

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Q-Learning + Deep RL

Matt Gormley & Henry Chai Lecture 22 Apr. 2, 2025

Reminders

- Homework 7: Deep Learning
 - Out: Wed Mar-26
 - Due: Wed Apr-09 at 11:59pm
- Homework 8: Deep RL
 - Out: Wed Apr-09
 - Due: Wed Apr-16 at 11:59pm

VALUE ITERATION

Algorithm 1 Value Iteration (deterministic transitions)

7:

```
1: procedure VALUEITERATION(R(s,a) reward function, \delta(s,a) tran-
   sition function)
       Initialize value function V(s) = 0 or randomly
       while not converged do
3:
            for s \in \mathcal{S} do
4:
                V(s) = \max_{a} R(s, a) + \gamma V(\delta(s, a))
5:
       Let \pi(s) = \operatorname{argmax}_a R(s, a) + \gamma V(\delta(s, a)), \ \forall s
6:
       return \pi
```

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (stochastic transitions)

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a) transition probabilities)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')
6: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
7: return \pi
```

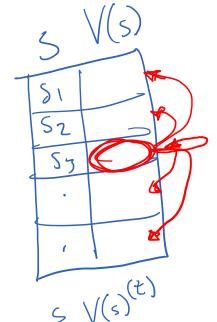
Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (stochastic transitions)

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a)
   transition probabilities)
       Initialize value function V(s) = 0 or randomly
2:
       while not converged do
3:
           for s \in \mathcal{S} do
4:
                for a \in \mathcal{A} do
5:
                    Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')
6:
                V(s) = \max_a Q(s, a)
7:
       Let \pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s
8:
       return \pi
9:
```

Variant 2: with Q(s,a) table

Synchronous vs. Asynchronous Value Iteration



Algorithm 1 Asynchronous Value Iteration

```
1: procedure AsynchronousValueIteration(R(s,a), p(\cdot|s,a))
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')
6: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
7: return \pi
```

asynchronous updates: compute and update V(s) for each state one at a time

Algorithm 1 Synchronous Value Iteration

```
1: procedure SYNCHRONOUSVALUEITERATION(R(s,a), p(\cdot|s,a))
2: Initialize value function V(s)^{(0)} = 0 or randomly
3: t = 0
4: while not converged do
5: for s \in \mathcal{S} do
6: V(s)^{(t+1)} = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V(s')^{(t)}
7: t = t + 1
8: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V(s'), \forall s
9: return \pi
```

wpdates: compute all the fresh values of V(s) from all the stale values of V(s), then update V(s) with fresh values

Value Iteration Convergence

very abridged

Theorem 1 (Bertsekas (1989))

V converges to V^{*} , if each state is visited infinitely often

Theorem 2 (Williams & Baird (1993))

$$\begin{split} &\text{if } max_s|V^{t+1}(s)-V^t(s)|<\epsilon\\ &\text{then } max_s|V^{t+1}(s)-V^*(s)|<\frac{2\epsilon\gamma}{1-\gamma},\ \forall s \end{split}$$

Theorem 3 (Bertsekas (1987))

greedy policy will be optimal in a finite number of steps (even if not converged to optimal value function!)

Holds for both asynchronous and sychronous updates

Provides reasonable stopping criterion for value iteration

Often greedy policy converges well before the value function

STOCHASTIC REWARDS AND VALUE ITERATION

Q&A

Q: What if the rewards are also stochastic?

A: No problem. Everything we've been doing here still works just fine.

Let's consider how value iteration would look slightly different though...

RL: Components

From the Environment (i.e. the MDP)

- State space, *S*
- Action space, A
- Reward function, R(s, a, s'), $R: S \times A \times S \rightarrow \mathbb{R}$
- Transition probabilities, p(s' | s, a)
 - Deterministic transitions:

$$p(s' \mid s, a) = \begin{cases} 1 \text{ if } \delta(s, a) = s' \\ 0 \text{ otherwise} \end{cases}$$

where $\delta(s, a)$ is a transition function

Markov Assumption

$$p(s_{t+1} \mid s_t, a_t, \dots, s_1, a_1) = p(s_{t+1} \mid s_t, a_t)$$

From the Model

- Policy, $\pi: \mathcal{S} \to \mathcal{A}$
- Value function, $V^{\pi}: \mathcal{S} \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state s and executing policy π

Markov Decision Processes (MDP)

In RL, the source of our data is an MDP:

- 1. Start in some initial state $s_0 \in S$
- 2. For time step t:
 - 1. Agent observes state $s_t \in S$
 - 2. Agent takes action $a_t \in \mathcal{A}$ where $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \in \mathbb{R}$ where $r_t = R(s_t, a_t, s_{t+1})$
 - 4. Agent transitions to state $s_{t+1} \in S$ where $s_{t+1} \sim p(s' \mid s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$
 - The value γ is the "discount factor", a hyperparameter $0 < \gamma < 1$
- Makes the same Markov assumption we used for HMMs! The next state only depends on the current state and action.
- Def.: we execute a policy π by taking action $a = \pi(s)$ when in state s

Optimal Value Function

For the optimal policy function π^* we can compute its **value function** as:

$$V^{\pi^*}(s) = V^*(s)$$

$$= \mathbb{E}[R(s_0, \pi^*(s_0), s_1) + \gamma R(s_1, \pi^*(s_1), s_2) + \gamma^2 R(s_2, \pi^*(s_2), s_3) \cdots \mid s_0 = s, \pi^*].$$

This **optimal value function** can be represented recursively as:

$$V^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} p(s'|s, a) (R(s, a, s') + \gamma V^*(s')).$$

If R(s, a, s') = R(s, a) (deterministic reward), then we have the form:

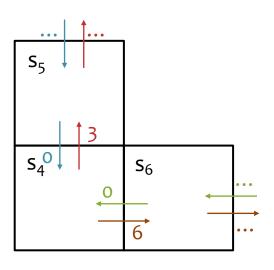
$$V^*(s) = \max_{a \in \mathcal{A}} \left\{ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\}.$$

Algorithm 1 Value Iteration (stochastic transitions, stochastic rewards)

```
1: procedure VALUEITERATION(R(s,a,s') reward function, p(\cdot|s,a) transition probabilities)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a \sum_{s' \in \mathcal{S}} p(s'|s,a)(R(s,a,s') + \gamma V(s'))
6: Let \pi(s) = \operatorname{argmax}_a \sum_{s' \in \mathcal{S}} p(s'|s,a)(R(s,a,s') + \gamma V(s')), \forall s
7: return \pi
```

This is (more or less) fixed point iteration applied to the recursive definition of the optimal value function.

Value Iteration (Stochastic Example)



$$\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$$

$$R(s_4, \cdot, s_5) = 3$$
 $R(s_4, \cdot, s_6) = 6$
 $p(s_4 \mid s_4, \to) = 0.1$ $p(s_4 \mid s_4, \uparrow) = 0.0$
 $p(s_6 \mid s_4, \to) = 0.7$ $p(s_5 \mid s_4, \uparrow) = 0.9$
 $p(s_5 \mid s_4, \to) = 0.2$ $p(s_6 \mid s_4, \uparrow) = 0.1$

$$V(s) = \max_{a} \sum_{s' \in \mathcal{S}} p(s'|s, a) (R(s, a, s') + \gamma V(s'))$$

Poll Question 1: What is this after the next value iteration update...

$$V(s_4) = \text{Max} \left(0.1(0+0) + 0.7(6+1.1) + 0.2(3+1.2) \right),$$

$$0.0(0+0) + 0.1(6+1.1) + 0.9(3+1.2) \right)$$

POLICY ITERATION

Policy Iteration

Algorithm 1 Policy Iteration

- 1: **procedure** PolicyIteration(R(s,a) reward function, $p(\cdot|s,a)$ transition probabilities)
- 2: Initialize policy π randomly
- 3: while not converged do
- 4: Solve Bellman equations for fixed policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s'), \ \forall s$$

5: Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π



Policy Iteration

Algorithm 1 Policy Iteration

1: **procedure** PolicyIteration(R(s,a)transition probabilities)

Compute value function for fixed 1, $p(\cdot|s,a)$ policy is easy

System of |S| equations and |S| variables

- Initialize policy π randomly 2:
- while not converged do 3:
- Solve Bellman equations for fixed policy π 4:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s'), \ \forall s$$

Improve policy π using new value function 5:

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π

Greedy policy w.r.t. current value function

Greedy policy might remain the **same** for a particular state if there is no better action

Value Iteration vs. Policy Iteration

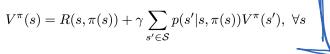
- Value iteration requires
 O(|A| |S|²)
 computation per iteration
- Policy iteration requires
 O(|A||S|² + |S|³)
 computation per iteration
- In practice, policy iteration converges in fewer iterations

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a) transition probabilities)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')
6: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
7: return \pi
```

Algorithm 1 Policy Iteration

- 1: **procedure** POLICYITERATION(R(s,a) reward function, $p(\cdot|s,a)$ transition probabilities)
- 2: Initialize policy π randomly
- 3: **while** not converged **do**
- : Solve Bellman equations for fixed policy π



Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π

5:

Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to...

- 1. Compare the reinforcement learning paradigm to other learning paradigms
- 2. Cast a real-world problem as a Markov Decision Process
- 3. Depict the exploration vs. exploitation tradeoff via MDP examples
- 4. Explain how to solve a system of equations using fixed point iteration
- 5. Define the Bellman Equations
- 6. Show how to compute the optimal policy in terms of the optimal value function
- 7. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
- 8. Implement value iteration
- 9. Implement policy iteration
- 10. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
- 11. Identify the conditions under which the value iteration algorithm will converge to the true value function
- 12. Describe properties of the policy iteration algorithm

Q-LEARNING

What can we do if we don't know the reward function / transition probabilities?

Today's lecture is brought to you by the letter Q

Today's lecture is brought to you by the letter Q

Today's lecture is brought to you by the letter Q

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a)
   transition probabilities)
       Initialize value function V(s) = 0 or randomly
2:
       while not converged do
3:
           for s \in \mathcal{S} do
4:
                for a \in \mathcal{A} do
5:
                    Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')
6:
                V(s) = \max_a Q(s, a)
7:
       Let \pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s
8:
       return \pi
9:
```

Variant 1: with Q(s,a) table

Q-Learning Motivation and Q*(s,a)

Q-Learning Motivation

Q: What if we don't know R(s,a) or $p(s' \mid s, a)$?

A: Then value iteration and policy iteration don't work!

Definition: Let Q*(s,a) be the (true) expected discounted future reward of taking action a in states and followy TX from there

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{*}(s')$$

$$= R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) \left[\max_{a'} Q^{*}(s', a') \right]$$

Key insight: if we can learn Q*, we can define π^* without knowing R(s,a) or p(s' | s, a)!

$$\Pi^*(s) = \alpha r_s m \alpha \times Q^*(s,a)$$

non-deterministic

version

Q-Learning Motivation and Q*(s,a)

Q-Learning Motivation

Q: What if we don't know R(s,a) or δ (s, a)?

A: Then value iteration and policy iteration don't work!

• **Definition**: Let Q*(s,a) be the (true) expected discounted future reward of taking action a in state s

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = R(s, a) + \gamma V^*(\delta(s, a))$$

$$Q^*(s, a) = R(s, a) + \gamma \left[\max_{a'} Q^*(\delta(s, a), a') \right]$$

• **Key insight:** if we can learn Q*, we can define π * without knowing R(s,a) or δ (s, a)!

deterministic version

deterministic version

produce training
example (s,a,r,s')

Algorithm 1 Q-Learning (deterministic environment)

- 1: **procedure** QLEARNING(ϵ)
- Initialize s and Q(s,a)=0 for all s,a
- 3: **while** true **do**
- a: select action a and execute

receive reward
$$r = R(s, a)$$

observe new state $s' = \delta(s, a)$
update table entry in Q

we still don't know R or δ ; these are given to agent by the environment

$$Q(s, a) \leftarrow r + \gamma \max_{a' \in \mathcal{A}} Q(s', a')$$

8:
$$s = s'$$

9: Let
$$\pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s$$

10: return π

deterministic version

produce training
example (s,a,r,s')

exploration exploitation **Algorithm 1** Q-Learning (deterministic env., ϵ -greedy variant)

1: **procedure** QLEARNING(ϵ)

2: Initialize s and Q(s,a)=0 for all s,a

s: **while** true **do**

4: select action a and execute

with prob. $(1 - \epsilon)$: select $a = \max_{a' \in \mathcal{A}} Q(s, a')$

with prob. ϵ : select $a \in \mathcal{A}$ randomly

receive reward r = R(s, a)observe new state $s' = \delta(s, a)$ update table entry in Q we still don't know R or δ ; these are given to agent by the environment

$$Q(s, a) \leftarrow r + \gamma \max_{a' \in \mathcal{A}} Q(s', a')$$

8:
$$s = s'$$

7:

9: Let $\pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s$

10: return π

non-deterministic version

produce training example (s,a,r,s')

$\alpha_n = \frac{1}{1+\mathrm{visits}(s,a,n)}$ visits(s,a,n) = # of visits to (s,a) up to and including step n

Algorithm 1 Q-Learning (non-deterministic env., ϵ -greedy variant)

```
1: procedure QLEARNING
```

- Initialize s and Q(s,a) = 0 for all s,a
- : while true do
- 4: select action a and execute

with prob.
$$(1 - \epsilon)$$
: select $a = \max_{a' \in \mathcal{A}} Q(s, a')$

with prob. ϵ : select $a \in \mathcal{A}$ randomly

- : receive reward $r = R(s, a_{\bullet}, s')$
- observe new state $s' \sim p(s' \mid s, a)$
- q: update table entry in Q

$$Q(s,a) \leftarrow (1 - \alpha_n)Q(s,a) + \alpha_n(r + \gamma \max_{a' \in \mathcal{A}} Q(s',a'))$$

$$s = s'$$

Let
$$\pi(s) = \operatorname{argmax}_a Q(s, a)$$
, $\forall s$ urrent value return π in the table

Q-learning update from deterministic version

non-deterministic version

produce training
example (s,a,r,s')

 $\alpha_n = \frac{1}{1+\mathrm{visits}(s,a,n)}$ visits(s,a,n) = # of visits to (s,a) up to and including step n

Algorithm 1 Q-Learning (non-deterministic env., ϵ -greedy variant)

```
1: procedure QLEARNING
```

- Initialize s and Q(s,a) = 0 for all s,a
- : while true do
- 4: select action a and execute

with prob.
$$(1 - \epsilon)$$
: select $a = \max_{a' \in \mathcal{A}} Q(s, a')$

with prob. ϵ : select $a \in \mathcal{A}$ randomly

receive reward
$$r = R(s, a)$$

observe new state
$$s' \sim p(s' \mid s, a)$$

update table entry in Q

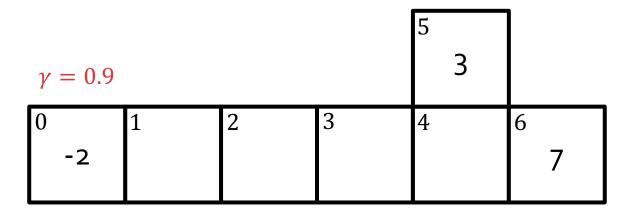
$$Q(s,a) \leftarrow Q(s,a) + \alpha_n(r + \gamma \max_{a' \in \mathcal{A}} Q(s',a') - Q(s,a))$$

$$s = s'$$

Let
$$\pi(s) = \operatorname{argmax}_a Q$$
 in the table

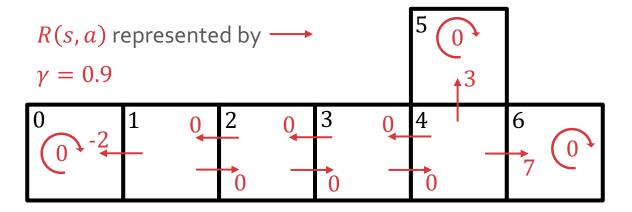
temporal difference target

Learning $Q^*(s,a)$: Example

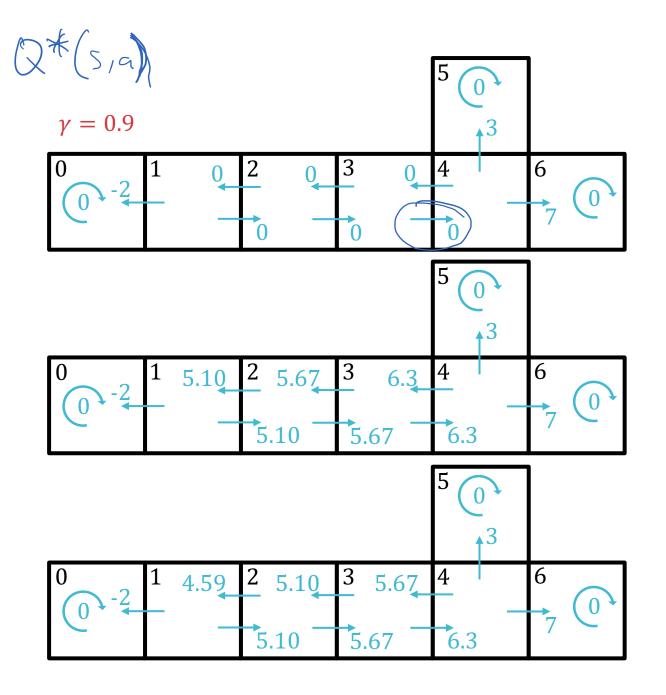


$$R(s,a) = \begin{cases} -2 & \text{if entering state 0 (safety)} \\ 3 & \text{if entering state 5 (field goal)} \\ 7 & \text{if entering state 6 (touch down)} \\ 0 & \text{otherwise} \end{cases}$$

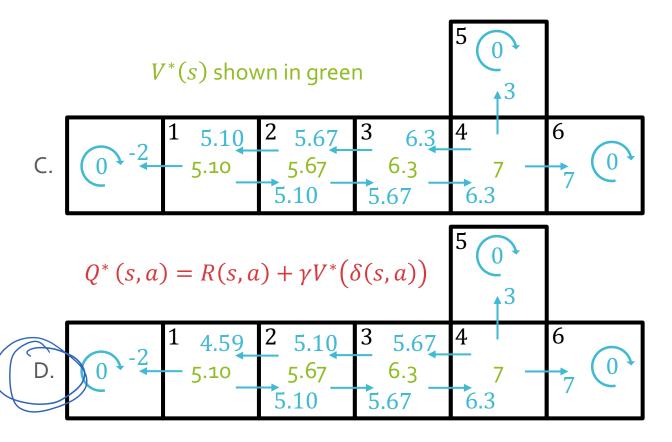
Learning $Q^*(s,a)$: Example

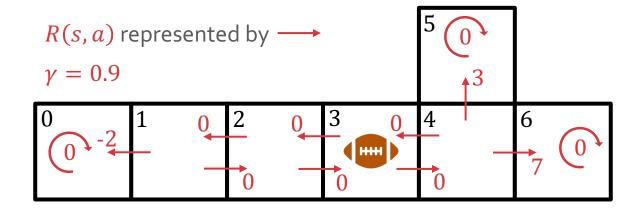


Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?

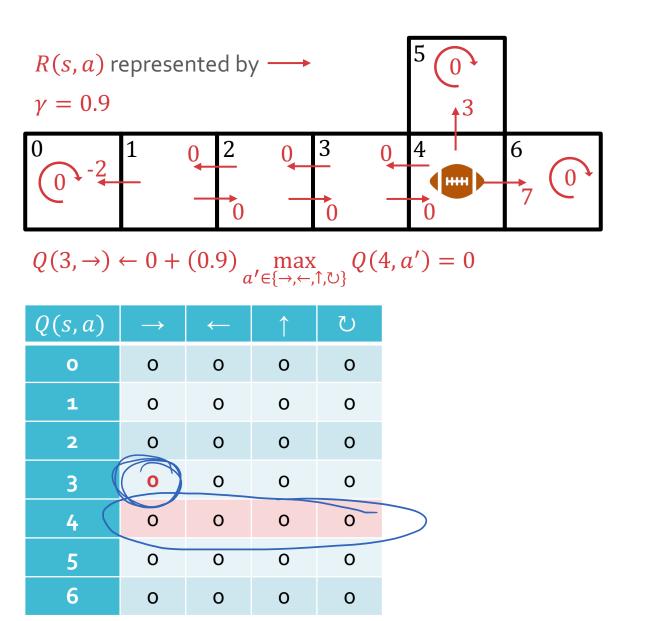


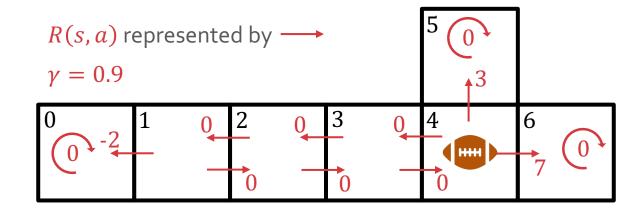
Poll: Which set of blue arrows corresponds to $Q^*(s,a)$?



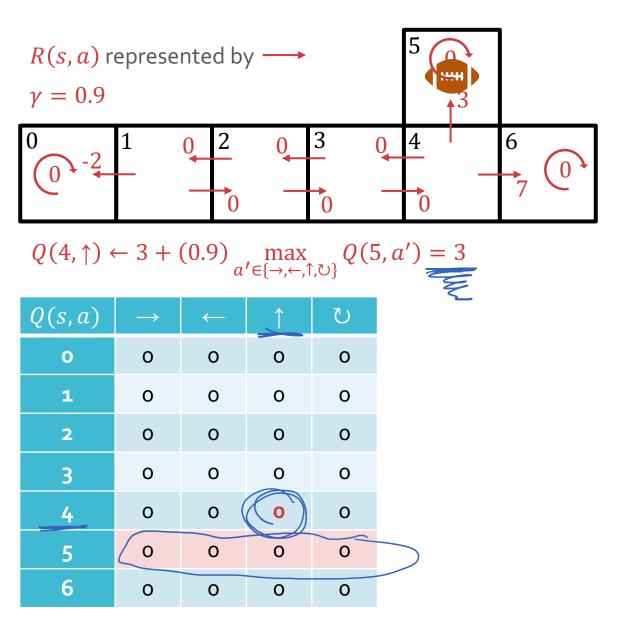


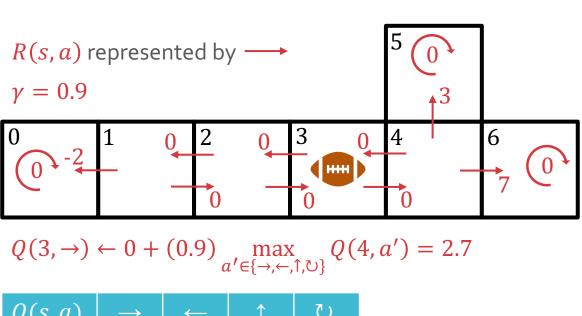
Q(s,a)	\rightarrow	←	↑	ひ
O	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0

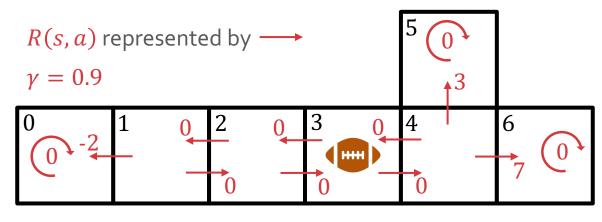




Q(s,a)	\rightarrow	←	↑	U
O	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0







$$Q(3,\rightarrow) \leftarrow 0 + (0.9) \max_{a' \in \{\rightarrow,\leftarrow,\uparrow,\cup\}} Q(4,a') = 2.7$$

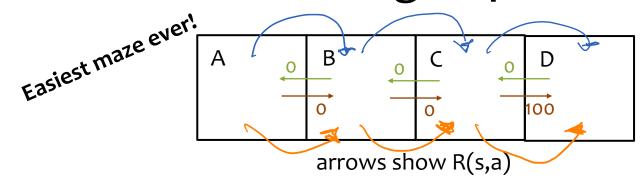
Q(s,a)	\rightarrow	←	1	ひ
O	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	2.7	0	0	0
4	0	0	3	0
5	0	0	0	0
6	0	0	0	0

Q-Learning Convergence

Remarks

- Q converges to Q* with probability 1.0, assuming...
 - 1. each <s, a> is visited infinitely often
 - 2. $0 \le \% < 1$
 - 3. rewards are bounded $|R(s,a)| < \beta$, for all $< s,a > \beta$
 - 4. initial Q values are finite
 - 5. Learning rate α_t follows some "schedule" s.t. $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 = 0$, e.g., $\alpha_t = \frac{1}{t+1}$
- Q-Learning is exploration insensitive
 ⇒ visiting the states in any order will work assuming point 1 is satisfied
- May take many iterations to converge in practice

Reordering Experiences



$$\gamma = 0.9$$

 $S = \{A, B, C, D\}$
 $A = \{E, W\}$
 $Q(s,a) = 0$ at the start

1. Suppose we visit states as below

i	S	а	r	s'
1	Α	E	o	В
2	В	E	0	C
3	C	E	100	D

$$Q(A, E) = 0$$

 $Q(B, E) = 0$
 $Q(C, E) = 100$

2. Suppose we visit states in reverse

i	S	а	r	s'	
1	C	Е	100	D ~	→ Q(C, E) = 100
2	В	E	0	C -	Q(B, E) = 90
3	Α	Е	0	В	Q(A, E) = 81

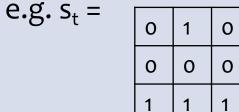
Designing State Spaces

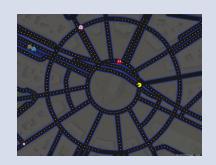
Q: Do we have to retrain our RL agent every time we change our state space?

A: Yes. But whether your state space changes from one setting to another is determined by your design of the state representation.

Two examples:

- State Space A: <x,y> position on map
 e.g. s_t = <74, 152>
- State Space B: window of pixel colors centered at current Pac Man location



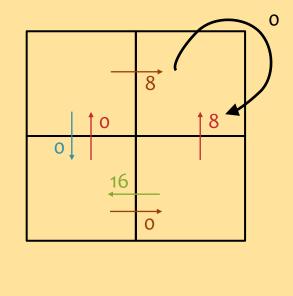


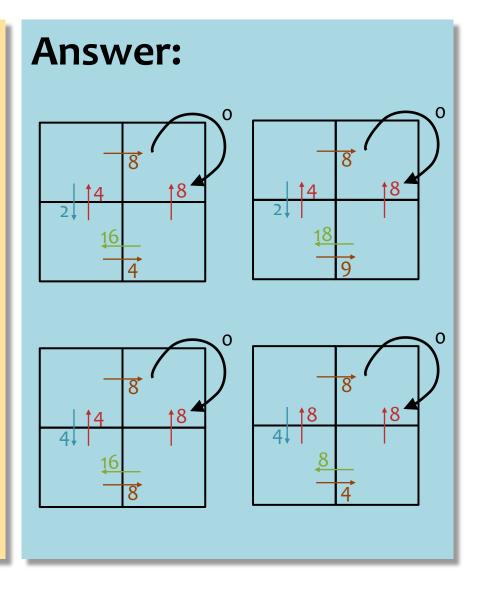
Poll: Q-Learning

Poll Question 2:

For the R(s,a) values shown on the arrows below, which are the corresponding Q*(s,a) values?

Assume discount factor = 0.5.





DEEP RL FOR GAME OF GO

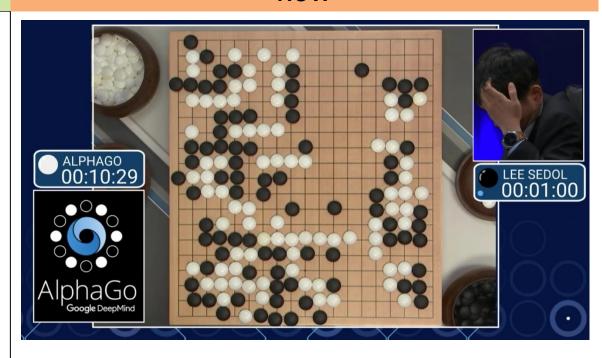
TD Gammon → Alpha Go

Learning to beat the masters at board games

THEN

"...the world's top computer program for backgammon, TD-GAMMON (Tesauro, 1992, 1995), learned its strategy by playing over one million practice games against itself..."

NOW



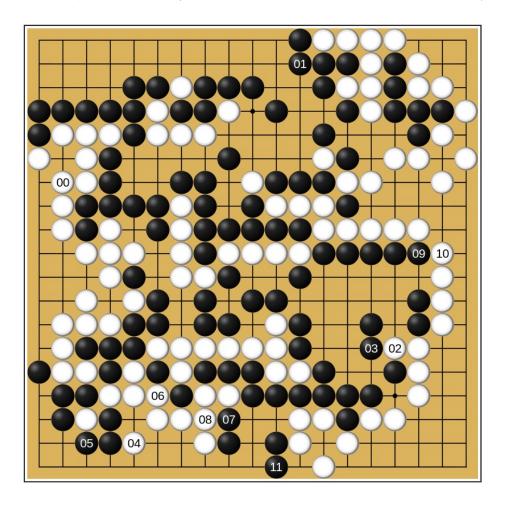
(Mitchell, 1997)

Alpha Go

Game of Go (圍棋)

- 19x19 board
- Players alternately play black/white
 stones
- Goal is to fully encircle the largest region on the board
- Simple rules, but extremely complex game play

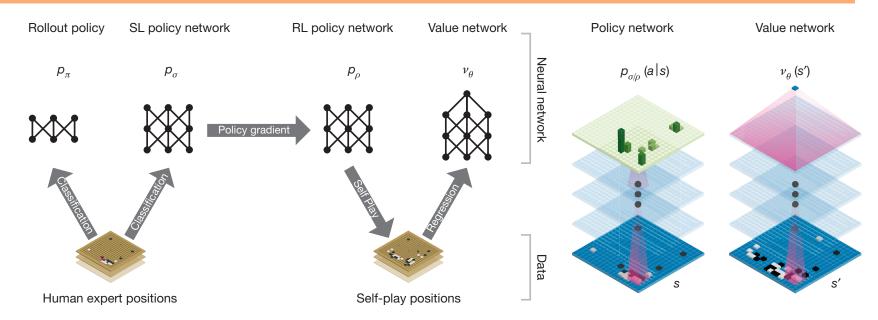
AlphaGo (Black) vs. Lee Sedol (White) - Game 2 Final position (AlphaGo wins in 211 moves)



Alpha Go

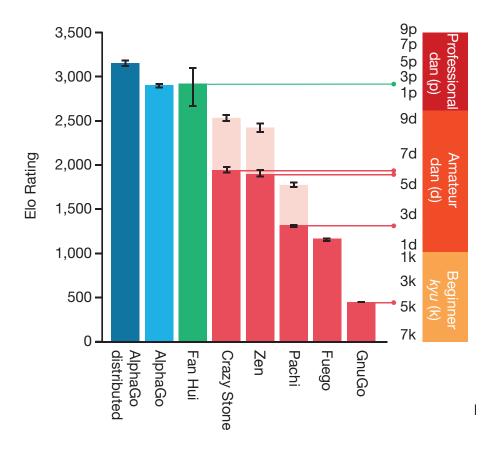
- State space is too large to represent explicitly since # of sequences of moves is $O(b^d)$ Go: b=250 and d=150

 - Chess: b=35 and d=80
- Key idea:
 - Define a neural network to approximate the value function
 - Train by policy gradient



Alpha Go

- Results of a tournament
- From Silver et
 al. (2016): "a
 230 point gap
 corresponds to
 a 79%
 probability of
 winning"



DEEP Q-LEARNING

Deep Q-Learning

Question: What if our state space S is too large to represent with a table?

Examples:

- $s_t = pixels of a video game$
- s_t = continuous values of a sensors in a manufacturing robot
- s_t = sensor output from a self-driving car

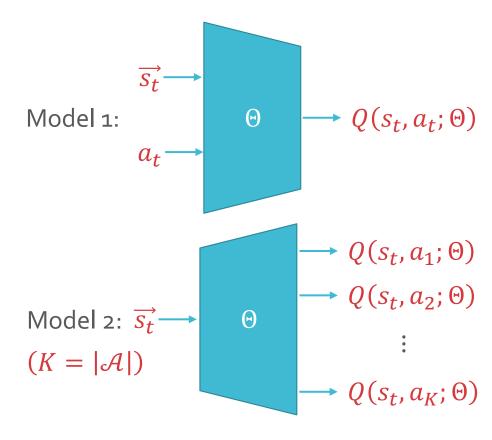
Answer: Use a parametric function to approximate the table entries

Key Idea:

- 1. Use a neural network $Q(s,a;\theta)$ to approximate $Q^*(s,a)$
- 2. Learn the parameters θ via SGD with training examples < s_t , a_t , r_t , s_{t+1} >

Deep Q-learning: Model

- Represent states using some feature vector $\overrightarrow{s_t} \in \mathbb{R}^M$ e.g., $\overrightarrow{s_t} = [1, 0, 0, ..., 1]^T$
- Define a neural network



Deep Q-learning: Model

- Represent states using some feature vector $\overrightarrow{s_t} \in \mathbb{R}^M$ e.g., $\overrightarrow{s_t} = [1, 0, 0, ..., 1]^T$
- Define a neural network a bunch of linear regressors (technically still neural networks...), one for each action (let $K = |\mathcal{A}|$)

$$Q(\vec{s}, a_k; \Theta) = \overrightarrow{\theta_k}^T \vec{s} \text{ where } \Theta = \begin{bmatrix} \theta_1 \\ \overrightarrow{\theta_2} \\ \vdots \\ \overrightarrow{\theta_K} \end{bmatrix} \in \mathbb{R}^{K \times M}$$

• Goal: $K \times M \ll |S| \rightarrow$ computational tractability!

• Gradients are easy:
$$\nabla_{\overrightarrow{\theta_j}} Q(\vec{s}, a_k; \Theta) = \begin{cases} \overrightarrow{0} & \text{if } j \neq k \\ \overrightarrow{s} & \text{if } j = k \end{cases}$$

Deep Q-learning: Model

- Represent states using some feature vector $\overrightarrow{s_t} \in \mathbb{R}^M$ e.g., $\overrightarrow{s_t} = [1, 0, 0, ..., 1]^T$
- Define a neural network a bunch of linear regressors (technically still neural networks...), one for each action (let $K = |\mathcal{A}|$)

$$Q(\vec{s}, a_k; \Theta) = \overrightarrow{\theta_k}^T \vec{s} \text{ where } \Theta = \begin{bmatrix} \theta_1 \\ \overrightarrow{\theta_2} \\ \vdots \\ \overrightarrow{\theta_K} \end{bmatrix} \in \mathbb{R}^{K \times M}$$

• Goal: $K \times M \ll |S| \rightarrow$ computational tractability!

• Gradients are easy:
$$\nabla_{\Theta} Q(\vec{s}, a_k; \Theta) = \begin{bmatrix} 0 \\ \vec{0} \\ \vdots \\ \vec{s} \\ \vdots \\ \vec{0} \end{bmatrix}$$
 Row k

Q-Learning (-ish) Update Rule

 Why don't we just do an update akin to what we do in regular Q-Learning?

Given
$$(s, a, r, s')$$

$$Q(s, q; \theta) = r + p \max_{a' \in A} Q(s', a'; \theta)$$
This is not
a fable

Deep Q-learning: Loss Function

2. Don't know Q*

• "True" loss
$$\ell(\Theta) = \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \left(Q^*(s, a) - Q(s, a; \Theta) \right)^2$$

- 1. S too big to compute this sum
 - Use stochastic gradient descent: just consider one state-action pair in each iteration
 - 2. Use temporal difference learning:
 - Given current parameters $\Theta^{(t)}$ the (temporal difference) target is

$$Q^*(s,a) \approx r + \gamma \max_{a'} Q(s',a';\Theta^{(t)}) \equiv y$$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx y$

$$\ell(\Theta^{(t)}, \Theta^{(t+1)}) = \left(y - Q(s, a; \Theta^{(t+1)})\right)^2$$

Deep Q-learning

- Algorithm: Online learning of Q^* (parametric form)
 - Inputs: discount factor γ , an initial state s_0 , learning rate α
 - Initialize parameters $\Theta^{(0)}$
 - For t = 0, 1, 2, ...
 - Gather training sample (s_t, a_t, r_t, s_{t+1})
 - Update $\Theta^{(t)}$ by taking a step opposite the gradient
 - $\Theta^{(const)} \leftarrow \Theta^{(t)}$ $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta^{(t)}} \ell(\Theta^{(const)}, \Theta^{(t)})$

where

$$\nabla_{\Theta} \ell(\Theta^{(const)}, \Theta^{(t)}) = 2\left(y - Q(s, a; \Theta^{(t)})\right) \nabla_{\Theta^{(t)}} Q(s, a; \Theta^{(t)})$$

$$= 2\left(r + \gamma \max_{a'} Q(s', a'; \Theta^{(const)}) - Q(s, a; \Theta^{(t)})\right) \nabla_{\Theta^{(t)}} Q(s, a; \Theta^{(t)})$$

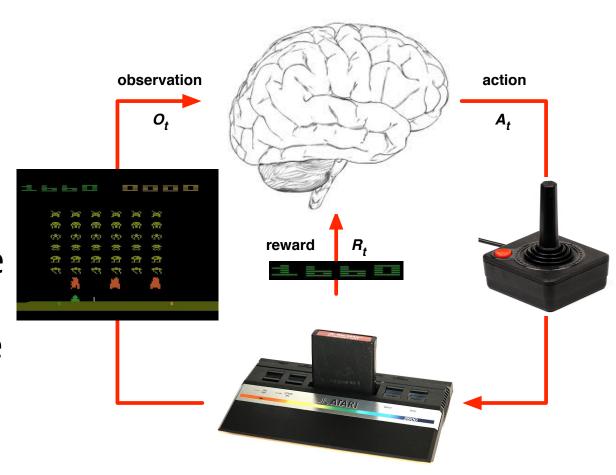
Experience Replay

- Problems with online updates for Deep Q-learning:
 - not i.i.d. as SGD would assume
 - quickly forget rare experiences that might later be useful to learn from
- Uniform Experience Replay (Lin, 1992):
 - Keep a replay memory D = $\{e_1, e_2, ..., e_N\}$ of N most recent experiences $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Alternate two steps:
 - 1. Repeat T times: randomly sample e_i from D and apply a Q-Learning update to e_i
 - 2. Agent selects an action using epsilon greedy policy to receive new experience that is added to D
- Prioritized Experience Replay (Schaul et al, 2016)
 - similar to Uniform ER, but sample so as to prioritize experiences with high error

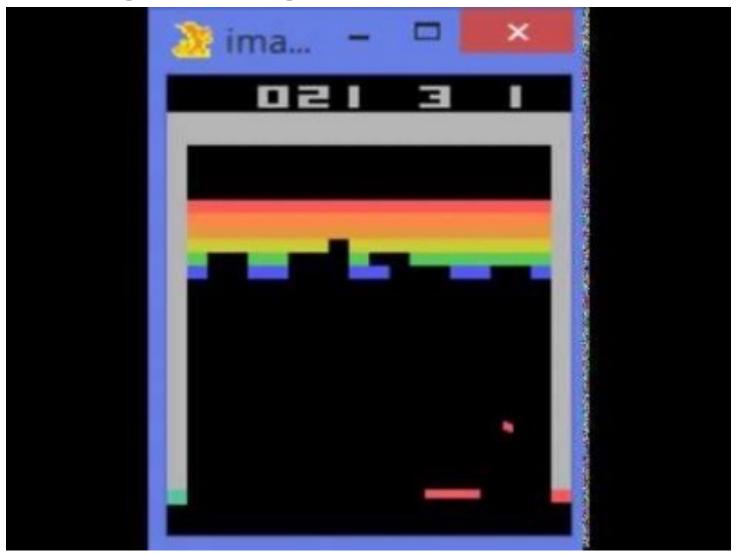
DEEP RL FOR ATARI GAMES

Playing Atari with Deep RL

- Setup: RL system observes the pixels on the screen
- It receives rewards as the game score
- Actions decide how to move the joystick / buttons



Playing Atari games with Deep RL



Playing Atari games with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (*Left-to-right*) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Table 1: The upper table compares average total reward for various learning methods by running an ϵ -greedy policy with $\epsilon = 0.05$ for a fixed number of steps. The lower table reports results of the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that always get the same score while DQN used an ϵ -greedy policy with $\epsilon = 0.05$.

Learning Objectives

Reinforcement Learning: Q-Learning

You should be able to...

- 1. Apply Q-Learning to a real-world environment
- 2. Implement Q-learning
- 3. Identify the conditions under which the Q-learning algorithm will converge to the true value function
- Adapt Q-learning to Deep Q-learning by employing a neural network approximation to the Q function
- Describe the connection between Deep Q-Learning and regression

BIG PICTURE

ML Big Picture

Learning Paradigms:

What data is available and when? What form of prediction?

- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles guide learning?

- probabilistic
- information theoretic
- evolutionary search
- ☐ ML as optimization

Problem Formulation:

What is the structure of our output prediction?

boolean Binary Classification

categorical Multiclass Classification

ordinal Ordinal Classification

real Regression ordering Ranking

multiple discrete Structured Prediction

multiple continuous (e.g. dynamical systems)

both discrete & (e.g. mixed graphical models)

cont.

Application Areas

Key challenges?

NLP, Speech, Computer
Vision, Robotics, Medicine,
Search

Facets of Building ML Systems:

How to build systems that are robust, efficient, adaptive, effective?

- ı. Data prep
- 2. Model selection
- 3. Training (optimization / search)
- 4. Hyperparameter tuning on validation data
- 5. (Blind) Assessment on test data

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

Learning Paradigms

Paradigm	Data
Supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot) \text{ and } y = c^*(\cdot)$
\hookrightarrow Regression	$y^{(i)} \in \mathbb{R}$
\hookrightarrow Classification	$y^{(i)} \in \{1, \dots, K\}$
\hookrightarrow Binary classification	$y^{(i)} \in \{+1, -1\}$
\hookrightarrow Structured Prediction	$\mathbf{y}^{(i)}$ is a vector
Unsupervised	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N} \qquad \mathbf{x} \sim p^*(\cdot)$
Semi-supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}\}_{j=1}^{N_2}$
Online	$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), (\mathbf{x}^{(3)}, y^{(3)}), \ldots \}$
Active Learning	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ and can query $y^{(i)} = c^*(\cdot)$ at a cost
Imitation Learning	$\mathcal{D} = \{ (s^{(1)}, a^{(1)}), (s^{(2)}, a^{(2)}), \ldots \}$
Reinforcement Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \ldots\}$