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Reminders

• Homework 7: Deep Learning
– Out: Wed Mar-26
– Due: Wed Apr-09 at 11:59pm

• Homework 8: Deep RL
– Out: Wed Apr-09 
– Due: Wed Apr-16 at 11:59pm
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VALUE ITERATION
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Value Iteration
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Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (deterministic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, δ(s, a) tran‐
sition function)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γV (δ(s, a))

6: Let π(s) = argmax
a
R(s, a) + γV (δ(s, a)), ∀s

7: return π



Value Iteration
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Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π



Value Iteration
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Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: for a ∈ A do
6: Q(s, a) = R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

7: V (s) = maxa Q(s, a)

8: Let π(s) = argmax
a
Q(s, a), ∀s

9: return π

Variant 2: with Q(s,a) table



Synchronous vs. Asynchronous
Value Iteration
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asynchronous 
updates: compute 
and update V(s) for 
each state one at a 
time

synchronous 
updates: compute all 
the fresh values of 
V(s) from all the stale 
values of V(s), then 
update V(s) with 
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π



Value Iteration Convergence
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Provides 
reasonable 

stopping criterion 
for value iteration

Often greedy policy 
converges well 

before the value 
function

Holds for both 
asynchronous and 

sychronous 
updates

very abridged



STOCHASTIC REWARDS AND VALUE 
ITERATION
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Q&A
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Q: What if the rewards are also stochastic?

A: No problem. Everything we’ve been doing here still works 
just fine.

Let’s consider how value iteration would look slightly 
different though…



RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎, 𝑠′ , 𝑅 ∶ 	𝒮	×	𝒜	×	𝒮 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = 01	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎  is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋
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Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where  𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#( 𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the 
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠
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Optimal Value Function
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This optimal value function can be represented recursively as:

V ∗(s) = max
a∈A

∑

s
′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

For the optimal policy functionπ∗ we can compute its value function
as:

V π
∗

(s) = V ∗(s)

= E[R(s0,π
∗(s0), s1) + γR(s1,π

∗(s1), s2)

+ γ2R(s2,π
∗(s2), s3) · · · | s0 = s,π∗].

If R(s, a, s′) = R(s, a) (deterministic reward), then we have the
form:

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s
′∈S

p(s′|s, a)V ∗(s′)

}

.



Value Iteration

16

This is (more or less) fixed point iteration applied to the 
recursive definition of the optimal value function.

Algorithm 1 Value Iteration (stochastic transitions, stochastic rewards)
1: procedure VALUEITERATION(R(s, a, s′) reward function, p(·|s, a) transition
probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′))

6: Let π(s) = argmax
a

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′)), ∀s
7: return π



Poll Question 1: What is this after the next value iteration update…

Value Iteration (Stochastic Example)

26

s5

s4 s6

6

0

0
3

…

…

… …

p(s4 | s4,→) = 0.1

p(s6 | s4,→) = 0.7

p(s5 | s4,→) = 0.2

V (s) = maxa

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′))

V (s4) = max

⎛

⎝0.8(7 + 1) + 0.2(3 + 1) + 0.1(0 + 0)
︸ ︷︷ ︸

→

,

0.1(7 + 1) + 0.9(3 + 1) + 0.0(0 + 0)
︸ ︷︷ ︸

↑

⎞

⎟
⎠

p(s4 | s4, ↑) = 0.0

p(s5 | s4, ↑) = 0.9

p(s6 | s4, ↑) = 0.1

si V (si)

s4 0
s5 2
s6 1

R(s4, ·, s5) = 3 R(s4, ·, s6) = 7



POLICY ITERATION
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Policy Iteration
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Policy Iteration
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System of |S| 
equations and |S| 

variables

Compute value 
function for fixed 

policy is easy

Greedy policy 
w.r.t. current 

value function

Greedy policy might remain the 
same for a particular state if there is 

no better action



Value Iteration vs. Policy Iteration
• Value iteration requires 

O(|A| |S|2) 
computation per iteration

• Policy iteration requires 
O(|A| |S|2 + |S|3) 
computation per iteration

• In practice, policy iteration 
converges in fewer 
iterations

31



Learning Objectives
Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value function
7. Explain the relationship between a value function mapping states to expected rewards and a 

value function mapping state-action pairs to expected rewards
8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value iteration vs. policy 

iteration
11. Identify the conditions under which the value iteration algorithm will converge to the true 

value function
12. Describe properties of the policy iteration algorithm

32



Q-LEARNING
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Q: What can we do if we don’t know the 
reward function / transition 
probabilities?

34



Today’s lecture is brought to you by the letter Q

35Source: https://en.wikipedia.org/wiki/Avenue_Q#/media/File:Image-AvenueQlogo.png



Today’s lecture is brought to you by the letter Q

36Source: https://vignette1.wikia.nocookie.net/jamesbond/images/9/9a/The_Four_Qs_-_Profile_(2).png/revision/latest?cb=20121102195112



Today’s lecture is brought to you by the letter Q

37Source: https://www.npr.org/2017/06/03/531044118/there-may-not-be-flying-but-quidditch-still-creates-magic 

https://www.npr.org/2017/06/03/531044118/there-may-not-be-flying-but-quidditch-still-creates-magic


Value Iteration

38

Variant 1: with Q(s,a) table



Q-Learning Motivation and Q*(s,a)
• Q-Learning Motivation

Q: What if we don’t know R(s,a) or p(s’ | s, a)?
A: Then value iteration and policy iteration don’t work!

• Definition: Let Q*(s,a) be the (true) expected discounted future reward of taking action 
a in state s

• Key insight: if we can learn Q*, we can define 𝜋* without knowing R(s,a) or p(s’ | s, a)!

39

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) = R(s, a) + γ
∑

s
′∈S

p(s′ | s, a)V ∗(s′)

= R(s, a) + γ
∑

s
′∈S

p(s′ | s, a)

[

max
a
′

Q∗(s′, a′)

]

non-deterministic 
version



Q-Learning Motivation and Q*(s,a)
• Q-Learning Motivation

Q: What if we don’t know R(s,a) or 𝛿(s, a)?
A: Then value iteration and policy iteration don’t work!

• Definition: Let Q*(s,a) be the (true) expected discounted future reward of taking action 
a in state s

• Key insight: if we can learn Q*, we can define 𝜋* without knowing R(s,a) or 𝛿(s, a)!

40

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) = R(s, a) + γV ∗(δ(s, a))

= R(s, a) + γ

[

max
a
′

Q∗(δ(s, a), a′)

]

deterministic 
version



Algorithm 1 Q‐Learning (deterministic environment)
1: procedure QLEARNING(ε)
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ = δ(s, a)
7: update table entry inQ

Q(s, a)← r + γ max
a
′∈A

Q(s′, a′)

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning 
Algorithm

42

produce training 
example (s,a,r,s’) we still don’t know R 

or 𝛿; these are given 
to agent by the 

environment

deterministic 
version



Algorithm 1 Q‐Learning (deterministic env., ε‐greedy variant)
1: procedure QLEARNING(ε)
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ = δ(s, a)
7: update table entry inQ

Q(s, a)← r + γ max
a
′∈A

Q(s′, a′)

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning 
Algorithm

43

we still don’t know R 
or 𝛿; these are given 

to agent by the 
environment

deterministic 
version

produce training 
example (s,a,r,s’)



Algorithm 1 Q‐Learning (non‐deterministic env., ε‐greedy variant)
1: procedure QLEARNING
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ ∼ p(s′ | s, a)
7: update table entry inQ

Q(s, a)← (1− αn)Q(s, a) + αn(r + γ max
a
′∈A

Q(s′, a′))

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning 
Algorithm

44

non-deterministic 
version

αn = 1
1+visits(s,a,n)

visits(s, a, n) = # of visits to
(s, a) up to and including step n

current value 
in the table

Q-learning update 
from deterministic 
version

produce training 
example (s,a,r,s’)



Algorithm 1 Q‐Learning (non‐deterministic env., ε‐greedy variant)
1: procedure QLEARNING
2: Initialize s andQ(s, a) = 0 for all s, a
3: while true do
4: select action a and execute

with prob. (1− ε) : select a = maxa
′∈A Q(s, a′)

with prob. ε : select a ∈ A randomly

5: receive reward r = R(s, a)
6: observe new state s′ ∼ p(s′ | s, a)
7: update table entry inQ

Q(s, a)← Q(s, a) + αn(r + γ max
a
′∈A

Q(s′, a′)−Q(s, a))

8: s = s′

9: Let π(s) = argmax
a
Q(s, a), ∀s

10: return π

Q-Learning 
Algorithm

45

non-deterministic 
version

αn = 1
1+visits(s,a,n)

visits(s, a, n) = # of visits to
(s, a) up to and including step n

current value 
in the table

temporal difference
target

temporal difference

produce training 
example (s,a,r,s’)



Learning
𝑄∗(𝑠, 𝑎): 
Example

53

7

3

-2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Nield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9



Learning
𝑄∗(𝑠, 𝑎): 
Example

54

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9



Poll: Which set 
of blue arrows
(roughly) 
corresponds to 
𝑄∗(𝑠, 𝑎)?
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

A.

B. Toxic

C.

D.

5.10

5.10

𝛾 = 0.9



Poll: Which set 
of blue arrows 
corresponds to 
𝑄∗(𝑠, 𝑎)?

56

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

C.

D.

5.10

5.10

𝑉∗ 𝑠  shown in green



Learning
𝑄∗(𝑠, 𝑎): 
Example

57

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9

0 1



Learning
𝑄∗(𝑠, 𝑎): 
Example

58

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"!∈ →,←,↑,↻

𝑄 4, 𝑎) = 0



Learning
𝑄∗(𝑠, 𝑎): 
Example

59

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9

0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0



Learning
𝑄∗(𝑠, 𝑎): 
Example

60

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9

0 1

𝑄 4, ↑ ← 3 + 0.9 max
"!∈ →,←,↑,↻

𝑄 5, 𝑎) = 3

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0



Learning
𝑄∗(𝑠, 𝑎): 
Example

61

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"!∈ →,←,↑,↻

𝑄 4, 𝑎) = 2.7



Learning
𝑄∗(𝑠, 𝑎): 
Example

62

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"!∈ →,←,↑,↻

𝑄 4, 𝑎) = 2.7

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0



Q-Learning Convergence

Remarks
– Q converges to Q* with probability 1.0, assuming…

1. each <s, a> is visited infinitely often
2. 0 ≤ ɣ < 1
3. rewards are bounded |R(s,a)| < β, for all <s,a>  
4. initial Q values are finite
5. Learning rate 𝛼% follows some “schedule” s.t.  ∑%&'( 𝛼% =

∞ and ∑%&'( 𝛼%) = 0, e.g., 𝛼% = ⁄* %+* 

– Q-Learning is exploration insensitive
⇒ visiting the states in any order will work 
assuming point 1 is satisfied

– May take many iterations to converge in practice
64



Reordering Experiences

65

0

0

0

0

100

0

arrows show R(s,a)

𝛾 = 0.9
𝒮 = {A, B, C, D}
𝒜 = {E, W}
Q(s,a) = 0 at the start

i s a r s’

1 A E 0 B

2 B E 0 C

3 C E 100 D

Q(A, E) = 0

Q(B, E) = 0

Q(C, E) = 100

1. Suppose we visit states as below

i s a r s’

1 C E 100 D

2 B E 0 C

3 A E 0 B

Q(C, E) = 100

Q(B, E) = 90

Q(A, E) = 81

2. Suppose we visit states in reverse

Easiest maze ever!
A B C D



Designing State Spaces

66

Q: Do we have to retrain our RL agent every 
time we change our state space?

A: Yes. But whether your state space changes 
from one setting to another is determined 
by your design of the state representation.

Two examples:
• State Space A: <x,y> position on map

e.g. st = <74, 152>
• State Space B: window of pixel colors 

centered at current Pac Man location
e.g. st = 

 

0 1 0

0 0 0

1 1 1



Poll: Q-Learning
Poll Question 2: 
For the R(s,a) values shown on 
the arrows below, which are the 
corresponding Q*(s,a) values?
Assume discount factor = 0.5.

68

Answer:

0

0

16

0
0 8

8

0

4
16

2
4 8

8

0

8
16

4
4 8

8

0

9
18

2
4 8

8

0

4
8

4
8 8

8



DEEP RL FOR GAME OF GO

70



TD Gammon à Alpha Go

Learning to beat the masters at board games

71

“…the world’s top computer 
program for backgammon, 
TD-GAMMON (Tesauro, 
1992, 1995), learned its 
strategy by playing over one 
million practice games 
against itself…”

(Mitchell, 1997)

THEN NOW



Alpha Go
Game of Go (圍棋)
• 19x19 board
• Players alternately 

play black/white 
stones

• Goal is to fully 
encircle the largest 
region on the board

• Simple rules, but 
extremely complex 
game play

72

AlphaGo (Black) vs. Lee Sedol (White) - Game 2 
Final position (AlphaGo wins in 211 moves) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol



Alpha Go
• State space is too large to represent explicitly since

 # of sequences of moves is O(bd) 
– Go: b=250 and d=150
– Chess: b=35 and d=80

• Key idea: 
– Define a neural network to approximate the value function
– Train by policy gradient
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Alpha Go

• Results of a 
tournament

•  From Silver et 
al. (2016): “a 
230 point gap 
corresponds to 
a 79% 
probability of 
winning”

74
Figure from Silver et al. (2016)
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ = 0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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DEEP Q-LEARNING
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Deep Q-Learning
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Question: What if our state space S is too large to represent with a 
table?

Examples:
• st = pixels of a video game
• st = continuous values of a sensors in a manufacturing robot
• st = sensor output from a self-driving car

Answer: Use a parametric function to approximate the table entries

Key Idea:
1. Use a neural network Q(s,a; θ) to approximate Q*(s,a)
2. Learn the parameters θ via SGD with training 

examples < st, at, rt, st+1 >



Deep 
Q-learning:
Model

79

𝑠$

𝑎$
Θ 𝑄 𝑠$, 𝑎$; Θ

𝑠$ Θ

𝑄 𝑠$, 𝑎&; Θ
𝑄 𝑠$, 𝑎); Θ

𝑄 𝑠$, 𝑎*; Θ

⋮

Model 1:

Model 2:

𝐾 = 𝒜

� Represent states using some feature vector 𝑠$ ∈ ℝ+ 
e.g., 𝑠$ = 1, 0, 0, … , 1 ,

� Define a neural network



Deep 
Q-learning:
Model

80

� Represent states using some feature vector 𝑠$ ∈ ℝ+ 
e.g., 𝑠$ = 1, 0, 0, … , 1 ,

� Define a neural network a bunch of linear regressors 
(technically still neural networks…), one for each 
action (let 𝐾 = 𝒜 )

𝑄 𝑠, 𝑎-; Θ = 𝜃-
,
𝑠	where	Θ =

𝜃&
𝜃)
⋮
𝜃*

∈ ℝ*	×	+

� Goal: 𝐾	×	𝑀 ≪ 𝒮 → computational tractability!  

� Gradients are easy: ∇0! 	𝑄 𝑠, 𝑎-; Θ = a0	 if	 𝑗 ≠ 𝑘
𝑠	 if	 𝑗 = 𝑘



Deep 
Q-learning:
Model

� Represent states using some feature vector 𝑠$ ∈ ℝ+ 
e.g., 𝑠$ = 1, 0, 0, … , 1 ,

� Define a neural network a bunch of linear regressors 
(technically still neural networks…), one for each 
action (let 𝐾 = 𝒜 )

𝑄 𝑠, 𝑎-; Θ = 𝜃-
,
𝑠	where	Θ =

𝜃&
𝜃)
⋮
𝜃*

∈ ℝ*	×	+

� Goal: 𝐾	×	𝑀 ≪ 𝒮 → computational tractability!  

� Gradients are easy: ∇1	𝑄 𝑠, 𝑎-; Θ =

0
0
⋮
𝑠
⋮
0
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Row 𝑘



Q-Learning (-ish) Update Rule

• Why don’t we just do an update akin to what we do in 
regular Q-Learning?
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Deep 
Q-learning:
Loss Function

� “True” loss

ℓ Θ = f
2	∈	𝒮

f
5	∈	𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ )

1. Use stochastic gradient descent: just consider 
one state-action pair in each iteration

2. Use temporal difference learning: 
� Given current parameters Θ 8  the 

(temporal difference) target is 

𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max
5"	

𝑄 𝑠!, 𝑎!; Θ $ ≡ 𝑦

� Set the parameters in the next iteration 
Θ 8%&  such that 𝑄 𝑠, 𝑎; Θ 8%& ≈ 𝑦

ℓ Θ 8 , Θ $%& = 𝑦 − 𝑄 𝑠, 𝑎; Θ 8%&
)

83

1. 𝒮 too big to compute this sum

2. Don’t know 𝑄∗ 



Deep 
Q-learning

� Algorithm: Online learning of 𝑄∗ (parametric form)
� Inputs: discount factor 𝛾, 

  an initial state 𝑠*,

  learning rate 𝛼
� Initialize parameters Θ *  

� For 𝑡 = 0, 1, 2,	 …

� Gather training sample 𝑠+ , 𝑎+ , 𝑟+ , 𝑠+,-
� Update Θ +  by taking a step opposite the 

gradient

� Θ ./01+ ← Θ +

Θ +,- ← Θ + − 𝛼∇2 " ℓ Θ ./01+ , Θ +

85

where

∇2ℓ Θ ./01+ , Θ + = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ + ∇2 " 𝑄 𝑠, 𝑎; Θ + 	

= 2 𝑟 + 𝛾max
"!	

𝑄 𝑠), 𝑎); Θ ./01+ − 𝑄 𝑠, 𝑎; Θ + ∇2 " 𝑄 𝑠, 𝑎; Θ +



Experience Replay
• Problems with online updates for Deep Q-learning:
– not i.i.d. as SGD would assume
– quickly forget rare experiences that might later be useful to learn from

• Uniform Experience Replay (Lin, 1992):
– Keep a replay memory D = {e1, e2, … , eN} of N most recent experiences 

et = <st, at, rt, st+1>
– Alternate two steps:

1. Repeat T times: randomly sample ei from D and apply a Q-Learning update to ei 
2. Agent selects an action using epsilon greedy policy to receive new experience 

that is added to D

• Prioritized Experience Replay (Schaul et al, 2016)
– similar to Uniform ER, but sample so as to prioritize experiences with 

high error
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DEEP RL FOR ATARI GAMES
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Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing Atari with Deep RL
• Setup:  RL 

system 
observes the 
pixels on the 
screen

• It receives 
rewards as the 
game score

• Actions decide 
how to move 
the joystick / 
buttons
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Figures from David Silver (Intro RL lecture)



Playing Atari games with Deep RL

89Source: https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers



Playing Atari games with Deep RL
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B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders

Random 354 1.2 0 �20.4 157 110 179
Sarsa [3] 996 5.2 129 �19 614 665 271
Contingency [4] 1743 6 159 �17 960 723 268
DQN 4092 168 470 20 1952 1705 581

Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720

HNeat Pixel [8] 1332 4 91 �16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion

This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.
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Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Figures from Mnih et al. (2013)



Learning Objectives
Reinforcement Learning: Q-Learning

You should be able to…
1. Apply Q-Learning to a real-world environment
2. Implement Q-learning
3. Identify the conditions under which the Q-learning algorithm 

will converge to the true value function
4. Adapt Q-learning to Deep Q-learning by employing a neural 

network approximation to the Q function
5. Describe the connection between Deep Q-Learning and 

regression
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BIG PICTURE
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

 

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete & 
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Learning Paradigms
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