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Front Matter

� Announcements

� Exam 2 on 3/26 (today!) from 7 – 9 PM

� Please review the seating chart on Piazza and make 
sure you have a seat / know where you’re going 

� HW7 to be released 3/26, due 4/8 at 11:59 PM 

� Please be mindful of your grace day usage 
(see the course syllabus for the policy)

� If you have not used PyTorch before, I strongly 

encourage you to go to recitation on Friday (3/28)
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https://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html


Learning 
Paradigms

� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ
� Classification - 𝑦 ! ∈ 1,… , 𝐶

� Reinforcement learning - 𝒟 = 𝒔 ! , 𝒂 ! , 𝑟 !
!"#
$
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Reinforcement 
Learning: 
Examples

4

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
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AlphaGo
3/26/25 5Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind



Outline

� Problem formulation 

� Time discounted cumulative reward

� Markov decision processes (MDPs)

� Algorithms:

� Value & policy iteration (dynamic programming)

� (Deep) Q-learning (temporal difference learning)
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Reinforcement 
Learning: 
Problem 
Formulation

� State space, 𝒮

� Action space, 𝒜

� Reward function 

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic, 𝑅: 	𝒮	×	𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠%	 𝑠, 𝑎)

� Deterministic, 𝛿: 	𝒮	×	𝒜 → 𝒮
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Reinforcement 
Learning: 
Problem 
Formulation

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉&: 	𝒮 → ℝ

� Measures the expected total payoff of starting in 

some state 𝑠 and executing policy 𝜋, i.e., in every 
state, taking the action that 𝜋 returns 
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Toy Example

� 𝒮 =	all empty squares in the grid

�𝒜 = {up, down, left, right}

� Deterministic transitions

� Rewards of +1 and -1 for entering 
the labelled squares

� Terminate after receiving either 
reward
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Toy Example
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Poll Question 2: 
Justify your answer to 
the previous question

Poll Question 1: 
Is this policy optimal?
A. Yes
B. TOXIC
C. No



Optimal policy given a 
reward of -2 per step
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Toy Example

Figure courtesy of Eric Xing



Optimal policy given a 
reward of -0.1 per step
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Toy Example

Figure courtesy of Eric Xing



Markov 
Decision 
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠'

2. For time step 𝑡:
1. Agent observes state 𝑠(
2. Agent takes action 𝑎( = 𝜋 𝑠(
3. Agent receives reward 𝑟( ∼ 𝑝 𝑟	 𝑠(, 𝑎()

4. Agent transitions to state 𝑠()# ∼ 𝑝 𝑠%	 𝑠(, 𝑎()	

3. Total reward is

� MDPs make the Markov assumption: the reward and 
next state only depend on the current state and action.
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?
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𝛾(𝑟(	
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Reinforcement 
Learning: 
3 Key 
Challenges

1. The algorithm has to gather its own training data

2. The outcome of taking some action is often stochastic 
or unknown until after the fact

3. Decisions can have a delayed effect on future 

outcomes (exploration-exploitation tradeoff)
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MDP Example: 
Multi-armed bandit

� Single state: 𝒮 = 1

� Three actions: 𝒜 = 1, 2, 3

� Deterministic transitions

� Rewards are stochastic
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MDP Example: 
Multi-armed 
bandit

Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 2 2

0 0 1

1 2 4

1 0 0

1 2 3

1 0 3

0 0 1
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Reinforcement 
Learning: 
Objective 
Function

� Find a policy 𝜋∗ = argmax
&

	 𝑉& 𝑠 	∀	𝑠 ∈ 𝒮

� Assume deterministic transitions and deterministic rewards

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state            
           𝑠 and executing policy 𝜋 forever]

� 𝑉& 𝑠 = 𝔼, -!	 -,	0)[𝑅 𝑠' = 𝑠, 𝜋 𝑠' 	

�  −	+ 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯]

𝑉& 𝑠 =?
("'

*

𝛾(𝔼, -!	 -,	0) 𝑅 𝑠(, 𝜋 𝑠( 	

� where 0 < 𝛾 < 1 is some discount factor for future rewards
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Reinforcement 
Learning: 
Objective 
Function

� Find a policy 𝜋∗ = argmax
&

	 𝑉& 𝑠 	∀	𝑠 ∈ 𝒮

� Assume stochastic transitions and deterministic rewards

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state            
           𝑠 and executing policy 𝜋 forever]

� 𝑉& 𝑠 = 𝔼, -!	 -,	0)[𝑅 𝑠' = 𝑠, 𝜋 𝑠' 	

�  −	+ 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯]

𝑉& 𝑠 =?
("'

*

𝛾(𝔼, -!	 -,	0) 𝑅 𝑠(, 𝜋 𝑠( 	

� where 0 < 𝛾 < 1 is some discount factor for future rewards
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Value Function: 
Example

20

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9
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Value Function: 
Example
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−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

−2 −1.8 2.7 3 0

0

0

3/26/25



Value Function: 
Example
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7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

5.10 5.67 6.3 7 0

0

0
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Okay, now how 
do we go 
about learning 
this optimal 
policy?
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𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

5.10 5.67 6.3 7 0

0

0
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