872 .872 742 764 815 .837
KNN —~ 756 728 .889 .918 872 .872 729 718 .810 .830

Niculescu-Mizil, oW | mo | Te T ams | ooy sm aeo | w70 | wo | e
BST-STMP PLT 724 .651 .876 .908 .853 .845 716 754 791 .808

SVM - 817 .804 .895 .938 .899 913 514 467 781 .810

2 OO 6) BST-STMP 1SO .709 744 .873 .899 .835 .840 .695 .646 .780 .810
BST-STMP | — 741 684 .876 .908 .853 .845 .394 .382 710 726

DT 80 | .648 .654 818 .838 756 778 590 .589 709 774

DT = .647 .639 824 .843 762 77 562 .607 708 763
DT PLT | .651 618 .824 .843 762 b ird 575 594 706 761

LR - 636 .545 .823 .852 743 734 620 .645 700 710

LR S0 | .627 567 818 .847 .735 742 608 .589 692 703

LR pLT | .630 .500 .823 852 743 734 .593 604 .685 695
NB S0 | .579 468 779 .820 797 1733 572 .555 654 661

NB PLT | .576 .448 .780 .824 .738 735 537 559 .650 .654

NB — .496 562 781 .825 .738 735 347 -.633 481 .489

4/9/25 Source: https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icmlo6.pdf

https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf

Weighted
Majority
Algorithm

(Littlestone &
Warmuth,
1994)

4/9/25

* Given: a “pool” A of pre-trained binary classifiers

(that you know nothing about) and a stream of

data points (i.e., an online learning setting)

* Goal: design a new learner that uses the output of

classifiers in the pool to make its predictions

- Algorithm:

- Initially weight all classifiers equally

 Receive a new data point and predict the weighted

majority vote of the classifiers in the pool

- Down-weight classifiers that contribute to a mistake
by a factor of

33

Weighted
Majority
Algorithm

(Littlestone &
Warmuth,
1994)

4/9/25

Suppose we have a pool of T binary classifiers A = {h1,...,hr}
where h; : RM — {+1, —1}. Let o, be the weight for classifier h;.

Algorithm 1 Weighted Majority Algorithm

1. procedure WEIGHTEDMAJORITY(A, | B)

2: Initialize classifier weights o, = 1, Vt € {1,...,T}
3: for each training example (x,y) do
4: Predict majority vote class (splitting ties randomly)
T
h(z) = sign (Z by (x))
t=1
5: if a mistake is made h(z) # y then
6: for each classifiert € {1,...,7} do

If ht(:r;) 75 Yy, then a; < ﬁOét

34

What does the weighted majority

vote decision boundary look like . .
for thi | of classifiers? Suppose we have a pool of T binary classifiers A = {h1,...,hr}
or this pool of classitiers where h; : RM — {+1, —1}. Let o; be the weight for classifier h;.

] = 1,042 — 1,043 =1
Algorithm 1 Weighted Majority Algorithm

h; | 1: procedure WEIGHTEDMAJORITY(A, B)
4 ! ;. Initialize classifier weights o, = 1, Vt € {1,...,T}
7 3: for each training example (x,y) do
b * ~,'/ e 4: Predict majority vote class (splitting ties randomly)
1 > /'/: T
......... 4 57 X
.......... /, ’, h(.fl?) = Sign (Z Oétht (33))
h A ! t=1
E i,)
’ T 5: if a mistake is made h(z) # y then
! 6: for each classifiert € {1,...,7} do
,’ 7: If he(x) # y, then oy < By
>

4/9/25

Weighted
Majority

Algorithm:

Theory

4/9/25

For the general case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made
in a given sequence of trials:

1. O(log|A|+m), if one algorithm of A makes
at most m mistakes.

2. O(logl-';}l + m), if each of a subpool of k
algorithms of .4 makes at most m mistakes.

3. O(log I%l +), if the total number of mis-
takes of a subpool of k algorithms of A is
at most m.

Source: https://www.sciencedirect.com/science/article/pii/S0890540184710091

36

https://www.sciencedirect.com/science/article/pii/S0890540184710091

Weighted
Majority
Algorithm

VS.
AdaBoost

4/9/25

Weighted Majority
Algorithm

* an example of an
ensemble method

* assumes the classifiers
are learned ahead of
time

* only learns (majority
vote) weight for each

classifiers

AdaBoost

- an example of a boosting
method

* simultaneously learns:

* the classifiers
themselves

* (majority vote)
weight for each

classifiers

37

AdaBoost

4/9/25

* Intuition: iteratively reweight inputs, giving more weight

to inputs that are difficult-to-predict correctly

- Analogy:

* You all have to take a test () ...
* ... but you’re going to be taking it one at a time.

- After you finish, you get to tell the next person the
guestions you struggled with.

* Hopefully, they can cover for you because...

- ... if “enough” of you get a question right, you’ll all
receive full credit for that problem

38

