10-301/601: Introduction
to Machine Learning
Lecture 23 —
Recommender Systems

Matt Gormley & Henry Chai
4/9/25

* Announcements

* HWS8 released 4/8, due 4/16 at 11:59 PM

Front Matter

4/9/25

Q: So what
kinds of things

can we do with
all this RL stuff
anyway?

4/9/25

* A: I mean really the same things that you or | do,

like play video games!

Playing Atari with Deep RL:

* Agent observes the
pixels on the screen

* Reward is tied to the
score

* Actions are the
joystick inputs

* No knowledge about
the rules/dynamics

of the game!

Source: https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

action

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

A: |l mean really the same things that you or | do,

like play video games!

)
o =4

ima.. — B

’
m :
-

Yy

<
_ ‘
=
it
o
‘

.

L

.
2
I

v
v

.

-
4
2

https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers

* A: I mean really the same things that you or | do,

like play video games!

Q: SO W h d t Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider
kinds of things |
B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
: Random 354 1.2 0 —20.4 | 157 110 179
can we do with oo
. Contingency [4] 1743 6 159 —17 960 723 268
all this RL stuff DQN 4092 168 470 | 20 | 1952 | 1705 581
Human 7456 31 368 —3 | 18900 | 28010 3690
d nyway? HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 1 91 —16 | 1325 800 1145
DOQN Best 5184 225 661 21 4500 | 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with € = 0.05.

4/9/25 Source: https://arxiv.org/pdf/1312.5602

https://arxiv.org/pdf/1312.5602

Outline

4/9/25

Today, we’re going to introduce two distinct topics:

1. Recommender Systems: produce recommendations
of what a user will like

(i.e. the solution to a particular task)

2. Ensemble Methods: combine or learn multiple
classifiers into one

(i.e. a broad, general family of algorithms)

We’ll use a prominent example of a recommender

systems to motivate both topics...

-, v 2 r.

¥ o

500,000 users ‘>
\s

, Congratulations!
20,000 movies

The Netflix Prize sought to substantially

The NEthiX 100 m|”|0n ra‘“ngs improve the accuracy of predictions about

how much someone is going to enjoy a
movie based on their movie preferences.

Prize Goal: TO Obtaln Iower On September 21, 2009 we awarded the

$1M Grand Prize to team "BellKor's
Pragmatic Chaos”. Read about their

e r rO r t h a n N e tfl iX’S algorithm, checkout team scores on the

Leaderboard, and join the discussions on

existing system on 3 the Forun,

We applaud all the contributors to this

. . ud rs
million held out ratings Comnect people o he movies they ove

4/9/25 Source: https://web.archive.org/web/20090926213457 /http://www.netflixprize.com/leaderboard

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard

* Setup: * Key Assumptions:

1. Items: * Can represent ratings
movies, songs, numerically as a
products, etc. user/item matrix
(often many thousands) * Users only rate a small
Recommender 2 Users: numper of items: the
S watchers, listeners, matrix is (very) sparse
yStemS buyerS' etc. Dune: Anora Snhow
(often many millions) Part 2 White

3. Feedback:
5-star ratings, not-
clicking ‘next’,
purchases, etc.

4/9/25

Two Types of
Recommender

Systems

4/9/25

Content Filtering

* Example: Pandora.com

music recommendations
(Music Genome Project)

* Con: Assumes access to

metadata or “side
information” about
items (e.g. properties of
a song)

* Pro: Can make

recommendations of
new items, without
previous ratings

Collaborative Filtering

- Example: Netflix movie

recommendations

* Pro: Does not require

access to side
information about items
(e.g. does not need to
know about movie
genres or actors)

* Con: Does not work on

new items that have no
ratings

Collaborative

Filtering

4/9/25

* Collaborative filtering is everywhere!

- Examples:

* Bestseller lists

* Top 40 music lists

* The “recent returns” shelf at the library

* Unmarked but well-used paths thru the woods

- “Read any good books lately?”

* Insight: personal tastes are correlated

* |f Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y

- especially (perhaps) if Bob knows Alice

10

1. Neighborhood 2. Latent Factor

Methods Methods
@ Amadeus
Two Types of A
Collaborative =0 |
Filtering g

4/9/25

Source:

11

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Neighborhood

Methods

4/9/25

Source:

In the figure, a
green line indicates
the movie was liked

Algorithm:

1. Find neighbors
based on
similarity of
movie
preferences

2. Recommend
movies that
those neighbors
also liked

12

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

- Assume that both
movies and users
live in some low-
dimensional space
describing their

The Color Purple_

properties
Latent Factor - .
* Recommend a
MEth ods _ movie based on its
s/ The Lion King S proxi-mity to the
user in the latent
™ ares Indeperdence | =T space

- Example Algorithm:
Matrix Factorization

4/9/25 Source: Ji ' iep?tp=

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422

Poll Question 1:

4/9/25

Which of the following methods always requires

side information? Select all that apply.

A.

ensemble methods (TOXIC)
collaborative filtering

latent factor methods

. ensemble methods

content filtering

neighborhood methods

. recommender systems

14

Summary

Thus Far

4/9/25

Recommender Systems

Content Filtering

Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization

15

Summary

Thus Far

4/9/25

Recommender Systems

Content Filtering

Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization

16

Matrix
Factorization

4/9/25

* High-level idea: Decompose the ratings matrix, R,

into the product of two (low-dimensional) matrices:

* U, corresponding to users and

IV, corresponding to items

* To do so, we’re going to follow our usual recipe for learning:

1. define a model
2. define an objective function

3. optimize the objective with SGD

17

Low-rank
Matrix
Factorization

4/9/25

: Insight:@ € R™*™ has rank k << min(m, n), then

JU € R™*k gnd

VeR*"k suychthatR = UVT

18

Low-rank
Matrix
Factorization

4/9/25

* Idea: even if R € R™ * ™ has rank | > k, then there still

JU € RM*k gnd 1
VeR"™k suchthatR =~ UVT

* Approach: pick some arbitrary (typically small) k and learn

rank-k matrices U and V such that R = UVT
n k n

K) v

19

Low-rank
Matrix
Factorization

4/9/25

* Problem: the objective above is only defined if R is fully-

- Observation: R is just a bunch of real-valued ratings

* ldea: minimize the mean-squared error

‘LetE =R —UVT M oW o U
dovc
- Objective function: [/ a i 2. (Uf_)) j
-T _ ..-I—. 2 _ ‘__LZ’ gir

observed i.e., we have ratings from every user for every item

20

Partially
Observed

Low-rank
Matrix
Factorization

4/9/25

- Observation: R is just a bunch of real-valued ratings

* ldea: minimize the mean-squared error

‘LetE=R—-UVT andlet Z = {(i,j): R; jis known}

* Objective function:

— \C
-~ o=). {
'B"CU;VB = ZQ%’)&_(R‘LS U‘)}.\[)L')

* Interpretation: Z is the “training dataset”; we can learn U

and V via SGD by sampling a “data point” from Z and

computing the gradients w.r.t. to that single rating.

21

- while not converged:
- sample (i, j) from Z
- compute E; ; = R, ; — U; V.
SGD for o e

Pa rtia”y- * update U; . and V?;
Observed Uy, < Uy, =1y Ji;(U,V)

Low-rank
Matrix

Factorization where J; ;(U,V) = %(Ri, = U V)

VeV - vagfi,j(U; V)

Vy, 11U V) = —E V.

U:

VVji‘]i,j(U, V) = —E; ;U;.

4/9/25

Regularized
SGD for
Partially-
Observed

Low-rank
Matrix
Factorization

4/9/25

- while not converged:

- sample (i,j) from Z
*compute E; ; = R; ; — U; .V
* update U; . and V.?gi
Uj. < Ui —nVy, Ji;(UV)

,L

¢ VT — V:I; - T’vV'Il"]l,](U; V)

1 2 A
where J;;(U,V) = (Ry; — U;.VE)" + 5 (U115 + VI3
Vy, Ji,j(UV) = —E;;V; + AU;.

VV.:Ig]i,]'(U’ V) = _Ei,jUj,° +/1V.,i

23

- while not converged:

- sample (i,j) from Z

SGD for - compute E; ; = Ry ; — (0; + B + U;.V.})

Partially- - update U; . and V.1;:

Observed ‘U < Uj =y, Ji;(U,V)

kzv‘t".ra”k VL VL =¥, (U V)

dlriX ot

Factorization with user and item bias terms O; and P; respectively:

U, 0, 1 - _
U, 0, 1 Vi Vo o Vi
uv=|"> ° |andV'=11 1 . 1

Up. 0, 1 P P o By

4/9/25

Alternating

Least Squares for
Partially-
Observed

Low-rank
Matrix
Factorization

4/9/25

- Insight: if we knew either U or VT, then solving for the other

is easy! In fact, it is exactly the same as linear regression!

1 2
JICAS =3 z (R, —U;.VT)

(i,j)ez

VS.

N
1 . .
J(6) = zZl(y(” - 07x®)’

* initialize U and VT

- while not converged:

- Fix VT and solve for U exactly using ordinary least squares

» Fix U and solve for VT exactly using ordinary least squares

25

Low-rank
Matrix
Factorization:
Comparison

4/9/25

1.4

Mean Loss
1.0 1.2
| |
—

0.8
—

0.6

A SGD
+ ALS

Source: https://people.cs.umass.edu/~phaas/files/rji0482Updated.pdf

26

https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf

Goal: to predict the values of the missing squares .

Regression Collaborative Filtering

X1 X5 X3 X4 X5 ¥ Iitem, |tem6A
A
user,

. TRAINING -
Regression vs. rows
NO
- DEMARCATION
Collaborative aalh
. . 1 TRAINING AND
Fllterlng TEST ROWS
TEST
ROWS
| user, !
< — < >
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

4/9/25 Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4#Bib1

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4

VONVIaVSY) [© |[© | |e |o |e |e
NVYIWOM ALIIYd |[© |© |o |o |o |o | o y
o
FULVISNISSTINS | © |© |© | e o o] o
vilvdoapn |e (e |e [T |7 |= |+ m
fay)
wsavsnnnr|e |e e |[e |e |o |e =
OyiN|© |©@ |o|o|e|o |©)
- o () 53 n © ~ R
2
VONVIgVsSYd | © | —
NVINOM ALLIY¥d | © |
1LIVIS NI SSTNdATTS | © |~ |
viIvdoID |~ |
yvsavasninr | = | o
oyan|— | © g
2
s}
N
g
@)
+—
3
[
> 9
o
olojo|d |||« =
> g
i i - = o~
1
- &N & & 1 O N IM
<
o
X E
o
VONVIEVSYD @ |[©@ o | [« | = | = b.ow
NVINOMALLIYd | © |[©@ |[© | = | = | = [m
o
J1LIV3S NI SS31d331S &
VHIVdOI1D ©
¥vsava snins
O¥iN

-
O
e gt
- Q v
O X'C Q
_rom
W._L._L
m O @©
OMaX
—1 L L

28

Source:

4/9/25

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4

You should be able to...

1. Compare and contrast the properties of various
families of recommender system algorithms: content
filtering, collaborative filtering, neighborhood
methods, latent factor methods

Lea.rn”.]g 2. Formulate a squared error objective function for the

ObJECUVES: matrix factorization problem

Recommender 3. Implement unconstrained matrix factorization with a

Systems variety of different optimization techniques: gradient
descent, stochastic gradient descent, alternating least
squares

4. Offer intuitions for why the parameters learned by
matrix factorization can be understood as user factors
and item factors

4/9/25

The Netflix

Prize: Winners

4/9/25

Netflix Prize

Home ‘ Rules ‘ Leaderboard ‘ Update I Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top leaders.

Rank

1

Team Name

2 =—=£> The Ensemble

3

4 —3 Opera Solutions and Vandelay United
—=2 Vandelay Industries !

5

6
7
8
9

-~

S

Grand Prize Team

PragmaticTheory
BellKor in BigChaos
Dace_

Feeds2

10 =2 BigChaos
11 __.:) Opera Solutions
12 ~=>BellKor

Source: https://web.archive.org/web/20090926213457 /http://www.netflixprize.com/leaderboard

0.8567
0.8567
0.8582
0.8588
0.8591
0.8594
0.8601
0.8612
0.8622
0.8623
0.8623
0.8624

10.06
10.06
9.90
9.84
9.81
9.77
9.70
9.59
9.48
9.47
9.47
9.46

Best Test Score % Improvement Best Submit Time

Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos

BellKor's Pragmatic Chaos

2009-07-26 18:18:28
2009-07-26 18:38:22
2009-07-10 21:24:40
2009-07-10 01:12:31
2009-07-10 00:32:20
2009-06-24 12:06:56
2009-05-13 08:14:09
2009-07-24 17:18:43
2009-07-12 13:11:51
2009-04-07 12:33:59
2009-07-24 00:34:07
2009-07-26 17:19:11

30

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard

Boosting

4/9/25

* An ensemble method combines the predictions of

multiple “weak” hypotheses to learn a single, more
powerful classifier

* Boosting is a meta-algorithm: it can be applied to a

variety of machine learning models

- Commonly used with decision trees

31

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL CAL ACC FSC LFT ROC APR BEP RMS MXE MEAN OPT-SEL
BST-DT PLT .843* 779 .939 .963 .938 .929%* .880 .896 .896 917
RF PLT | .872*% .805 934* | 957 931 .930 .851 .858 .892 .898
BAG-DT - .846 781 938*% | .962* .937* 918 .845 872 .88T* .899
BST-DT SO | .826* .860* .929* | .952 921 .925% | 854 815 .885 917*
. RF - 872 .790 934* | 957 931 .930 .829 .830 .884 .890
R a n kl n g BAG-DT pLT | .841 774 .038% | .962* .037* 918 .836 .852 882 .895
RF so | .861*% .861 923 .946 .910 .925 .836 776 .880 .895
- BAG-DT 0 | .826 .843* .933*% | 954 921 915 .832 791 || 877 || .894
SVM PLT
Classifiers R Nl - B R N S B
SVM so | .813 .836* .892 925 .882 911 814 744 .852 .882
ANN PLT | .815 748 910 .936 .892 .899 783 .785 846 875
(C a ru a n a & ANN 150 .803 .836 .908 .924 .876 .891 77 718 842 .884
BST-DT - .834* 816 .939 .963 .938 .929* | 508 605 .828 .851
. . . KNN PLT 757 707 889 918 872 872 742 .764 .815 .837
KNN - 756 728 .889 .918 .872 872 729 718 .810 .830
N | C u I e S C u - M | Z | I KNN S0 | .755 758 .882 .907 .854 .869 738 .706 .809 844
’ BST-STMP PLT 724 .651 .876 .908 .853 .845 716 .754 791 .808
SVM - 817 .804 .895 .938 .899 913 514 A67 781 .810
2 OO 6 BST-STMP | 18O | .709 744 .873 .899 .835 .840 .695 646 780 .810
BST-STMP - 741 684 .876 .908 .853 .845 .394 .382 710 726
DT S0 | .648 654 .818 .838 756 778 .590 .589 709 774
DT - 647 639 .824 .843 762 7T .562 .607 708 763
DT PLT | .651 618 .824 .843 762 7T 575 594 706 761
LR - .636 545 .823 .852 743 734 620 645 700 710
LR 1so | .627 567 .818 .847 735 742 .608 .589 692 703
LR PLT | .630 .500 .823 .852 743 734 .593 .604 685 .695
NB so | .579 468 779 .820 27 733 572 555 654 661
NB PLT | .576 448 .780 .824 738 735 .537 .559 .650 654
NB - .496 562 781 .825 738 735 .347 -.633 481 489

4/9/25 Source: https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icmlo6.pdf

https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf

Weighted
Majority
Algorithm

(Littlestone &
Warmuth,
1994)

4/9/25

* Given: a “pool” A of pre-trained binary classifiers

(that you know nothing about) and a stream of

data points (i.e., an online learning setting)

- Goal: design a new learner that uses the output of

classifiers in the pool to make its predictions

- Algorithm:

* Initially weight all classifiers equally

 Receive a new data point and predict the weighted

majority vote of the classifiers in the pool

- Down-weight classifiers that contribute to a mistake
by a factor of

33

Weighted
Majority
Algorithm

(Littlestone &
Warmuth,
1994)

4/9/25

Suppose we have a pool of T binary classifiers A = {hy,...,hr}

where h; : RM — {+1, —1}. Let o, be the weight for classifier h;.

Algorithm 1 Weighted Majority Algorithm

1:
2:
3:
4:

procedure WEIGHTEDMAJORITY(A,)
Initialize classifier weights o, = 1, Vt € {1,...,T}
for each training example (x, y) do
Predict majority vote class (splitting ties randomly)

T
h(z) = sign (Z by (a:))

if a mistake is made h(z) # y then
for each classifiert € {1,...,7T} do
If he(z) # y, then oy < [y

34

What does the weighted majority

vote decision boundary look like { \
- e Suppose we have a pool of T binary classifiers A = {hq,...,h
? PP p y 1 y 1V
for this pool of classifiers: where h; : RM — {+1, —1}. Let o; be the weight for classifier h;.
a1 = 1,0&2 — 1,043 =1
X:\ Algorithm 1 Weighted Majority Algorithm
'y

1: procedure WEIGHTEDMAJORITY(A, |B)
Initialize classifier weights o, = 1, Vt € {1,...,T}

2:
for each training example (x, y) do

3:
4: Predict majority vote class (splitting ties randomly)
A T
h(z) = sign (Z by (zc))
=
5: if a mistake is made h(z) # y then
6: for each classifiert € {1,...,7T} do
7: If he(z) # y, then oy < [y

4/9/25

Weighted
Majority
Algorithm:

Theory

4/9/25

For the general case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made
in a given sequence of trials:

1. O(log|.A|+m), if one algorithm of .A makes
at most m mistakes.

2. O(logj-‘;:£l + m), if each of a subpool of k
algorithms of A makes at most m mistakes.

3. O(log]'—:1 + 2), if the total number of mis-
takes of a subpool of k algorithms of A is
at most m.

Source: https://www.sciencedirect.com/science/article/pii/S08905401847100491

36

https://www.sciencedirect.com/science/article/pii/S0890540184710091

Weighted
Majority
Algorithm

VS.
AdaBoost

4/9/25

Weighted Majority
Algorithm

* an example of an
ensemble method

* assumes the classifiers
are learned ahead of
time

* only learns (majority
vote) weight for each
classifiers

AdaBoost

* an example of a boosting
method

* simultaneously learns:
* the classifiers
themselves
* (majority vote)
weight for each
classifiers

37

AdaBoost

4/9/25

* Intuition: iteratively reweight inputs, giving more weight

to inputs that are difficult-to-predict correctly

- Analogy:

* You all have to take a test () ...
* ... but you’re going to be taking it one at a time.

- After you finish, you get to tell the next person the
guestions you struggled with.

* Hopefully, they can cover for you because...

- ... if “enough” of you get a question right, you'll all
receive full credit for that problem

38

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 23 – Recommender Systems
	Slide 2: Front Matter
	Slide 3: Q: So what kinds of things can we do with all this RL stuff anyway?
	Slide 4: Q: So what kinds of things can we do with all this RL stuff anyway?
	Slide 5: Q: So what kinds of things can we do with all this RL stuff anyway?
	Slide 6: Outline
	Slide 7: The Netflix Prize
	Slide 8: Recommender Systems
	Slide 9: Two Types of Recommender Systems
	Slide 10: Collaborative Filtering
	Slide 11: Two Types of Collaborative Filtering
	Slide 12: Neighborhood Methods
	Slide 13: Latent Factor Methods
	Slide 14: Poll Question 1:
	Slide 15: Summary Thus Far
	Slide 16: Summary Thus Far
	Slide 17: Matrix Factorization
	Slide 18: Low-rank Matrix Factorization
	Slide 19: Low-rank Matrix Factorization
	Slide 20: Low-rank Matrix Factorization
	Slide 21: Partially Observed Low-rank Matrix Factorization
	Slide 22: SGD for Partially-Observed Low-rank Matrix Factorization
	Slide 23: Regularized SGD for Partially-Observed Low-rank Matrix Factorization
	Slide 24: SGD for Partially-Observed Low-rank Matrix Factorization
	Slide 25: Alternating Least Squares for Partially-Observed Low-rank Matrix Factorization
	Slide 26: Low-rank Matrix Factorization: Comparison
	Slide 27: Regression vs. Collaborative Filtering
	Slide 28: Low-rank Matrix Factorization: Example
	Slide 29: Learning Objectives: Recommender Systems
	Slide 30: The Netflix Prize: Winners
	Slide 31: Boosting
	Slide 32: Ranking Classifiers (Caruana & Niculescu-Mizil, 2006)
	Slide 33: Weighted Majority Algorithm (Littlestone & Warmuth, 1994)
	Slide 34: Weighted Majority Algorithm (Littlestone & Warmuth, 1994)
	Slide 35: Weighted Majority Algorithm (Littlestone & Warmuth, 1994)
	Slide 36: Weighted Majority Algorithm: Theory
	Slide 37: Weighted Majority Algorithm vs. AdaBoost
	Slide 38: AdaBoost
	Slide 39
	Slide 40: Setting t
	Slide 41: Setting t
	Slide 42: Setting t
	Slide 43: Updating n
	Slide 44: AdaBoost: Example
	Slide 45: AdaBoost: Example
	Slide 46: Why AdaBoost?
	Slide 47: Exponential Loss
	Slide 48: True Error (Freund & Schapire, 1995)
	Slide 49: Test Error (Schapire, 1989)
	Slide 50: Margins
	Slide 51: True Error (Schapire, Freund et al., 1998)
	Slide 52: Learning Objectives: Boosting

