10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes

Matt Gormley & Henry Chai 3/26/25

Front Matter

- Announcements
 - Exam 2 on 3/26 (today!) from 7 9 PM
 - Please review the seating chart on Piazza and make sure you have a seat / know where you're going
 - HW7 to be released 3/26, due 4/8 at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)
 - If you have not used PyTorch before, I <u>strongly</u>
 encourage you to go to recitation on Friday (3/28)

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Reinforcement learning $\mathcal{D} = \left\{ \mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)} \right\}_{n=1}^N$

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

AlphaGo

Outline

- Problem formulation
 - Time discounted cumulative reward
 - Markov decision processes (MDPs)
- Algorithms:
 - Value & policy iteration (dynamic programming)
 - (Deep) Q-learning (temporal difference learning)

Reinforcement Learning: Problem Formulation

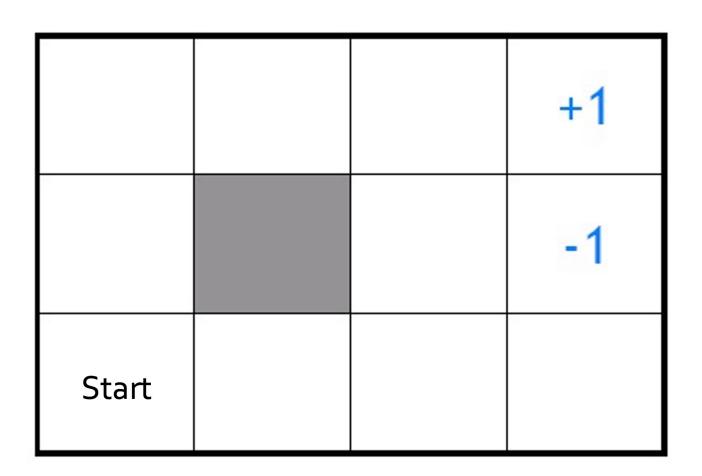
- State space, S
- Action space, \mathcal{A}
- Reward function
 - Stochastic, $p(r \mid s, a)$
 - Deterministic, $R: S \times A \rightarrow \mathbb{R}$
- Transition function
 - Stochastic, p(s' | s, a)
 - Deterministic, δ : $\mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$

Reinforcement Learning: Problem Formulation

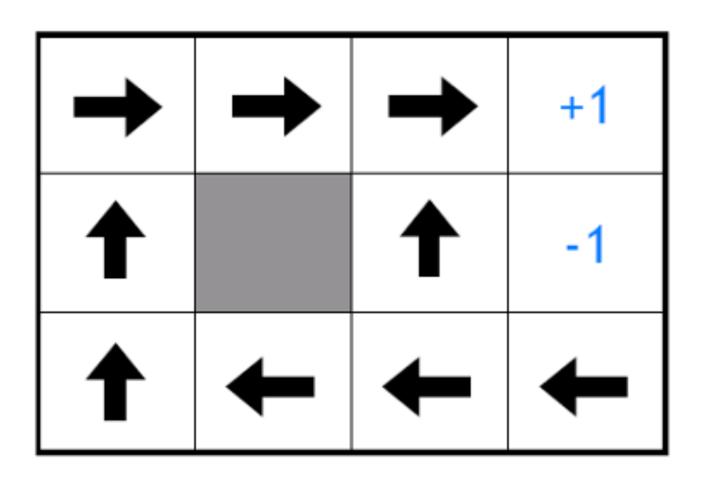
- Policy, $\pi:\mathcal{S}\to\mathcal{A}$
 - Specifies an action to take in every state
- Value function, V^{π} : $S \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state s and executing policy π , i.e., in every state, taking the action that π returns

Toy Example

- S = all empty squares in the grid
- $\mathcal{A} = \{\text{up, down, left, right}\}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward



Toy Example



Poll Question 1:

Is this policy optimal?

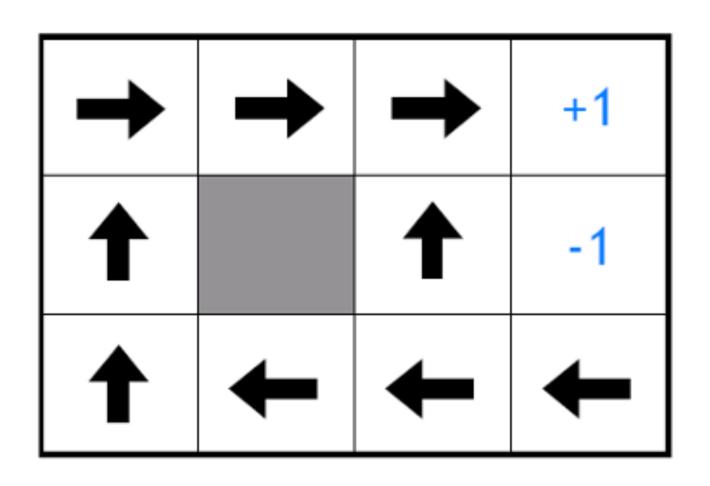
A. Yes

B. TOXIC

C. No

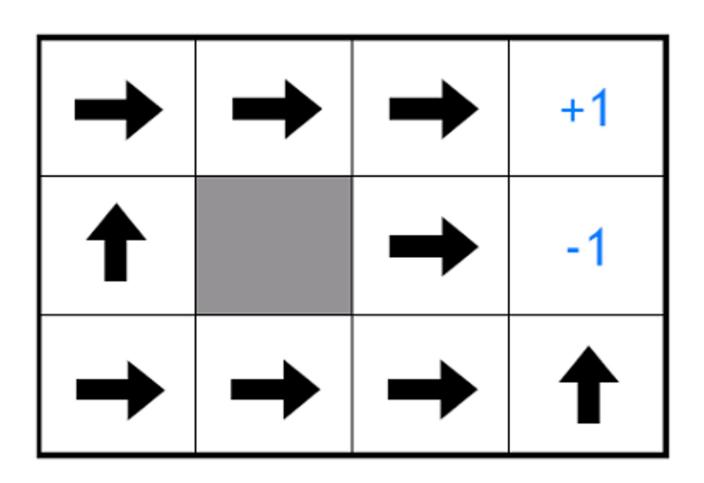
Poll Question 2:

Justify your answer to the previous question



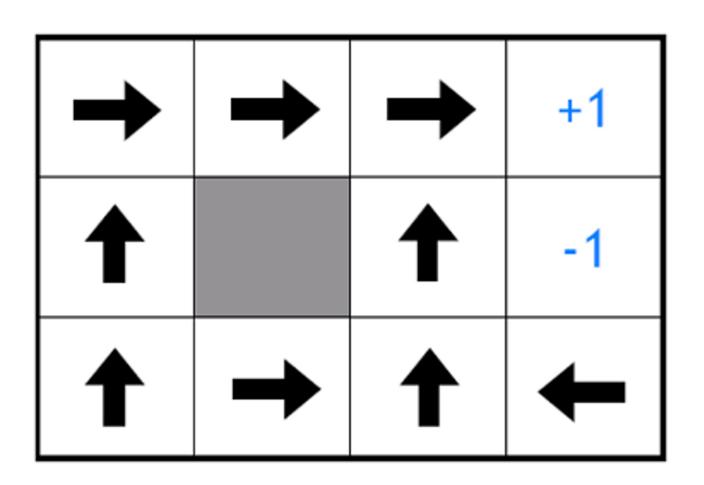
Toy Example

Optimal policy given a reward of -2 per step



Toy Example

Optimal policy given a reward of -0.1 per step



Markov Decision Process (MDP)

- Assume the following model for our data:
- 1. Start in some initial state s_0
- 2. For time step *t*:
 - Agent observes state s_t
 - 2. Agent takes action $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
 - 4. Agent transitions to state $s_{t+1} \sim p(s' \mid s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$
- MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Reinforcement Learning: 3 Key Challenges

- 1. The algorithm has to gather its own training data
- 2. The outcome of taking some action is often stochastic or unknown until after the fact
- 3. Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi-armed bandit

- Single state: $|\mathcal{S}| = 1$
- Three actions: $A = \{1, 2, 3\}$
- Deterministic transitions
- Rewards are stochastic

16

MDP Example: Multi-armed bandit

Bandit 1	Bandit 2	Bandit 3
1	???	???
1	???	???
1	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???

3/26/25 **17**

Reinforcement Learning: Objective Function

- Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall \ s \in \mathcal{S}$
- Assume deterministic transitions and deterministic rewards
- $V^{\pi}(s) = discounted$ total reward of starting in state s and executing policy π forever

3/26/25 **18**

Reinforcement Learning: Objective Function

- Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall \ s \in \mathcal{S}$
- Assume stochastic transitions and deterministic rewards
- $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}]$ $s \text{ and executing policy } \pi \text{ forever}]$

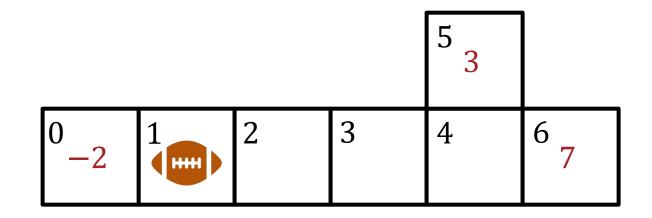
$$= \mathbb{E}_{p(s'|s,a)} [R(s_0 = s, \pi(s_0))$$

$$+ \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{p(s'\mid s, a)} [R(s_{t}, \pi(s_{t}))]$$

where $0 < \gamma < 1$ is some discount factor for future rewards

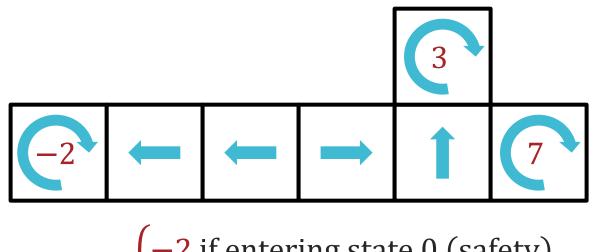
Value Function: Example

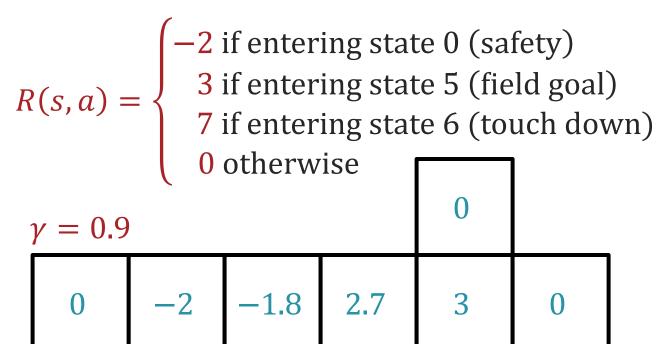


$$R(s,a) = \begin{cases} -2 & \text{if entering state 0 (safety)} \\ 3 & \text{if entering state 5 (field goal)} \\ 7 & \text{if entering state 6 (touch down)} \\ 0 & \text{otherwise} \end{cases}$$

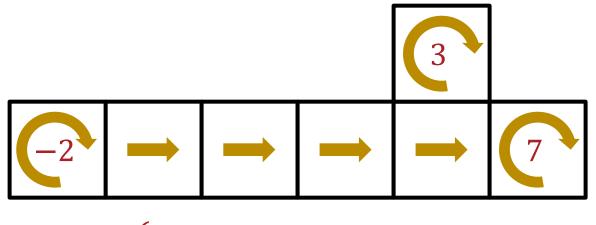
$$\gamma = 0.9$$

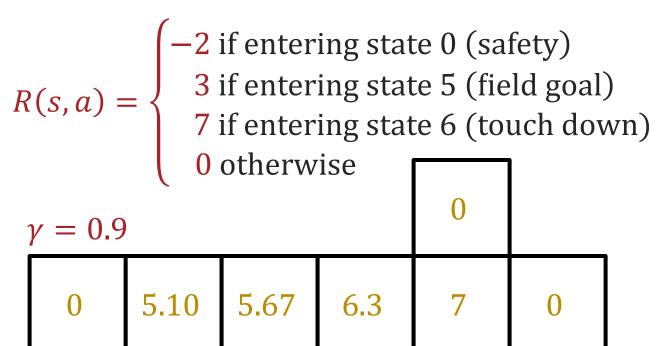
Value Function: Example



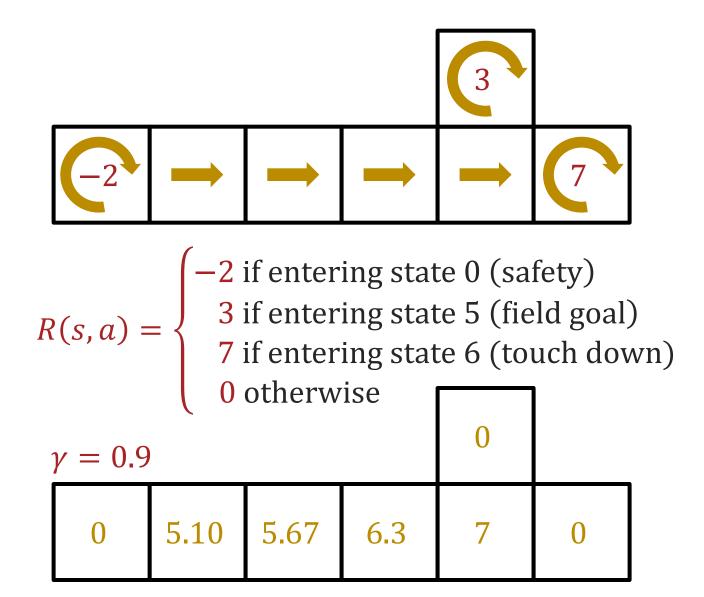


Value Function: Example





Okay, now how do we go about learning this optimal policy?



3/26/25 **23**