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Front Matter
 Announcements

 HW8 released 4/8, due 4/16 at 11:59 PM
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Q: So what 
kinds of things 
can we do with 
all this RL stuff 
anyway?

 A: I mean really the same things that you or I do, 

like play video games!

4/9/25 3

Playing Atari with Deep RL:

• Agent observes the 

pixels on the screen

• Reward is tied to the 

score 

• Actions are the 

joystick inputs

• No knowledge about 

the rules/dynamics 

of the game! 

Source: https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf 

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
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Outline

Today, we’re going to introduce two distinct topics:

1. Recommender Systems: produce recommendations 

of what a user will like 

(i.e. the solution to a particular task)

2. Ensemble Methods: combine or learn multiple 

classifiers into one

(i.e. a broad, general family of algorithms)

We’ll use a prominent example of a recommender 

systems to motivate both topics…
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The Netflix 
Prize
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• 500,000 users

• 20,000 movies

• 100 million ratings

• Goal: To obtain lower 
error than Netflix’s 
existing system on 3 
million held out ratings 

4/9/25 Source: https://web.archive.org/web/20090926213457/http://www.netflixprize.com/leaderboard 

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard


Recommender 
Systems

 Setup:

1. Items:
movies, songs, 
products, etc.
(often many thousands)

2. Users: 
watchers, listeners, 
buyers, etc.
(often many millions)

3. Feedback: 
5-star ratings, not-
clicking ‘next’, 
purchases, etc.

8

Dune: 
Part 2

Anora Snow 
White

Alice 5 1

Bob 3 4

Charlie 3 5 2

• Key Assumptions:
• Can represent ratings 

numerically as a 
user/item matrix

• Users only rate a small 
number of items: the 
matrix is (very) sparse
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 Example: Pandora.com 

music recommendations 

(Music Genome Project)

 Con: Assumes access to 

metadata or “side 

information” about 

items (e.g. properties of 

a song)

 Pro: Can make 

recommendations of 

new items, without  

previous ratings

Two Types of 
Recommender 
Systems

Content Filtering Collaborative Filtering

 Example: Netflix movie 
recommendations

 Pro: Does not require 
access to side 
information about items 
(e.g. does not need to 
know about movie 
genres or actors)

 Con: Does not work on 
new items that have no 
ratings
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Collaborative 
Filtering

 Collaborative filtering is everywhere!

 Examples: 

 Bestseller lists

 Top 40 music lists

 The “recent returns” shelf at the library

 Unmarked but well-used paths thru the woods 

 “Read any good books lately?”

 …

 Insight: personal tastes are correlated

 If Alice and Bob both like X and Alice likes Y then 

Bob is more likely to like Y

 especially (perhaps) if Bob knows Alice
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Two Types of 
Collaborative 
Filtering

1. Neighborhood 
Methods

2. Latent Factor 
Methods

11Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422 4/9/25

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422


Neighborhood 
Methods

12

In the figure, a 
green line indicates 
the movie was liked

Algorithm:

1. Find neighbors 
based on 
similarity of 
movie 
preferences

2. Recommend 
movies that 
those neighbors 
also liked

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422 4/9/25

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422


Latent Factor 
Methods

13Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422 

 Assume that both 
movies and users 
live in some low-
dimensional space 
describing their 
properties

 Recommend a 
movie based on its 
proximity to the 
user in the latent 
space

 Example Algorithm: 
Matrix Factorization

4/9/25

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422


Poll Question 1:

Which of the following methods always requires 

side information? Select all that apply. 

A. ensemble methods (TOXIC)

B. collaborative filtering

C. latent factor methods

D. ensemble methods

E. content filtering

F. neighborhood methods

G. recommender systems

4/9/25 14



Summary 
Thus Far
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Recommender Systems

Content Filtering Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization
- … 



Summary 
Thus Far
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Recommender Systems

Content Filtering Collaborative Filtering

Neighborhood Methods

Latent Factor Methods:
- Matrix Factorization
- … 



Matrix 
Factorization

 High-level idea: Decompose the ratings matrix, 𝑅, 

into the product of two (low-dimensional) matrices:

 𝑈, corresponding to users and 

 𝑉, corresponding to items

 To do so, we’re going to follow our usual recipe for learning:

1. define a model

2. define an objective function

3. optimize the objective with SGD
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Low-rank
Matrix 
Factorization

 Insight: if 𝑅 ∈ ℝ𝑚 × 𝑛 has rank 𝑘 ≪ min(𝑚, 𝑛), then 

Insight: ∃ 𝑈 ∈ ℝ𝑚 × 𝑘  and

Insight: 𝑉 ∈ ℝ𝑛 × 𝑘   such that 𝑅 = 𝑈𝑉𝑇

4/9/25 18

𝑅 = 𝑈

𝑉

𝑚 𝑚

𝑛 𝑛𝑘

𝑘



 Idea: even if 𝑅 ∈ ℝ𝑚 × 𝑛 has rank 𝑙 > 𝑘, then there still

Idea: even ∃ 𝑈 ∈ ℝ𝑚 × 𝑘  and

Idea: even 𝑉 ∈ ℝ𝑛 × 𝑘   such that 𝑅 ≈ 𝑈𝑉𝑇

 Approach: pick some arbitrary (typically small) 𝑘 and learn 

rank-𝑘 matrices 𝑈 and 𝑉 such that 𝑅 ≈ 𝑈𝑉𝑇

Low-rank
Matrix 
Factorization
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𝑅 ≈ 𝑈

𝑉

𝑚 𝑚

𝑛 𝑛𝑘

𝑘



Low-rank
Matrix 
Factorization
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 Observation: 𝑅 is just a bunch of real-valued ratings

 Idea: minimize the mean-squared error

 Let 𝐸 = 𝑅 − 𝑈𝑉𝑇

 Objective function: 

𝐽 𝑈, 𝑉 =
1

2
𝐸 2

2 =
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝐸𝑖,𝑗
2 =

1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇 2

where 𝑈𝑗,∙ is the 𝑗th row of 𝑈 and 𝑉∙,𝑖
𝑇  is the 𝑖th column of 𝑉𝑇

 Problem: the objective above is only defined if 𝑅 is fully-

observed i.e., we have ratings from every user for every item



Partially 
Observed
Low-rank
Matrix 
Factorization
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 Observation: 𝑅 is just a bunch of real-valued ratings

 Idea: minimize the mean-squared error

 Let 𝐸 = 𝑅 − 𝑈𝑉𝑇  and let 𝑍 = 𝑖, 𝑗 : 𝑅𝑖,𝑗  is known

 Objective function: 

𝐽 𝑈, 𝑉 =
1

2
𝐸 2

2 =
1

2
෍

𝑖,𝑗 ∈ 𝑍

𝐸𝑖,𝑗
2 =

1

2
෍

𝑖,𝑗 ∈ 𝑍

𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇 2

where 𝑈𝑗,∙ is the 𝑗th row of 𝑈 and 𝑉∙,𝑖
𝑇  is the 𝑖th column of 𝑉𝑇

 Interpretation: 𝑍 is the “training dataset”; we can learn 𝑈 

and 𝑉 via SGD by sampling a “data point” from 𝑍 and 

computing the gradients w.r.t. to that single rating. 



 while not converged: 

 sample 𝑖, 𝑗  from 𝑍

 compute 𝐸𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇

 update 𝑈𝑗,∙ and 𝑉∙,𝑖
𝑇:

 𝑈𝑗,∙ ← 𝑈𝑗,∙ − 𝜂∇𝑈𝑗,∙
𝐽𝑖,𝑗(𝑈, 𝑉)

 𝑉∙,𝑖
𝑇 ← 𝑉∙,𝑖

𝑇 − 𝜂∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗(𝑈, 𝑉)

where 𝐽𝑖,𝑗 𝑈, 𝑉 =
1

2
𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖

𝑇 2

∇𝑈𝑗,∙
𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑉∙,𝑖

𝑇

    ∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑈𝑗,∙

SGD for
Partially-
Observed
Low-rank
Matrix 
Factorization
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 while not converged: 

 sample 𝑖, 𝑗  from 𝑍

 compute 𝐸𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇

 update 𝑈𝑗,∙ and 𝑉∙,𝑖
𝑇:

 𝑈𝑗,∙ ← 𝑈𝑗,∙ − 𝜂∇𝑈𝑗,∙
𝐽𝑖,𝑗(𝑈, 𝑉)

 𝑉∙,𝑖
𝑇 ← 𝑉∙,𝑖

𝑇 − 𝜂∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗(𝑈, 𝑉)

where 𝐽𝑖,𝑗 𝑈, 𝑉 =
1

2
𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖

𝑇 2
+

𝜆

2
𝑈 2

2 + 𝑉 2
2

∇𝑈𝑗,∙
𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑉∙,𝑖

𝑇 + 𝜆𝑈𝑗,∙

    ∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗 𝑈, 𝑉 = −𝐸𝑖,𝑗𝑈𝑗,∙ +𝜆𝑉∙,𝑖

Regularized
SGD for
Partially-
Observed
Low-rank
Matrix 
Factorization

234/9/25



SGD for
Partially-
Observed
Low-rank
Matrix 
Factorization

24

 while not converged: 

 sample 𝑖, 𝑗  from 𝑍

 compute 𝐸𝑖,𝑗 = 𝑅𝑖,𝑗 − 𝑂𝑗 + 𝑃𝑖 + 𝑈𝑗,∙𝑉∙,𝑖
𝑇

 update 𝑈𝑗,∙ and 𝑉∙,𝑖
𝑇:

 𝑈𝑗,∙ ← 𝑈𝑗,∙ − 𝜂∇𝑈𝑗,∙
𝐽𝑖,𝑗(𝑈, 𝑉)

 𝑉∙,𝑖
𝑇 ← 𝑉∙,𝑖

𝑇 − 𝜂∇𝑉∙,𝑖
𝑇𝐽𝑖,𝑗(𝑈, 𝑉)

with user and item bias terms 𝑂𝑗  and 𝑃𝑖  respectively:

𝑈 =

𝑈1,∙ 𝑂1 1

𝑈2,∙ 𝑂2 1

⋮ ⋮ ⋮
𝑈𝑚,∙ 𝑂𝑚 1

  and 𝑉𝑇 =
𝑉∙,1

𝑇 𝑉∙,2
𝑇 ⋯ 𝑉∙,𝑛

𝑇

1 1 ⋯ 1
𝑃1 𝑃2 ⋯ 𝑃𝑛
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 Insight: if we knew either 𝑈 or 𝑉𝑇, then solving for the other 

is easy! In fact, it is exactly the same as linear regression!

𝐽 𝑈, 𝑉 =
1

2
෍

𝑖,𝑗 ∈ 𝑍

𝑅𝑖,𝑗 − 𝑈𝑗,∙𝑉∙,𝑖
𝑇 2

vs.

𝐽 𝜃 =
1

2
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝜃𝑇𝑥 𝑖 2

 initialize 𝑈 and 𝑉𝑇

 while not converged:

 Fix 𝑉𝑇  and solve for 𝑈 exactly using ordinary least squares

 Fix 𝑈 and solve for 𝑉𝑇  exactly using ordinary least squares

Alternating 
Least Squares for
Partially-
Observed
Low-rank
Matrix 
Factorization

254/9/25



Low-rank
Matrix 
Factorization: 
Comparison

26

ALS = alternating least squares 

Source: https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf 4/9/25

https://people.cs.umass.edu/~phaas/files/rj10482Updated.pdf


Goal: to predict the values of the missing squares  

Regression vs. 
Collaborative 
Filtering

27

Regression Collaborative Filtering
x1 x2 x3 x4 x5 y item1 item6…

user1

user9

…

…

user5

Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4#Bib1 4/9/25

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4


Low-rank
Matrix 
Factorization: 
Example

28

E

Source: https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4#Bib1 4/9/25

https://link.springer.com/chapter/10.1007/978-3-319-29659-3_4


Learning 
Objectives: 
Recommender 
Systems

You should be able to…

1. Compare and contrast the properties of various 

families of recommender system algorithms: content 

filtering, collaborative filtering, neighborhood 

methods, latent factor methods

2. Formulate a squared error objective function for the 

matrix factorization problem

3. Implement unconstrained matrix factorization with a 

variety of different optimization techniques: gradient 

descent, stochastic gradient descent, alternating least 

squares

4. Offer intuitions for why the parameters learned by 

matrix factorization can be understood as user factors 

and item factors
294/9/25



The Netflix 
Prize: Winners

4/9/25 30Source: https://web.archive.org/web/20090926213457/http://www.netflixprize.com/leaderboard 

https://web.archive.org/web/20090926213457/http:/www.netflixprize.com/leaderboard


Boosting

 An ensemble method combines the predictions of 

multiple “weak” hypotheses to learn a single, more 

powerful classifier

 Boosting is a meta-algorithm: it can be applied to a 

variety of machine learning models

 Commonly used with decision trees

314/9/25



Ranking 
Classifiers
(Caruana & 
Niculescu-Mizil, 
2006)

4/9/25 32Source: https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf 

https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf


Weighted 
Majority 
Algorithm 
(Littlestone & 
Warmuth, 
1994)

 Given: a “pool” 𝒜 of pre-trained binary classifiers 

(that you know nothing about) and a stream of 

data points (i.e., an online learning setting)

 Goal: design a new learner that uses the output of 

classifiers in the pool to make its predictions

 Algorithm: 

 Initially weight all classifiers equally

 Receive a new data point and predict the weighted 

majority vote of the classifiers in the pool

 Down-weight classifiers that contribute to a mistake 

by a factor of 𝛽
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Weighted 
Majority 
Algorithm 
(Littlestone & 
Warmuth, 
1994)
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Weighted 
Majority 
Algorithm 
(Littlestone & 
Warmuth, 
1994)

4/9/25 35

h1

h2

h3

What does the weighted majority 
vote decision boundary look like 

for this pool of classifiers?



Weighted 
Majority 
Algorithm: 
Theory

4/9/25 36Source: https://www.sciencedirect.com/science/article/pii/S0890540184710091 

https://www.sciencedirect.com/science/article/pii/S0890540184710091


Weighted 
Majority 
Algorithm 
vs. 
AdaBoost

Weighted Majority 
Algorithm

 an example of an 

ensemble method

 assumes the classifiers 

are learned ahead of 

time

 only learns (majority 

vote) weight for each 

classifiers

AdaBoost

 an example of a boosting 

method

 simultaneously learns:

 the classifiers 

themselves

 (majority vote) 

weight for each 

classifiers

374/9/25



AdaBoost

 Intuition: iteratively reweight inputs, giving more weight 

to inputs that are difficult-to-predict correctly

 Analogy: 

 You all have to take a test (     ) …

 … but you’re going to be taking it one at a time. 

 After you finish, you get to tell the next person the 

questions you struggled with.

 Hopefully, they can cover for you because…

 … if “enough” of you get a question right, you’ll all 

receive full credit for that problem

384/9/25
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