10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reinforcement Learning:
Value Iteration & Policy Iteration

Matt Gormley & Henry Chai
Lecture 21
Mar. 31, 2025

Reminders

* Homework 7: Deep Learning
— Out: Wed Mar-26
— Due: Wed Apr-09 at 11:59pm

* Homework 8: Deep RL
— Out: Wed Apr-09
— Due: Wed Apr-16 at 11:59pm

MARKOYV DECISION PROCESSES

RL: Components

From the Environment (i.e. the MDP)

e State space, 5

* Action space, A

 Reward function, R(s,a), R : § X A - R Markov Assumption
 Transition probabilities, p(s’ | s, a) p(ste+1 | 84,1, 51,01)

e e e - :p(3t+1 | Staat)
— Deterministic transitions:

p(s’|s,a) ={

where § (s, a) is a transition function

1if8(s,a) = s’
0 otherwise

From the Model
* Policy,m:8 > A
e Value function, V™:§ - R

— Measures the expected total payoff of starting in some state s and
executing policy

Markov Decision Process (MDP)

* For supervised learning the PAC learning framework
provided assumptions about where our data came from:

x ~p(-)andy =c'(:)
* For reinforcement learning we assume our data comes from
a Markov decision process (MDP)

Markov Decision Processes (MDP)

In RL, the source of our data is an MDP:
1. Startin some initial state s, € &
2. Fortime step t:
1. Agent observes state s; €
2. Agent takes action a; € A where a; = 7(s;)
3. Agentreceivesreward r; € R where 1. = R(s¢, a;)
4. Agent transitions to state s, € S where s, ;1 ~ p(s’ | s¢, a;)

3. Totalrewardis). {2, v 7,

— The value y is the “discount factor”, a hyperparameter 0 < y < 1

* Makes the same Markov assumption we used for HMMs! The next state only depends on the
current state and action.

* Def.: we execute a policy 7 by taking action a = n(s)when in state s

Exploration vs. Exploitation Tradeoff

In RL, there is a tension between two strategies an agent can follow when
interacting with its environment:

— Exploration: the agent takes actions to visit (state, action) pairs it has not
seen before, with the hope of uncovering previously unseen high reward
states

— Exploitation: the agent takes actions to visit (state, action) pairs it knows to
have high reward, with the goal of maximizing reward given its current
(possibly limited) knowledge of the environment

Balancing these two is critical to success in RL!
— If the agent only explores, it performs no better than a random policy
— If the agent only exploits, it will likely never discover an optimal policy

One approach for trading off between these:
the e-greedy policy

RL: Objective Function

* Goal: Findapolicym : § = A for choosing “good’ actions that maximize:
E[total reward] = E [Z ytrt]
t=0

* The above is called the
“infinite horizon expected future discounted reward”

Reinforcement Learning: Objective Function

Objective Function Deriving the Bellman Equations
Find a policy 7* = argmax V™ (s) Vs €S

Assume stochastic transitions and deterministic rewards

V™ (s) = E[discounted total reward of starting in state

s and executing policy 7 forever]|
=Ep(s |5,) [R(sq = s,m(sp))

+ YR(s1,7(s1)) + ¥?R(s2,m(s2)) + -]

= Z)/t[Ep(Sl s, a) [R(St, T[(St))]
t=0

where 0 < y < 1is some discount factor for future rewards

14

RL: Optimal Value Function & Policy

* Bellman Equations:

* Optimal policy:
— GivenV”*, R(s,a), p(s'|s,a),y we can compute this!

* Optimal value function:

[I SN V4

— System of |§| equations and |§| variables (each variable is some I/*(s) for some state s)
— (Can be written without 7~*

FIXED POINT ITERATION

Fixed Point Iteration

fi(z1,...,zn) =0
fn(xla 7xn) =0 \1.
Ir1 = 91(561, 7iUn)
/2.
Ln = gn(ﬂjl, 73371)
3.
A = g,) ya
5.
:cf,f+1) _ gn(ilf()7 ,xq(f))

Fixed point iteration is a general tool for solving systems of

equations

Under the right conditions, it will converge

Assume we have n equations and

n variables, written f(x) = 0
where x is a vector

Rearrange the equations s.t.

each variable x; has one equation

where it is isolated on the LHS
Initialize the parameters.

Foriin {1,...,n}, update each
parameter and increment ¢:

Repeat #5 until convergence

21

Fixed Point Iteration

cos(y) —x =0 .
sin(z) —y =0 \1.
xr = cos(y) P

y = sin(x)
3.

D) = cos(y(M))

y(tH1) — sin(x(t))

Fixed point iteration is a general tool for solving systems of
equations

Under the right conditions, it will converge

Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

Rearrange the equations s.t.
each variable x; has one equation
where it is isolated on the LHS

Initialize the parameters.

Foriin {1,...,n}, update each
parameter and increment ¢:

Repeat #5 until convergence

22

Fixed Point Iteration

We can implement our example in a few lines of code

from math import

_ — def f(x, y):
COS(y) X 0 eql = cos(y) - x

. — eq2 = sin(x) - vy
sin(z) —y =0 return (eql, eq2)
def g(x, y):
X = cos(y)
y = sin(x)
return (x, y)
r = cos(y) def fpi(x0, yo, n):
'"'Solves the system of equations by fixed point iteration
— SiIl(ﬂ?) starting at x@ and stopping after n iterations. Also
includes an auxiliary function f to test at each value.'''
X = x0
= y0@

for i in range(n):
ox, oy = f(x,y)
print("i=%2d x=%.4f y=%.4f f(x,y)=(%.4f, %.4f)" % (i, X, y, ox, oy))

X,y = g(x,y)
print("i=%2d x=%.4f y=%.4f f(x,y)=(%.4f, %.4f)" % (i, x, y, ox, oy))
. return X,y
yUTY = sin(z®)
if _name__ == "__main__":

X,y = fpi(-1, -1, 20)

Fixed Point Iteration

s o

python fixed-point-iteration.py

i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, ©.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)

We can implement our example in a few lines of code

from math import

def f(x, vy):

eql = cosly)
eq2 = sin(x)
return (eql,

def g(x, vy):
X = cosly)
y = Sin(Xx)

return (X,

def fpi(x@, yoO

"'Solves the
starting at Xx
ncludes an auxiliary function

X = X0
y =

-y 0

Y

e

q2)

X

l‘j'

n):

0

system of equations

and

for 1 in range(n):
ox, oy = T(x,vy)

e

print("i=%2d x=%.

X,Y = Q\X,VY]

-

print("i=5%2

return X,y

if _ name_ ==
X ’ ‘y' = f p 11 :]

d

—_.

X=%.41

1, <&

__main__
20)

41

'.(’_' L

V=

f

by fixed point
stopping after n iterations.

10

each

iteration

Also

value."'"''

VALUE ITERATION

For full credit,
select one
statement for each
term (i.e. one
selection per row)

RL Terminology

Question: Match each term (on the left) to the
corresponding statement or definition (on the right)

Terms:

A. areward function

B. atransition probability

C. apolicy

D. state/action/reward
triples

E. avalue function

F. transition function

G. anoptimal policy

Statements:

1.

2.
3.

gives the expected future
discounted reward of a state

maps from states to actions
quantifies immediate success of
agent

is a deterministic map from
state/action pairs to states

quantifies the likelihood of landing
a new state, given a state/action
pair

is the desired output of an RL
algorithm

can be influenced by trading off
between exploitation/exploration

RL: Optimal Value Function & Policy

Bellman Equations:
Vi) = R D+ ¥) PG| s ms)VT(s)
s'es
Optimal policy:
— GivenV”*, R(s,a), p(s'|s,a),y we can compute this!

n*(s) = argmax R(s,a) + y z p(s'|s,a)V*(s")
aeA

\// S s'es y,
Y
Immediate (Discounted)
reward Future
reward

Optimal value function:
V*(s) = max R(s,a) + y Z p(s'|s,a)V*(s")
a
s'es
— System of |§| equations and |§| variables (each variable is some I/*(s) for some state s)
— (Can be written without 7*

28

Example: Path Planning

Value Iteration

Algorithm: Example:

Value Iteration

Algorithm 1 Value Iteration (deterministic transitions)

1: procedure VALUEITERATION(L(s, a) reward function, 6(s, a) tran-
sition function)
Initialize value function V (s) = 0 or randomly
while not converged do
fors € Sdo
V(s) = max, R(s,a) + vV (d(s,a))
Let 7(s) = argmax, R(s,a) + vV (d(s,a)), Vs
return 7

N VR WwW N

Variant 1: without Q(s,a) table

