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Reminders

• Homework 7: Deep Learning
– Out: Wed Mar-26
– Due: Wed Apr-09 at 11:59pm

• Homework 8: Deep RL
– Out: Wed Apr-09 
– Due: Wed Apr-16 at 11:59pm
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MARKOV DECISION PROCESSES
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RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 	𝒮	×	𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = /1	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎  is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋
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Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Process (MDP)

• For supervised learning the PAC learning framework 
provided assumptions about where our data came from:

• For reinforcement learning we assume our data comes from 
a Markov decision process (MDP)
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Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where  𝑟$ = 𝑅 𝑠$, 𝑎$
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#( 𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the 
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠
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Exploration vs. Exploitation Tradeoff
• In RL, there is a tension between two strategies an agent can follow when 

interacting with its environment:
– Exploration: the agent takes actions to visit (state, action) pairs it has not 

seen before, with the hope of uncovering previously unseen high reward 
states

– Exploitation: the agent takes actions to visit (state, action) pairs it knows to 
have high reward, with the goal of maximizing reward given its current 
(possibly limited) knowledge of the environment

• Balancing these two is critical to success in RL!
– If the agent only explores, it performs no better than a random policy
– If the agent only exploits, it will likely never discover an optimal policy

• One approach for trading off between these: 
the 𝜖-greedy policy
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RL: Objective Function
• Goal: Find a policy 𝜋 ∶ 𝒮 → 𝒜	 for choosing “good” actions that maximize: 

𝔼 total	reward = 𝔼 J
$'#

(

𝛾$𝑟$

• The above is called the 
   “infinite horizon expected future discounted reward”
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Reinforcement Learning: Objective Function

Objective Function

• Find a policy 𝜋∗ = argmax
"

	 𝑉" 𝑠 	∀	𝑠 ∈ 𝒮

• Assume stochastic transitions and deterministic rewards

• 𝑉" 𝑠 = 𝔼[discounted total reward of starting in state

                       𝑠 and executing policy 𝜋 forever]

• 𝑉" 𝑠 = 𝔼# $!	 $,	')[𝑅 𝑠) = 𝑠, 𝜋 𝑠) 	

•  −	+ 	𝛾𝑅 𝑠*, 𝜋 𝑠* + 𝛾+𝑅 𝑠+, 𝜋 𝑠+ +⋯]

𝑉" 𝑠 =7
,-)

.

𝛾,𝔼# $!	 $,	') 𝑅 𝑠, , 𝜋 𝑠, 	

• where 0 < 𝛾 < 1 is some discount factor for future rewards

Deriving the Bellman Equations
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RL: Optimal Value Function & Policy
• Bellman Equations:

𝑉" 𝑠 = 	𝑅 𝑠, 𝜋(𝑠) + 	𝛾 7
$!∈	𝒮

𝑝 𝑠1	|	𝑠, 𝜋(𝑠) 𝑉" 𝑠1

• Optimal policy: 
– Given 𝑉∗, 	𝑅 𝑠, 𝑎 , 𝑝 𝑠1	|	𝑠, 𝑎 , 𝛾 we can compute this!

𝜋∗ 𝑠 = argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠1	|	𝑠, 𝑎 𝑉∗ 𝑠1

• Optimal value function:

𝑉∗ 𝑠 = max
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠1	|	𝑠, 𝑎 𝑉∗ 𝑠1

– System of 𝒮  equations and 𝒮  variables (each variable is some 𝑉∗ 𝑠  for some state 𝑠)
– Can be written without 𝜋∗
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Immediate 
reward

(Discounted) 
Future 
reward



FIXED POINT ITERATION
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Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of 

equations
• Under the right conditions, it will converge
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1. Assume we have n equations and 
n variables, written f(x) = 0 
where x is a vector

2. Rearrange the equations s.t. 
each variable xi has one equation 
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each 

parameter and increment t:
5. Repeat #5 until convergence

f1(x1, . . . , xn) = 0

...
fn(x1, . . . , xn) = 0

x1 = g1(x1, . . . , xn)

...
xn = gn(x1, . . . , xn)

x
(t+1)
1 = g1(x

(t)
1 , . . . , x

(t)
n
)

...

x
(t+1)
n

= gn(x
(t)
1 , . . . , x

(t)
n
)



Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of 

equations
• Under the right conditions, it will converge
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1. Assume we have n equations and 
n variables, written f(x) = 0 
where x is a vector

2. Rearrange the equations s.t. 
each variable xi has one equation 
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each 

parameter and increment t:
5. Repeat #5 until convergence

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))



Fixed Point Iteration
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cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

We can implement our example in a few lines of code



Fixed Point Iteration
We can implement our example in a few lines of code
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cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

$ python fixed-point-iteration.py 
i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, 0.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)



VALUE ITERATION
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RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward 

triples
E. a value function
F. transition function
G. an optimal policy
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Statements:
1. gives the expected future 

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of 

agent
4. is a deterministic map from 

state/action pairs to states
5. quantifies the likelihood of landing 

a new state, given a state/action 
pair

6. is the desired output of an RL 
algorithm

7. can be influenced by trading off 
between exploitation/exploration

Question: Match each term (on the left) to the 
corresponding statement or definition (on the right)

For full credit, 
select one 
statement for each 
term (i.e. one 
selection per row)



RL: Optimal Value Function & Policy
• Bellman Equations:

𝑉" 𝑠 = 	𝑅 𝑠, 𝜋(𝑠) + 	𝛾 7
$!∈	𝒮

𝑝 𝑠1	|	𝑠, 𝜋(𝑠) 𝑉" 𝑠1

• Optimal policy: 
– Given 𝑉∗, 	𝑅 𝑠, 𝑎 , 𝑝 𝑠1	|	𝑠, 𝑎 , 𝛾 we can compute this!

𝜋∗ 𝑠 = argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠1	|	𝑠, 𝑎 𝑉∗ 𝑠1

• Optimal value function:

𝑉∗ 𝑠 = max
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠1	|	𝑠, 𝑎 𝑉∗ 𝑠1

– System of 𝒮  equations and 𝒮  variables (each variable is some 𝑉∗ 𝑠  for some state 𝑠)
– Can be written without 𝜋∗
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reward



Example: Path Planning
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Value Iteration
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Algorithm: Example:



Value Iteration
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Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (deterministic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, δ(s, a) tran‐
sition function)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γV (δ(s, a))

6: Let π(s) = argmax
a
R(s, a) + γV (δ(s, a)), ∀s

7: return π


