
10-301/601: Introduction
to Machine Learning
Lecture 23 –
Recommender Systems
Matt Gormley & Henry Chai

4/9/25

Front Matter
 Announcements

 HW8 released 4/8, due 4/16 at 11:59 PM

4/9/25 2

Q: So what
kinds of things
can we do with
all this RL stuff
anyway?

 A: I mean really the same things that you or I do,

like play video games!

4/9/25 3

Playing Atari with Deep RL:

• Agent observes the

pixels on the screen

• Reward is tied to the

score

• Actions are the

joystick inputs

• No knowledge about

the rules/dynamics

of the game!

Source: https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

Q: So what
kinds of things
can we do with
all this RL stuff
anyway?

 A: I mean really the same things that you or I do,

like play video games!

4/9/25 4Source: https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers

https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers

Q: So what
kinds of things
can we do with
all this RL stuff
anyway?

 A: I mean really the same things that you or I do,

like play video games!

4/9/25 5Source: https://arxiv.org/pdf/1312.5602

https://arxiv.org/pdf/1312.5602

Outline

Today, we’re going to introduce two distinct topics:

1. Recommender Systems: produce recommendations

of what a user will like

(i.e. the solution to a particular task)

2. Ensemble Methods: combine or learn multiple

classifiers into one

(i.e. a broad, general family of algorithms)

We’ll use a prominent example of a recommender

systems to motivate both topics…

64/9/25

The Netflix
Prize

7

• 500,000 users

• 20,000 movies

• 100 million ratings

• Goal: To obtain lower
error than Netflix’s
existing system on 3
million held out ratings

4/9/25 Source: https://web.archive.org/web/20090926213457/http://www.netflixprize.com/leaderboard

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard

Recommender
Systems

 Setup:

1. Items:
movies, songs,
products, etc.
(often many thousands)

2. Users:
watchers, listeners,
buyers, etc.
(often many millions)

3. Feedback:
5-star ratings, not-
clicking ‘next’,
purchases, etc.

8

Dune:
Part 2

Anora Snow
White

Alice 5 1

Bob 3 4

Charlie 3 5 2

• Key Assumptions:
• Can represent ratings

numerically as a
user/item matrix

• Users only rate a small
number of items: the
matrix is (very) sparse

4/9/25

 Example: Pandora.com

music recommendations

(Music Genome Project)

 Con: Assumes access to

metadata or “side

information” about

items (e.g. properties of

a song)

 Pro: Can make

recommendations of

new items, without

previous ratings

Two Types of
Recommender
Systems

Content Filtering Collaborative Filtering

 Example: Netflix movie
recommendations

 Pro: Does not require
access to side
information about items
(e.g. does not need to
know about movie
genres or actors)

 Con: Does not work on
new items that have no
ratings

94/9/25

Collaborative
Filtering

 Collaborative filtering is everywhere!

 Examples:

 Bestseller lists

 Top 40 music lists

 The “recent returns” shelf at the library

 Unmarked but well-used paths thru the woods

 “Read any good books lately?”

 …

 Insight: personal tastes are correlated

 If Alice and Bob both like X and Alice likes Y then

Bob is more likely to like Y

 especially (perhaps) if Bob knows Alice

104/9/25

Two Types of
Collaborative
Filtering

1. Neighborhood
Methods

2. Latent Factor
Methods

11Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422 4/9/25

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Neighborhood
Methods

12

In the figure, a
green line indicates
the movie was liked

Algorithm:

1. Find neighbors
based on
similarity of
movie
preferences

2. Recommend
movies that
those neighbors
also liked

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422 4/9/25

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Latent Factor
Methods

13Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

 Assume that both
movies and users
live in some low-
dimensional space
describing their
properties

 Recommend a
movie based on its
proximity to the
user in the latent
space

 Example Algorithm:
Matrix Factorization

4/9/25

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Poll Question 1:

Which of the following methods always requires

side information? Select all that apply.

A. ensemble methods (TOXIC)

B. collaborative filtering

C. latent factor methods

D. ensemble methods

E. content filtering

F. neighborhood methods

G. recommender systems

4/9/25 14

Summary
Thus Far

4/9/25 15

Recommender Systems

Content Filtering Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization
- …

Summary
Thus Far

4/9/25 16

Recommender Systems

Content Filtering Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization
- …

Matrix
Factorization

 High-level idea: Decompose the ratings matrix, 𝑅,

into the product of two (low-dimensional) matrices:

 𝑈, corresponding to users and

 𝑉, corresponding to items

 To do so, we’re going to follow our usual recipe for learning:

1. define a model

2. define an objective function

3. optimize the objective with SGD

4/9/25 17

Low-rank
Matrix
Factorization

 Insight: if 𝑅 ∈ ℝ𝑚 × 𝑛 has rank 𝑘 ≪ min(𝑚, 𝑛), then

Insight: ∃ 𝑈 ∈ ℝ𝑚 × 𝑘 and

Insight: 𝑉 ∈ ℝ𝑛 × 𝑘 such that 𝑅 = 𝑈𝑉𝑇

4/9/25 18

𝑅 = 𝑈

𝑉

𝑚 𝑚

𝑛 𝑛𝑘

𝑘

 Idea: even if 𝑅 ∈ ℝ𝑚 × 𝑛 has rank 𝑙 > 𝑘, then there still

Idea: even ∃ 𝑈 ∈ ℝ𝑚 × 𝑘 and

Idea: even 𝑉 ∈ ℝ𝑛 × 𝑘 such that 𝑅 ≈ 𝑈𝑉𝑇

 Approach: pick some arbitrary (typically small) 𝑘 and learn

rank-𝑘 matrices 𝑈 and 𝑉 such that 𝑅 ≈ 𝑈𝑉𝑇

Low-rank
Matrix
Factorization

4/9/25 19

𝑅 ≈ 𝑈

𝑉

𝑚 𝑚

𝑛 𝑛𝑘

𝑘

Low-rank
Matrix
Factorization

4/9/25 20

 Observation: 𝑅 is just a bunch of real-valued ratings

 Idea: minimize the mean-squared error

 Let 𝐸 = 𝑅 − 𝑈𝑉𝑇

 Objective function:

𝐽 𝑈, 𝑉 =
1

2
𝐸 2

2 =
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝐸𝑖,𝑗
2 =

1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇 2

where 𝑈𝑗,∙ is the 𝑗th row of 𝑈 and 𝑉∙,𝑖
𝑇 is the 𝑖th column of 𝑉𝑇

 Problem: the objective above is only defined if 𝑅 is fully-

observed i.e., we have ratings from every user for every item

Partially
Observed
Low-rank
Matrix
Factorization

4/9/25 21

 Observation: 𝑅 is just a bunch of real-valued ratings

 Idea: minimize the mean-squared error

 Let 𝐸 = 𝑅 − 𝑈𝑉𝑇 and let 𝑍 = 𝑖, 𝑗 : 𝑅𝑖,𝑗 is known

 Objective function:

𝐽 𝑈, 𝑉 =
1

2
𝐸 2

2 =
1

2
෍

𝑖,𝑗 ∈ 𝑍

𝐸𝑖,𝑗
2 =

1

2
෍

𝑖,𝑗 ∈ 𝑍

𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇 2

where 𝑈𝑗,∙ is the 𝑗th row of 𝑈 and 𝑉∙,𝑖
𝑇 is the 𝑖th column of 𝑉𝑇

 Interpretation: 𝑍 is the “training dataset”; we can learn 𝑈

and 𝑉 via SGD by sampling a “data point” from 𝑍 and

computing the gradients w.r.t. to that single rating.

 while not converged:

 sample 𝑖, 𝑗 from 𝑍

 compute 𝐸𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇

 update 𝑈𝑗,∙ and 𝑉∙,𝑖
𝑇:

 𝑈𝑗,∙ ← 𝑈𝑗,∙ − 𝜂∇𝑈𝑗,∙
𝐽𝑖,𝑗(𝑈, 𝑉)

 𝑉∙,𝑖
𝑇 ← 𝑉∙,𝑖

𝑇 − 𝜂∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗(𝑈, 𝑉)

where 𝐽𝑖,𝑗 𝑈, 𝑉 =
1

2
𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖

𝑇 2

∇𝑈𝑗,∙
𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑉∙,𝑖

𝑇

 ∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑈𝑗,∙

SGD for
Partially-
Observed
Low-rank
Matrix
Factorization

224/9/25

 while not converged:

 sample 𝑖, 𝑗 from 𝑍

 compute 𝐸𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇

 update 𝑈𝑗,∙ and 𝑉∙,𝑖
𝑇:

 𝑈𝑗,∙ ← 𝑈𝑗,∙ − 𝜂∇𝑈𝑗,∙
𝐽𝑖,𝑗(𝑈, 𝑉)

 𝑉∙,𝑖
𝑇 ← 𝑉∙,𝑖

𝑇 − 𝜂∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗(𝑈, 𝑉)

where 𝐽𝑖,𝑗 𝑈, 𝑉 =
1

2
𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖

𝑇 2
+

𝜆

2
𝑈 2

2 + 𝑉 2
2

∇𝑈𝑗,∙
𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑉∙,𝑖

𝑇 + 𝜆𝑈𝑗,∙

 ∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑈𝑗,∙ +𝜆𝑉∙,𝑖

Regularized
SGD for
Partially-
Observed
Low-rank
Matrix
Factorization

234/9/25

SGD for
Partially-
Observed
Low-rank
Matrix
Factorization

24

 while not converged:

 sample 𝑖, 𝑗 from 𝑍

 compute 𝐸𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝑂𝑗 + 𝑃𝑖 + 𝑈𝑗,∙𝑉∙,𝑖
𝑇

 update 𝑈𝑗,∙ and 𝑉∙,𝑖
𝑇:

 𝑈𝑗,∙ ← 𝑈𝑗,∙ − 𝜂∇𝑈𝑗,∙
𝐽𝑖,𝑗(𝑈, 𝑉)

 𝑉∙,𝑖
𝑇 ← 𝑉∙,𝑖

𝑇 − 𝜂∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗(𝑈, 𝑉)

with user and item bias terms 𝑂𝑗 and 𝑃𝑖 respectively:

𝑈 =

𝑈1,∙ 𝑂1 1

𝑈2,∙ 𝑂2 1

⋮ ⋮ ⋮
𝑈𝑚,∙ 𝑂𝑚 1

 and 𝑉𝑇 =
𝑉∙,1

𝑇 𝑉∙,2
𝑇 ⋯ 𝑉∙,𝑛

𝑇

1 1 ⋯ 1
𝑃1 𝑃2 ⋯ 𝑃𝑛

4/9/25

 Insight: if we knew either 𝑈 or 𝑉𝑇, then solving for the other

is easy! In fact, it is exactly the same as linear regression!

𝐽 𝑈, 𝑉 =
1

2
෍

𝑖,𝑗 ∈ 𝑍

𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇 2

vs.

𝐽 𝜃 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜃𝑇𝑥 𝑖 2

 initialize 𝑈 and 𝑉𝑇

 while not converged:

 Fix 𝑉𝑇 and solve for 𝑈 exactly using ordinary least squares

 Fix 𝑈 and solve for 𝑉𝑇 exactly using ordinary least squares

Alternating
Least Squares for
Partially-
Observed
Low-rank
Matrix
Factorization

254/9/25

Low-rank
Matrix
Factorization:
Comparison

26

ALS = alternating least squares

Source: https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf 4/9/25

https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf

Goal: to predict the values of the missing squares

Regression vs.
Collaborative
Filtering

27

Regression Collaborative Filtering
x1 x2 x3 x4 x5 y item1 item6…

user1

user9

…

…

user5

Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4#Bib1 4/9/25

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4

Low-rank
Matrix
Factorization:
Example

28

E

Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4#Bib1 4/9/25

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4

Learning
Objectives:
Recommender
Systems

You should be able to…

1. Compare and contrast the properties of various

families of recommender system algorithms: content

filtering, collaborative filtering, neighborhood

methods, latent factor methods

2. Formulate a squared error objective function for the

matrix factorization problem

3. Implement unconstrained matrix factorization with a

variety of different optimization techniques: gradient

descent, stochastic gradient descent, alternating least

squares

4. Offer intuitions for why the parameters learned by

matrix factorization can be understood as user factors

and item factors
294/9/25

The Netflix
Prize: Winners

4/9/25 30Source: https://web.archive.org/web/20090926213457/http://www.netflixprize.com/leaderboard

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard

Boosting

 An ensemble method combines the predictions of

multiple “weak” hypotheses to learn a single, more

powerful classifier

 Boosting is a meta-algorithm: it can be applied to a

variety of machine learning models

 Commonly used with decision trees

314/9/25

Ranking
Classifiers
(Caruana &
Niculescu-Mizil,
2006)

4/9/25 32Source: https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf

https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf

Weighted
Majority
Algorithm
(Littlestone &
Warmuth,
1994)

 Given: a “pool” 𝒜 of pre-trained binary classifiers

(that you know nothing about) and a stream of

data points (i.e., an online learning setting)

 Goal: design a new learner that uses the output of

classifiers in the pool to make its predictions

 Algorithm:

 Initially weight all classifiers equally

 Receive a new data point and predict the weighted

majority vote of the classifiers in the pool

 Down-weight classifiers that contribute to a mistake

by a factor of 𝛽

4/9/25 33

Weighted
Majority
Algorithm
(Littlestone &
Warmuth,
1994)

4/9/25 34

Weighted
Majority
Algorithm
(Littlestone &
Warmuth,
1994)

4/9/25 35

h1

h2

h3

What does the weighted majority
vote decision boundary look like

for this pool of classifiers?

Weighted
Majority
Algorithm:
Theory

4/9/25 36Source: https://www.sciencedirect.com/science/article/pii/S0890540184710091

https://www.sciencedirect.com/science/article/pii/S0890540184710091

Weighted
Majority
Algorithm
vs.
AdaBoost

Weighted Majority
Algorithm

 an example of an

ensemble method

 assumes the classifiers

are learned ahead of

time

 only learns (majority

vote) weight for each

classifiers

AdaBoost

 an example of a boosting

method

 simultaneously learns:

 the classifiers

themselves

 (majority vote)

weight for each

classifiers

374/9/25

AdaBoost

 Intuition: iteratively reweight inputs, giving more weight

to inputs that are difficult-to-predict correctly

 Analogy:

 You all have to take a test () …

 … but you’re going to be taking it one at a time.

 After you finish, you get to tell the next person the

questions you struggled with.

 Hopefully, they can cover for you because…

 … if “enough” of you get a question right, you’ll all

receive full credit for that problem

384/9/25

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 23 – Recommender Systems
	Slide 2: Front Matter
	Slide 3: Q: So what kinds of things can we do with all this RL stuff anyway?
	Slide 4: Q: So what kinds of things can we do with all this RL stuff anyway?
	Slide 5: Q: So what kinds of things can we do with all this RL stuff anyway?
	Slide 6: Outline
	Slide 7: The Netflix Prize
	Slide 8: Recommender Systems
	Slide 9: Two Types of Recommender Systems
	Slide 10: Collaborative Filtering
	Slide 11: Two Types of Collaborative Filtering
	Slide 12: Neighborhood Methods
	Slide 13: Latent Factor Methods
	Slide 14: Poll Question 1:
	Slide 15: Summary Thus Far
	Slide 16: Summary Thus Far
	Slide 17: Matrix Factorization
	Slide 18: Low-rank Matrix Factorization
	Slide 19: Low-rank Matrix Factorization
	Slide 20: Low-rank Matrix Factorization
	Slide 21: Partially Observed Low-rank Matrix Factorization
	Slide 22: SGD for Partially-Observed Low-rank Matrix Factorization
	Slide 23: Regularized SGD for Partially-Observed Low-rank Matrix Factorization
	Slide 24: SGD for Partially-Observed Low-rank Matrix Factorization
	Slide 25: Alternating Least Squares for Partially-Observed Low-rank Matrix Factorization
	Slide 26: Low-rank Matrix Factorization: Comparison
	Slide 27: Regression vs. Collaborative Filtering
	Slide 28: Low-rank Matrix Factorization: Example
	Slide 29: Learning Objectives: Recommender Systems
	Slide 30: The Netflix Prize: Winners
	Slide 31: Boosting
	Slide 32: Ranking Classifiers (Caruana & Niculescu-Mizil, 2006)
	Slide 33: Weighted Majority Algorithm (Littlestone & Warmuth, 1994)
	Slide 34: Weighted Majority Algorithm (Littlestone & Warmuth, 1994)
	Slide 35: Weighted Majority Algorithm (Littlestone & Warmuth, 1994)
	Slide 36: Weighted Majority Algorithm: Theory
	Slide 37: Weighted Majority Algorithm vs. AdaBoost
	Slide 38: AdaBoost
	Slide 39
	Slide 40: Setting t
	Slide 41: Setting t
	Slide 42: Setting t
	Slide 43: Updating n
	Slide 44: AdaBoost: Example
	Slide 45: AdaBoost: Example
	Slide 46: Why AdaBoost?
	Slide 47: Exponential Loss
	Slide 48: True Error (Freund & Schapire, 1995)
	Slide 49: Test Error (Schapire, 1989)
	Slide 50: Margins
	Slide 51: True Error (Schapire, Freund et al., 1998)
	Slide 52: Learning Objectives: Boosting

