

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Reinforcement Learning: Value Iteration & Policy Iteration

Matt Gormley & Henry Chai Lecture 21 Mar. 31, 2025

Reminders

- Homework 7: Deep Learning
 - Out: Wed Mar-26
 - Due: Wed Apr-09 at 11:59pm
- Homework 8: Deep RL
 - Out: Wed Apr-09
 - Due: Wed Apr-16 at 11:59pm

MARKOV DECISION PROCESSES

RL: Components

From the Environment (i.e. the MDP)

- State space, *S*
- Action space, *A*
- Reward function, R(s,a), $R: S \times A \rightarrow \mathbb{R}$
- Transition probabilities, p(s' | s, a)
 - Deterministic transitions:

$$p(s' \mid s, a) = \begin{cases} 1 \text{ if } \delta(s, a) = s' \\ 0 \text{ otherwise} \end{cases}$$

where $\delta(s, a)$ is a transition function

Markov Assumption

$$p(s_{t+1} \mid s_t, a_t, \dots, s_1, a_1) = p(s_{t+1} \mid s_t, a_t)$$

From the Model

- Policy, $\pi: \mathcal{S} \to \mathcal{A}$
- Value function, $V^{\pi}: \mathcal{S} \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state s and executing policy π

Markov Decision Process (MDP)

• For supervised learning the PAC learning framework provided assumptions about where our data came from:

$$\mathbf{x} \sim p^*(\cdot)$$
 and $y = c^*(\cdot)$

 For reinforcement learning we assume our data comes from a Markov decision process (MDP)

Markov Decision Processes (MDP)

In RL, the source of our data is an MDP:

- 1. Start in some initial state $s_0 \in S$
- 2. For time step t:
 - 1. Agent observes state $s_t \in S$
 - 2. Agent takes action $a_t \in \mathcal{A}$ where $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \in \mathbb{R}$ where $r_t = R(s_t, a_t)$
 - 4. Agent transitions to state $s_{t+1} \in S$ where $s_{t+1} \sim p(s' \mid s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$
 - The value γ is the "discount factor", a hyperparameter $0 < \gamma < 1$
- Makes the same Markov assumption we used for HMMs! The next state only depends on the current state and action.
- Def.: we execute a policy π by taking action $a = \pi(s)$ when in state s

Exploration vs. Exploitation Tradeoff

- In RL, there is a tension between two strategies an agent can follow when interacting with its environment:
 - Exploration: the agent takes actions to visit (state, action) pairs it has not seen before, with the hope of uncovering previously unseen high reward states
 - Exploitation: the agent takes actions to visit (state, action) pairs it knows to have high reward, with the goal of maximizing reward given its current (possibly limited) knowledge of the environment
- Balancing these two is critical to success in RL!
 - If the agent **only explores**, it performs no better than a random policy
 - If the agent **only exploits**, it will likely never discover an optimal policy
- One approach for trading off between these:
 the ε-greedy policy

RL: Objective Function

• Goal: Find a policy $\pi: \mathcal{S} \to \mathcal{A}$ for choosing "good" actions that maximize:

$$\mathbb{E}[\text{total reward}] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

 The above is called the "infinite horizon expected future discounted reward"

Reinforcement Learning: Objective Function

Objective Function

Deriving the Bellman Equations

- Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall \ s \in \mathcal{S}$
- Assume stochastic transitions and deterministic rewards
- $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state}]$ $s \text{ and executing policy } \pi \text{ forever}]$

$$= \mathbb{E}_{p(s'|s,a)} [R(s_0 = s, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{p(s'\mid s, a)} [R(s_{t}, \pi(s_{t}))]$$

where $0 < \gamma < 1$ is some discount factor for future rewards

RL: Optimal Value Function & Policy

Bellman Equations:

- Optimal policy:
 - Given V^* , R(s,a), $p(s' \mid s,a)$, γ we can compute this!

Optimal value function:

- System of |S| equations and |S| variables (each variable is some $V^*(s)$ for some state s)
- Can be written without π^*

FIXED POINT ITERATION

$$f_1(x_1,\ldots,x_n)=0$$

•

$$f_n(x_1,\ldots,x_n)=0$$

$$x_1 = g_1(x_1, \dots, x_n)$$

•

$$x_n = g_n(x_1, \dots, x_n)$$

$$x_1^{(t+1)} = g_1(x_1^{(t)}, \dots, x_n^{(t)})$$

•

$$x_n^{(t+1)} = g_n(x_1^{(t)}, \dots, x_n^{(t)})$$

- Fixed point iteration is a general tool for solving systems of equations
- Under the right conditions, it will converge
- Assume we have n equations and n variables, written f(x) = 0 where x is a vector
- 2. Rearrange the equations s.t. each variable x_i has one equation where it is isolated on the LHS
- 3. Initialize the parameters.
- 4. For i in {1,...,n}, update each parameter and increment *t*:
- 5. Repeat #5 until convergence

$$\cos(y) - x = 0$$
$$\sin(x) - y = 0$$

$$x = \cos(y)$$
$$y = \sin(x)$$

$$x^{(t+1)} = \cos(y^{(t)})$$
$$y^{(t+1)} = \sin(x^{(t)})$$

- Fixed point iteration is a general tool for solving systems of equations
- Under the right conditions, it will converge
- n variables, written f(x) = 0
 where x is a vector
- 2. Rearrange the equations s.t. each variable x_i has one equation where it is isolated on the LHS
- 3. Initialize the parameters.
- 4. For i in {1,...,n}, update each parameter and increment *t*:
- 5. Repeat #5 until convergence

We can implement our example in a few lines of code

$$\cos(y) - x = 0$$
$$\sin(x) - y = 0$$

$$x = \cos(y)$$
$$y = \sin(x)$$

$$x^{(t+1)} = \cos(y^{(t)})$$
$$y^{(t+1)} = \sin(x^{(t)})$$

```
from math import *
def f(x, y):
    eq1 = cos(y) - x
    eq2 = sin(x) - y
   return (eq1, eq2)
def g(x, y):
   x = cos(y)
   y = sin(x)
   return (x, y)
def fpi(x0, v0, n):
    '''Solves the system of equations by fixed point iteration
    starting at x0 and stopping after n iterations. Also
    includes an auxiliary function f to test at each value.'''
   x = x0
    y = y0
    for i in range(n):
        ox, oy = f(x,y)
        print("i=%2d x=%.4f y=%.4f f(x,y)=(%.4f, %.4f)" % (i, x, y, ox, oy))
       x,y = g(x,y)
    i += 1
    print("i=%2d x=%.4f y=%.4f f(x,y)=(%.4f, %.4f)" % (i, x, y, ox, oy))
    return x,y
if name == " main ":
   x,y = fpi(-1, -1, 20)
```

```
$ python fixed-point-iteration.py
i = 0 x = -1.0000 y = -1.000 f(x,y) = (1.5403, 0.1585)
i = 1 \times -0.5403 \text{ y} = 0.5144 \text{ f}(x,y) = (0.3303, 0.0000)
i = 2 \times -0.8706 \text{ y} = 0.7647 \text{ f}(x,y) = (-0.1490, 0.0000)
i = 3 \times 0.7216 = 0.6606 f(x,y) = (0.0681, 0.0000)
i = 4 \times -0.7896 \text{ y} = 0.7101 \text{ f}(x,y) = (-0.0313, 0.0000)
i = 5 \times 0.7583 = 0.6877 f(x,y) = (0.0144, 0.0000)
i = 6 \times 0.7727 \text{ y} = 0.6981 \text{ f}(x,y) = (-0.0066, 0.0000)
i = 7 \times 0.7661 = 0.6933 f(x,y) = (0.0031, 0.0000)
i = 8 \times -0.7691 \text{ y} = 0.6955 \text{ f}(x,y) = (-0.0014, 0.0000)
i = 9 \times -0.7677 = 0.6945 f(x,y) = (0.0006, 0.0000)
i=10 \text{ x}=0.7684 \text{ y}=0.6950 \text{ f}(x,y)=(-0.0003, 0.0000)
i=11 \times 0.7681 = 0.6948 f(x,y) = (0.0001, 0.0000)
i=12 \times -0.7682 = 0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 \times 0.7681 \times 0.6948 f(x,y)=(0.0000, 0.0000)
i=14 \times 0.7682 = 0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 \times 0.7682 \times 0.6948 f(x,y)=(0.0000, 0.0000)
i=16 \times 0.7682 = 0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 \times -0.7682 = 0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 \times 0.7682 = 0.6948 f(x,y) = (0.0000, 0.0000)
i=20 \times 0.7682 = 0.6948 f(x,y)=(0.0000, 0.0000)
```

We can implement our example in a few lines of code

```
from math import *
def f(x, y):
    eq1 = cos(y) - x
   eq2 = sin(x) - y
   return (eq1, eq2)
def g(x, y):
   x = cos(y)
   y = sin(x)
   return (x, y)
def fpi(x0, y0, n):
    '''Solves the system of equations by fixed point iteration
    starting at x0 and stopping after n iterations. Also
   includes an auxiliary function f to test at each value.'''
   x = x0
   y = y0
   for i in range(n):
       ox, oy = f(x,y)
       print("i=%2d x=%.4f y=%.4f f(x,y)=(%.4f, %.4f)" % (i, x, y, ox, oy))
       x,y = g(x,y)
    i += 1
   print("i=%2d x=%.4f y=%.4f f(x,y)=(%.4f, %.4f)" % (i, x, y, ox, oy))
   return x,y
if name == " main ":
   x,y = fpi(-1, -1, 20)
```

VALUE ITERATION

RL Terminology

Question: Match each term (on the left) to the corresponding statement or definition (on the right)

For full credit, select one statement for each term (i.e. one selection per row)

Terms:

- A. a reward function
- B. a transition probability
- C. a policy
- D. state/action/reward triples
- E. a value function
- F. transition function
- G. an optimal policy

Statements:

- gives the expected future discounted reward of a state
- 2. maps from states to actions
- quantifies immediate success of agent
- 4. is a deterministic map from state/action pairs to states
- 5. quantifies the likelihood of landing a new state, given a state/action pair
- 6. is the desired output of an RL algorithm
- 7. can be influenced by trading off between exploitation/exploration

RL: Optimal Value Function & Policy

Bellman Equations:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} p(s' \mid s, \pi(s)) V^{\pi}(s')$$

- Optimal policy:
 - Given V^* , R(s,a), $p(s' \mid s,a)$, γ we can compute this!

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

$$\operatorname{Immediate} \qquad \text{(Discounted)}$$

$$\operatorname{reward} \qquad \operatorname{Future}$$

$$\operatorname{reward}$$

Optimal value function:

$$V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

- System of |S| equations and |S| variables (each variable is some $V^*(s)$ for some state s)
- Can be written without π^*

Example: Path Planning

Value Iteration

Algorithm: Example:

Value Iteration

Algorithm 1 Value Iteration (deterministic transitions)

```
1: procedure VALUEITERATION(R(s,a) reward function, \delta(s,a) transition function)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a R(s,a) + \gamma V(\delta(s,a))
6: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma V(\delta(s,a)), \forall s
7: return \pi
```

Variant 1: without Q(s,a) table