
Q-Learning
+

Deep RL

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 22

Apr. 2, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: Deep Learning
– Out: Wed Mar-26
– Due: Wed Apr-09 at 11:59pm

• Homework 8: Deep RL
– Out: Wed Apr-09
– Due: Wed Apr-16 at 11:59pm

3

VALUE ITERATION

4

Value Iteration

5

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (deterministic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, δ(s, a) tran‐
sition function)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γV (δ(s, a))

6: Let π(s) = argmax
a
R(s, a) + γV (δ(s, a)), ∀s

7: return π

Value Iteration

6

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π

Value Iteration

7

Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: for a ∈ A do
6: Q(s, a) = R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

7: V (s) = maxa Q(s, a)

8: Let π(s) = argmax
a
Q(s, a), ∀s

9: return π

Variant 2: with Q(s,a) table

Synchronous vs. Asynchronous
Value Iteration

8

asynchronous
updates: compute
and update V(s) for
each state one at a
time

synchronous
updates: compute all
the fresh values of
V(s) from all the stale
values of V(s), then
update V(s) with
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π

Value Iteration Convergence

9

Provides
reasonable

stopping criterion
for value iteration

Often greedy policy
converges well

before the value
function

Holds for both
asynchronous and

sychronous
updates

very abridged

STOCHASTIC REWARDS AND VALUE
ITERATION

11

Q&A

12

Q: What if the rewards are also stochastic?

A: No problem. Everything we’ve been doing here still works
just fine.

Let’s consider how value iteration would look slightly
different though…

RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎, 𝑠′ , 𝑅 ∶ 	𝒮	×	𝒜	×	𝒮 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = 01	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and
executing policy 𝜋

13

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)

Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where 𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#(𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠

14

Optimal Value Function

15

This optimal value function can be represented recursively as:

V ∗(s) = max
a∈A

∑

s
′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

For the optimal policy functionπ∗ we can compute its value function
as:

V π
∗

(s) = V ∗(s)

= E[R(s0,π
∗(s0), s1) + γR(s1,π

∗(s1), s2)

+ γ2R(s2,π
∗(s2), s3) · · · | s0 = s,π∗].

If R(s, a, s′) = R(s, a) (deterministic reward), then we have the
form:

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s
′∈S

p(s′|s, a)V ∗(s′)

}

.

Value Iteration

16

This is (more or less) fixed point iteration applied to the
recursive definition of the optimal value function.

Algorithm 1 Value Iteration (stochastic transitions, stochastic rewards)
1: procedure VALUEITERATION(R(s, a, s′) reward function, p(·|s, a) transition
probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′))

6: Let π(s) = argmax
a

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′)), ∀s
7: return π

Poll Question 1: What is this after the next value iteration update…

Value Iteration (Stochastic Example)

26

s5

s4 s6

6

0

0
3

…

…

… …

p(s4 | s4,→) = 0.1

p(s6 | s4,→) = 0.7

p(s5 | s4,→) = 0.2

V (s) = maxa

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′))

V (s4) = max

⎛

⎝0.8(7 + 1) + 0.2(3 + 1) + 0.1(0 + 0)
︸ ︷︷ ︸

→

,

0.1(7 + 1) + 0.9(3 + 1) + 0.0(0 + 0)
︸ ︷︷ ︸

↑

⎞

⎟
⎠

p(s4 | s4, ↑) = 0.0

p(s5 | s4, ↑) = 0.9

p(s6 | s4, ↑) = 0.1

si V (si)

s4 0
s5 2
s6 1

R(s4, ·, s5) = 3 R(s4, ·, s6) = 7

POLICY ITERATION

27

Policy Iteration

28

Policy Iteration

29

System of |S|
equations and |S|

variables

Compute value
function for fixed

policy is easy

Greedy policy
w.r.t. current

value function

Greedy policy might remain the
same for a particular state if there is

no better action

Value Iteration vs. Policy Iteration
• Value iteration requires

O(|A| |S|2)
computation per iteration

• Policy iteration requires
O(|A| |S|2 + |S|3)
computation per iteration

• In practice, policy iteration
converges in fewer
iterations

31

Learning Objectives
Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value function
7. Explain the relationship between a value function mapping states to expected rewards and a

value function mapping state-action pairs to expected rewards
8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value iteration vs. policy

iteration
11. Identify the conditions under which the value iteration algorithm will converge to the true

value function
12. Describe properties of the policy iteration algorithm

32

Q-LEARNING

33

Q: What can we do if we don’t know the
reward function / transition
probabilities?

34

Today’s lecture is brought to you by the letter Q

35Source: https://en.wikipedia.org/wiki/Avenue_Q#/media/File:Image-AvenueQlogo.png

Today’s lecture is brought to you by the letter Q

36Source: https://vignette1.wikia.nocookie.net/jamesbond/images/9/9a/The_Four_Qs_-_Profile_(2).png/revision/latest?cb=20121102195112

Today’s lecture is brought to you by the letter Q

37Source: https://www.npr.org/2017/06/03/531044118/there-may-not-be-flying-but-quidditch-still-creates-magic

https://www.npr.org/2017/06/03/531044118/there-may-not-be-flying-but-quidditch-still-creates-magic

Value Iteration

38

Variant 1: with Q(s,a) table

Q-Learning Motivation and Q*(s,a)
• Q-Learning Motivation

Q: What if we don’t know R(s,a) or p(s’ | s, a)?
A: Then value iteration and policy iteration don’t work!

• Definition: Let Q*(s,a) be the (true) expected discounted future reward of taking action
a in state s

• Key insight: if we can learn Q*, we can define 𝜋* without knowing R(s,a) or p(s’ | s, a)!

39

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) = R(s, a) + γ
∑

s
′∈S

p(s′ | s, a)V ∗(s′)

= R(s, a) + γ
∑

s
′∈S

p(s′ | s, a)

[

max
a
′

Q∗(s′, a′)

]

non-deterministic
version

Q-Learning Motivation and Q*(s,a)
• Q-Learning Motivation

Q: What if we don’t know R(s,a) or 𝛿(s, a)?
A: Then value iteration and policy iteration don’t work!

• Definition: Let Q*(s,a) be the (true) expected discounted future reward of taking action
a in state s

• Key insight: if we can learn Q*, we can define 𝜋* without knowing R(s,a) or 𝛿(s, a)!

40

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) = R(s, a) + γV ∗(δ(s, a))

= R(s, a) + γ

[

max
a
′

Q∗(δ(s, a), a′)

]

deterministic
version

Algorithm 1 Q‐Learning (deterministic environment)
1: procedure QLEARNING(ε)
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ = δ(s, a)
7: update table entry inQ

Q(s, a)← r + γ max
a
′∈A

Q(s′, a′)

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning
Algorithm

42

produce training
example (s,a,r,s’) we still don’t know R

or 𝛿; these are given
to agent by the

environment

deterministic
version

Algorithm 1 Q‐Learning (deterministic env., ε‐greedy variant)
1: procedure QLEARNING(ε)
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ = δ(s, a)
7: update table entry inQ

Q(s, a)← r + γ max
a
′∈A

Q(s′, a′)

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning
Algorithm

43

we still don’t know R
or 𝛿; these are given

to agent by the
environment

deterministic
version

produce training
example (s,a,r,s’)

Algorithm 1 Q‐Learning (non‐deterministic env., ε‐greedy variant)
1: procedure QLEARNING
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ ∼ p(s′ | s, a)
7: update table entry inQ

Q(s, a)← (1− αn)Q(s, a) + αn(r + γ max
a
′∈A

Q(s′, a′))

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning
Algorithm

44

non-deterministic
version

αn = 1
1+visits(s,a,n)

visits(s, a, n) = # of visits to
(s, a) up to and including step n

current value
in the table

Q-learning update
from deterministic
version

produce training
example (s,a,r,s’)

Algorithm 1 Q‐Learning (non‐deterministic env., ε‐greedy variant)
1: procedure QLEARNING
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ ∼ p(s′ | s, a)
7: update table entry inQ

Q(s, a)← Q(s, a) + αn(r + γ max
a
′∈A

Q(s′, a′)−Q(s, a))

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning
Algorithm

45

non-deterministic
version

αn = 1
1+visits(s,a,n)

visits(s, a, n) = # of visits to
(s, a) up to and including step n

current value
in the table

temporal difference
target

temporal difference

produce training
example (s,a,r,s’)

Learning
𝑄∗(𝑠, 𝑎):
Example

53

7

3

-2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Nield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

54

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

Poll: Which set
of blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

55

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

A.

B. Toxic

C.

D.

5.10

5.10

𝛾 = 0.9

Poll: Which set
of blue arrows
corresponds to
𝑄∗(𝑠, 𝑎)?

56

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

C.

D.

5.10

5.10

𝑉∗ 𝑠 shown in green

Learning
𝑄∗(𝑠, 𝑎):
Example

57

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

0 1

Learning
𝑄∗(𝑠, 𝑎):
Example

58

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"!∈ →,←,↑,↻

𝑄 4, 𝑎) = 0

Learning
𝑄∗(𝑠, 𝑎):
Example

59

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):
Example

60

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

0 1

𝑄 4, ↑ ← 3 + 0.9 max
"!∈ →,←,↑,↻

𝑄 5, 𝑎) = 3

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):
Example

61

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"!∈ →,←,↑,↻

𝑄 4, 𝑎) = 2.7

Learning
𝑄∗(𝑠, 𝑎):
Example

62

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"!∈ →,←,↑,↻

𝑄 4, 𝑎) = 2.7

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

Q-Learning Convergence

Remarks
– Q converges to Q* with probability 1.0, assuming…

1. each <s, a> is visited infinitely often
2. 0 ≤ ɣ < 1
3. rewards are bounded |R(s,a)| < β, for all <s,a>
4. initial Q values are finite
5. Learning rate 𝛼% follows some “schedule” s.t. ∑%&'(𝛼% =

∞ and ∑%&'(𝛼%) = 0, e.g., 𝛼% = ⁄* %+*

– Q-Learning is exploration insensitive
⇒ visiting the states in any order will work
assuming point 1 is satisfied

– May take many iterations to converge in practice
64

Reordering Experiences

65

0

0

0

0

100

0

arrows show R(s,a)

𝛾 = 0.9
𝒮 = {A, B, C, D}
𝒜 = {E, W}
Q(s,a) = 0 at the start

i s a r s’

1 A E 0 B

2 B E 0 C

3 C E 100 D

Q(A, E) = 0

Q(B, E) = 0

Q(C, E) = 100

1. Suppose we visit states as below

i s a r s’

1 C E 100 D

2 B E 0 C

3 A E 0 B

Q(C, E) = 100

Q(B, E) = 90

Q(A, E) = 81

2. Suppose we visit states in reverse

Easiest maze ever!
A B C D

Designing State Spaces

66

Q: Do we have to retrain our RL agent every
time we change our state space?

A: Yes. But whether your state space changes
from one setting to another is determined
by your design of the state representation.

Two examples:
• State Space A: <x,y> position on map

e.g. st = <74, 152>
• State Space B: window of pixel colors

centered at current Pac Man location
e.g. st =

0 1 0

0 0 0

1 1 1

Poll: Q-Learning
Poll Question 2:
For the R(s,a) values shown on
the arrows below, which are the
corresponding Q*(s,a) values?
Assume discount factor = 0.5.

68

Answer:

0

0

16

0
0 8

8

0

4
16

2
4 8

8

0

8
16

4
4 8

8

0

9
18

2
4 8

8

0

4
8

4
8 8

8

DEEP RL FOR GAME OF GO

70

TD Gammon à Alpha Go

Learning to beat the masters at board games

71

“…the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself…”

(Mitchell, 1997)

THEN NOW

Alpha Go
Game of Go (圍棋)
• 19x19 board
• Players alternately

play black/white
stones

• Goal is to fully
encircle the largest
region on the board

• Simple rules, but
extremely complex
game play

72

AlphaGo (Black) vs. Lee Sedol (White) - Game 2
Final position (AlphaGo wins in 211 moves)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

Alpha Go
• State space is too large to represent explicitly since

 # of sequences of moves is O(bd)
– Go: b=250 and d=150
– Chess: b=35 and d=80

• Key idea:
– Define a neural network to approximate the value function
– Train by policy gradient

73

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: +1 for winning and −1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

Figure from Silver et al. (2016)

Alpha Go

• Results of a
tournament

• From Silver et
al. (2016): “a
230 point gap
corresponds to
a 79%
probability of
winning”

74
Figure from Silver et al. (2016)

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 7

ARTICLE RESEARCH

better in AlphaGo than a value function ()≈ ()θ σv s v sp derived from the
SL policy network.

Evaluating policy and value networks requires several orders of
magnitude more computation than traditional search heuristics. To
efficiently combine MCTS with deep neural networks, AlphaGo uses
an asynchronous multi-threaded search that executes simulations on
CPUs, and computes policy and value networks in parallel on GPUs.
The final version of AlphaGo used 40 search threads, 48 CPUs, and
8 GPUs. We also implemented a distributed version of AlphaGo that

exploited multiple machines, 40 search threads, 1,202 CPUs and
176 GPUs. The Methods section provides full details of asynchronous
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants
of AlphaGo and several other Go programs, including the strongest
commercial programs Crazy Stone13 and Zen, and the strongest open
source programs Pachi14 and Fuego15. All of these programs are based

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a
tournament between different Go programs (see Extended Data Tables
6–11). Each program used approximately 5 s computation time per move.
To provide a greater challenge to AlphaGo, some programs (pale upper
bars) were given four handicap stones (that is, free moves at the start of
every game) against all opponents. Programs were evaluated on an
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,
which roughly corresponds to one amateur dan rank advantage on
KGS38; an approximate correspondence to human ranks is also shown,

horizontal lines show KGS ranks achieved online by that program. Games
against the human European champion Fan Hui were also included;
these games used longer time controls. 95% confidence intervals are
shown. b, Performance of AlphaGo, on a single machine, for different
combinations of components. The version solely using the policy network
does not perform any search. c, Scalability study of MCTS in AlphaGo
with search threads and GPUs, using asynchronous search (light blue) or
distributed search (dark blue), for 2 s per move.

3,500

3,000

2,500

2,000

1,500

1,000

500

0

c

1 2 4 8 16 32

1 2 4 8

12

64

24

112

40

176

64

280

40

Single machine Distributed

a

Rollouts

Value network

Policy network

3,500

3,000

2,500

2,000

1,500

1,000

500

0

b

40

8

Threads

GPUs

3,500

3,000

2,500

2,000

1,500

1,000

500

0

El
o

R
at

in
g

G
nuG

o

Fuego

P
achi

=HQ

C
razy S

tone

Fan H
ui

A
lphaG

o

A
lphaG

o
distributed

P
rofessional
 dan (p)

A
m

ateur
dan (d)

B
eginner
kyu (k)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Figure 5 | How AlphaGo (black, to play) selected its move in an
informal game against Fan Hui. For each of the following statistics,
the location of the maximum value is indicated by an orange circle.
a, Evaluation of all successors s′ of the root position s, using the value
network vθ(s′); estimated winning percentages are shown for the top
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from
root position s; averaged over value network evaluations only (λ = 0).
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).

d, Move probabilities directly from the SL policy network, (|)σp a s ;
reported as a percentage (if above 0.1%). e, Percentage frequency with
which actions were selected from the root during simulations. f, The
principal variation (path with maximum visit count) from AlphaGo’s
search tree. The moves are presented in a numbered sequence. AlphaGo
selected the move indicated by the red circle; Fan Hui responded with the
move indicated by the white square; in his post-game commentary he
preferred the move (labelled 1) predicted by AlphaGo.

Principal variation

Value networka

fPolicy network Percentage of simulations

b c Tree evaluation from rolloutsTree evaluation from value net

d e g

© 2016 Macmillan Publishers Limited. All rights reserved

DEEP Q-LEARNING

75

Deep Q-Learning

76

Question: What if our state space S is too large to represent with a
table?

Examples:
• st = pixels of a video game
• st = continuous values of a sensors in a manufacturing robot
• st = sensor output from a self-driving car

Answer: Use a parametric function to approximate the table entries

Key Idea:
1. Use a neural network Q(s,a; θ) to approximate Q*(s,a)
2. Learn the parameters θ via SGD with training

examples < st, at, rt, st+1 >

Deep
Q-learning:
Model

79

𝑠$

𝑎$
Θ 𝑄 𝑠$, 𝑎$; Θ

𝑠$ Θ

𝑄 𝑠$, 𝑎&; Θ
𝑄 𝑠$, 𝑎); Θ

𝑄 𝑠$, 𝑎*; Θ

⋮

Model 1:

Model 2:

𝐾 = 𝒜

� Represent states using some feature vector 𝑠$ ∈ ℝ+
e.g., 𝑠$ = 1, 0, 0, … , 1 ,

� Define a neural network

Deep
Q-learning:
Model

80

� Represent states using some feature vector 𝑠$ ∈ ℝ+
e.g., 𝑠$ = 1, 0, 0, … , 1 ,

� Define a neural network a bunch of linear regressors
(technically still neural networks…), one for each
action (let 𝐾 = 𝒜)

𝑄 𝑠, 𝑎-; Θ = 𝜃-
,
𝑠	where	Θ =

𝜃&
𝜃)
⋮
𝜃*

∈ ℝ*	×	+

� Goal: 𝐾	×	𝑀 ≪ 𝒮 → computational tractability!

� Gradients are easy: ∇0! 	𝑄 𝑠, 𝑎-; Θ = a0	 if	 𝑗 ≠ 𝑘
𝑠	 if	 𝑗 = 𝑘

Deep
Q-learning:
Model

� Represent states using some feature vector 𝑠$ ∈ ℝ+
e.g., 𝑠$ = 1, 0, 0, … , 1 ,

� Define a neural network a bunch of linear regressors
(technically still neural networks…), one for each
action (let 𝐾 = 𝒜)

𝑄 𝑠, 𝑎-; Θ = 𝜃-
,
𝑠	where	Θ =

𝜃&
𝜃)
⋮
𝜃*

∈ ℝ*	×	+

� Goal: 𝐾	×	𝑀 ≪ 𝒮 → computational tractability!

� Gradients are easy: ∇1	𝑄 𝑠, 𝑎-; Θ =

0
0
⋮
𝑠
⋮
0

81

Row 𝑘

Q-Learning (-ish) Update Rule

• Why don’t we just do an update akin to what we do in
regular Q-Learning?

82

Deep
Q-learning:
Loss Function

� “True” loss

ℓ Θ = f
2	∈	𝒮

f
5	∈	𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ)

1. Use stochastic gradient descent: just consider
one state-action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ 8 the

(temporal difference) target is

𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max
5"	

𝑄 𝑠!, 𝑎!; Θ $ ≡ 𝑦

� Set the parameters in the next iteration
Θ 8%& such that 𝑄 𝑠, 𝑎; Θ 8%& ≈ 𝑦

ℓ Θ 8 , Θ $%& = 𝑦 − 𝑄 𝑠, 𝑎; Θ 8%&
)

83

1. 𝒮 too big to compute this sum

2. Don’t know 𝑄∗

Deep
Q-learning

� Algorithm: Online learning of 𝑄∗ (parametric form)
� Inputs: discount factor 𝛾,

 an initial state 𝑠*,

 learning rate 𝛼
� Initialize parameters Θ *

� For 𝑡 = 0, 1, 2,	 …

� Gather training sample 𝑠+ , 𝑎+ , 𝑟+ , 𝑠+,-
� Update Θ + by taking a step opposite the

gradient

� Θ ./01+ ← Θ +

Θ +,- ← Θ + − 𝛼∇2 " ℓ Θ ./01+ , Θ +

85

where

∇2ℓ Θ ./01+ , Θ + = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ + ∇2 " 𝑄 𝑠, 𝑎; Θ + 	

= 2 𝑟 + 𝛾max
"!	

𝑄 𝑠), 𝑎); Θ ./01+ − 𝑄 𝑠, 𝑎; Θ + ∇2 " 𝑄 𝑠, 𝑎; Θ +

Experience Replay
• Problems with online updates for Deep Q-learning:
– not i.i.d. as SGD would assume
– quickly forget rare experiences that might later be useful to learn from

• Uniform Experience Replay (Lin, 1992):
– Keep a replay memory D = {e1, e2, … , eN} of N most recent experiences

et = <st, at, rt, st+1>
– Alternate two steps:

1. Repeat T times: randomly sample ei from D and apply a Q-Learning update to ei
2. Agent selects an action using epsilon greedy policy to receive new experience

that is added to D

• Prioritized Experience Replay (Schaul et al, 2016)
– similar to Uniform ER, but sample so as to prioritize experiences with

high error

86

DEEP RL FOR ATARI GAMES

87

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing Atari with Deep RL
• Setup: RL

system
observes the
pixels on the
screen

• It receives
rewards as the
game score

• Actions decide
how to move
the joystick /
buttons

88
Figures from David Silver (Intro RL lecture)

Playing Atari games with Deep RL

89Source: https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers

Playing Atari games with Deep RL

91

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders

Random 354 1.2 0 �20.4 157 110 179
Sarsa [3] 996 5.2 129 �19 614 665 271
Contingency [4] 1743 6 159 �17 960 723 268
DQN 4092 168 470 20 1952 1705 581

Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720

HNeat Pixel [8] 1332 4 91 �16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion

This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine
Learning (ICML 2013), pages 1211–1219, 2013.

8

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Figures from Mnih et al. (2013)

Learning Objectives
Reinforcement Learning: Q-Learning

You should be able to…
1. Apply Q-Learning to a real-world environment
2. Implement Q-learning
3. Identify the conditions under which the Q-learning algorithm

will converge to the true value function
4. Adapt Q-learning to Deep Q-learning by employing a neural

network approximation to the Q function
5. Describe the connection between Deep Q-Learning and

regression

92

BIG PICTURE

93

ML Big Picture

94

Learning Paradigms:
What data is available and
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML
Systems:
How to build systems that are
robust, efficient, adaptive,
effective?
1. Data prep
2. Model selection
3. Training (optimization /

search)
4. Hyperparameter tuning on

validation data
5. (Blind) Assessment on test

data

Big Ideas in ML:
Which are the ideas driving
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
pp

lic
at

io
n

A
re

as
Ke

y
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,

Se
ar

ch

Learning Paradigms

95

