
Reinforcement Learning:
Value Iteration & Policy Iteration

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 21

Mar. 31, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: Deep Learning
– Out: Wed Mar-26
– Due: Wed Apr-09 at 11:59pm

• Homework 8: Deep RL
– Out: Wed Apr-09
– Due: Wed Apr-16 at 11:59pm

6

MARKOV DECISION PROCESSES

8

RL: Components
From the Environment (i.e. the MDP)
• State space, !
• Action space, "
• Reward function, # $, & , # ∶ 	!	×	" → ℝ
• Transition probabilities, , $!	 $, &)

– Deterministic transitions:

, $!	 $, &) = /1	if	3 $, & = $′
0	otherwise	

where 3 $, & is a transition function

From the Model
• Policy, = ∶ ! → "
• Value function, >": ! → ℝ

– Measures the expected total payoff of starting in some state $ and
executing policy =

9

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)

Markov Decision Process (MDP)

• For supervised learning the PAC learning framework
provided assumptions about where our data came from:

• For reinforcement learning we assume our data comes from
a Markov decision process (MDP)

10

Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state $# ∈ !
2. For time step A:

1. Agent observes state $$ ∈ !
2. Agent takes action &$ ∈ " where &$ = = $$
3. Agent receives reward B$ ∈ ℝ where B$ = # $$, &$
4. Agent transitions to state $$%& ∈ ! where $$%& ∼ , $!	 $$, &$)	

3. Total reward is ∑$'#(E$B$	
– The value ! is the “discount factor”, a hyperparameter 0 < ! < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the
current state and action.

• Def.: we execute a policy = by taking action & = = $ when in state $
11

Exploration vs. Exploitation Tradeoff
• In RL, there is a tension between two strategies an agent can follow when

interacting with its environment:
– Exploration: the agent takes actions to visit (state, action) pairs it has not

seen before, with the hope of uncovering previously unseen high reward
states

– Exploitation: the agent takes actions to visit (state, action) pairs it knows to
have high reward, with the goal of maximizing reward given its current
(possibly limited) knowledge of the environment

• Balancing these two is critical to success in RL!
– If the agent only explores, it performs no better than a random policy
– If the agent only exploits, it will likely never discover an optimal policy

• One approach for trading off between these:
the !-greedy policy

12

RL: Objective Function
• Goal: Find a policy = ∶ ! → "	 for choosing “good” actions that maximize:

F total	reward = F J
$'#

(
EB

• The above is called the
 “infinite horizon expected future discounted reward”

13

Reinforcement Learning: Objective Function

Objective Function

• Find a policy !∗ = argmax
"

)" * 	∀	* ∈ -

• Assume stochastic transitions and deterministic rewards

•)" * = .[discounted total reward of starting in state

 * and executing policy ! forever]

•)" * = .# $!	 $,	')[0 *) = *, ! *) 	
• −	+ 	40 **, ! ** + 4+0 *+, ! *+ +⋯]

)" * =7
,-)

.
4,.# $!	 $,	') 0 *, , ! *, 	

• where 0 < 4 < 1 is some discount factor for future rewards

Deriving the Bellman Equations

14

RL: Optimal Value Function & Policy
• Bellman Equations:

)" * = 	0 *, !(*) + 	4 7
$!∈	0

= *1	|	*, !(*))" *1

• Optimal policy:
– Given)∗, 	0 *, ? , = *1	|	*, ? , 4 we can compute this!

!∗ * = argmax
'	∈	2

	0 *, ? + 	4 7
$!∈	0

= *1	|	*, ?)∗ *1

• Optimal value function:

)∗ * = max
'	∈	2

	0 *, ? + 	4 7
$!∈	0

= *1	|	*, ?)∗ *1

– System of - equations and - variables (each variable is some)∗ * for some state *)
– Can be written without !∗

15

Immediate
reward

(Discounted)
Future
reward

FIXED POINT ITERATION

20

Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of

equations
• Under the right conditions, it will converge

21

1. Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

2. Rearrange the equations s.t.
each variable xi has one equation
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each

parameter and increment t:
5. Repeat #5 until convergence

f1(x1, . . . , xn) = 0

...
fn(x1, . . . , xn) = 0

x1 = g1(x1, . . . , xn)

...
xn = gn(x1, . . . , xn)

x
(t+1)
1 = g1(x

(t)
1 , . . . , x

(t)
n
)

...

x
(t+1)
n

= gn(x
(t)
1 , . . . , x

(t)
n
)

Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of

equations
• Under the right conditions, it will converge

22

1. Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

2. Rearrange the equations s.t.
each variable xi has one equation
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each

parameter and increment t:
5. Repeat #5 until convergence

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

Fixed Point Iteration

23

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

We can implement our example in a few lines of code

Fixed Point Iteration
We can implement our example in a few lines of code

24

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

$ python fixed-point-iteration.py
i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, 0.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)

VALUE ITERATION

25

RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward

triples
E. a value function
F. transition function
G. an optimal policy

26

Statements:
1. gives the expected future

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of

agent
4. is a deterministic map from

state/action pairs to states
5. quantifies the likelihood of landing

a new state, given a state/action
pair

6. is the desired output of an RL
algorithm

7. can be influenced by trading off
between exploitation/exploration

Question: Match each term (on the left) to the
corresponding statement or definition (on the right)

For full credit,
select one
statement for each
term (i.e. one
selection per row)

RL: Optimal Value Function & Policy
• Bellman Equations:

)" * = 	0 *, !(*) + 	4 7
$!∈	0

= *1	|	*, !(*))" *1

• Optimal policy:
– Given)∗, 	0 *, ? , = *1	|	*, ? , 4 we can compute this!

!∗ * = argmax
'	∈	2

	0 *, ? + 	4 7
$!∈	0

= *1	|	*, ?)∗ *1

• Optimal value function:

)∗ * = max
'	∈	2

	0 *, ? + 	4 7
$!∈	0

= *1	|	*, ?)∗ *1

– System of - equations and - variables (each variable is some)∗ * for some state *)
– Can be written without !∗

28

Immediate
reward

(Discounted)
Future
reward

Example: Path Planning

29

Value Iteration

30

Algorithm: Example:

Value Iteration

32

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (deterministic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, δ(s, a) tran‐
sition function)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γV (δ(s, a))

6: Let π(s) = argmax
a
R(s, a) + γV (δ(s, a)), ∀s

7: return π

