
10-301/601: Introduction
to Machine Learning
Lecture 19: Pretraining &
Fine-tuning
Matt Gormley & Henry Chai

3/24/25

Front Matter

� Announcements

� Exam 2 on 3/26 (Wednesday) from 7 – 9 PM

� All topics from Lecture 8 to Lecture 16 (inclusive)
+ MLE/MAP portion of Lecture 17 are in-scope

� Exam 1 content may be referenced but will not be

the primary focus of any question

� Please review the seating chart on Piazza and make
sure you have a seat / know where you’re going

3/24/25 2

Transformers

3/24/25 3Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Transformers

3/24/25 4Source: https://arxiv.org/pdf/1706.03762.pdf

� In addition to multi-head
attention, transformer
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf

Recall:
Scaled
Dot-product
Attention

� Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

5

𝑎!,! 𝑎!,# 𝑎!,$ attention weights𝑎!,%

softmax

𝑠!,! 𝑠!,# 𝑠!,$ 𝑠!,% scores: 𝑠!,& =
'!
"(#
)$

input tokens𝑥1 𝑥# 𝑥$ 𝑥%

ℎ!

𝑣1 𝑣# 𝑣$ 𝑣%

𝑘! 𝑘# 𝑘$ 𝑘%

𝑞! 𝑞# 𝑞$ 𝑞%

values: 𝑣* = 𝑊+𝑥*

keys: 𝑘* = 𝑊,𝑥*

queries: 𝑞* = 𝑊-𝑥*

ℎ! =*
&.!

%

softmax 𝑠!,& 𝑣&

3/24/25

Recall:
Scaled
Dot-product
Attention

� Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

6

𝑎#,! 𝑎#,# 𝑎#,$ 𝑎#,%

softmax

𝑠#,! 𝑠#,# 𝑠#,$ 𝑠#,%

𝑥1 𝑥# 𝑥$ 𝑥%

ℎ#

𝑣1 𝑣# 𝑣$ 𝑣%

𝑘! 𝑘# 𝑘$ 𝑘%

𝑞! 𝑞# 𝑞$ 𝑞%

attention weights

scores: 𝑠#,& =
'!
"(%
)$

input tokens
values: 𝑣* = 𝑊+𝑥*

keys: 𝑘* = 𝑊,𝑥*

queries: 𝑞* = 𝑊-𝑥*

ℎ# =*
&.!

%

softmax 𝑠#,& 𝑣&

3/24/25

Scaled
Dot-product
Attention:
Matrix Form

� Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

3/24/25 7

softmax

design matrix: 𝑋 ∈ ℝ/×1𝑥1 𝑥# 𝑥$ 𝑥%

𝑣1 𝑣# 𝑣$ 𝑣%

𝑘! 𝑘# 𝑘$ 𝑘%

𝑞! 𝑞# 𝑞$ 𝑞%

values: 𝑉 = 𝑋𝑊+ ∈ ℝ/×)&

keys: 𝐾 = 𝑋𝑊, ∈ ℝ/×)$

queries: 𝑄 = 𝑋𝑊- ∈ ℝ/×)$

scores: 𝑆 = -,"

)$
	 ∈ ℝ/×/

𝐻 = softmax 𝑆 𝑉 ∈ ℝ/×)&

attention weights

Positional
Encodings

3/24/25 8

� Issue: if all tokens attend to every token in the sequence,
then how does the model infer the order of tokens?

� Idea: add a position-specific embedding 𝑝* to the token
embedding 𝑥*

<𝑥* = 𝑥* + 𝑝*

� Positional encodings can be

� fixed i.e., some predetermined function of 𝑡 or learned
alongside the token embeddings

� absolute i.e., only dependent on the token’s location in
the sequence or relative to the query token’s location

Layer
Normalization

3/24/25 9

� Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified
so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾#

𝐻2 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the
values in the vector 𝐻

Layer
Normalization

3/24/25 10

� Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified
so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾#

𝐻2 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the
values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf

Residual
Connections

� Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually
made performance worse!

� Wait but this is ridiculous: if the later layers aren’t helping,
couldn’t they just learn the identity transformation???

� Insight: neural network layers actually have a hard time
learning the identity function

3/24/25 11Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Residual
Connections

3/24/25 12

� Observation: early deep neural networks suffered from the
“degradation” problem where adding more layers actually
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻2 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

� Observation: early deep neural networks suffered from the
“degradation” problem where adding more layers actually
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻2 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

Residual
Connections

3/24/25 13Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Transformers

3/24/25 14

Okay, but how
on earth do we
go about
training these
things?

3/24/25 15

Backpropagation:
Procedural
Method

16

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz ⊙ z ⊙ (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ

Issues:

1. Hard to reuse /
adapt for other
models

2. Hard to optimize
individual steps

3. Hard to debug
using the finite-

difference check

3/24/25

Module-based
AutoDiff

� Key Idea:

� componentize the computation of the neural-
network into layers

� each layer consolidates multiple real-valued nodes

in the computation graph (a subset of them) into
one vector-valued node (aka. a module)

� Each module is capable of two actions:

� Forward computation of the output
given some input

� Backward computation of the gradient
with respect to the input given the

gradient with respect to the output
17

module

a

b gb

ga
3/24/25

Module-based
AutoDiff

18

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and⊙ is element-wisemultiplication s.t. u⊙
v = [u1v1, . . . , uMvM].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ⊙ b ⊙ (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga
Cross-Entropy Module Thecross-entropy layer has two in-

puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga

3/24/25

Module-based
AutoDiff

1. Easy to reuse /

adapt for other

models

2. Individual layers

are easier to

optimize

3. Simple to debug:

just run a finite-

difference check

on each layer

separately
19

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ◃ Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) ◃We discard gx
9: return parameter gradients gα,gβ

3/24/25

Module-based
AutoDiff (OOP
Version)

Object-Oriented Implementation:

� Let each module be an object and allow the control flow of
the program to define the computation graph

� No longer need to implement NNBackward(·), just follow
the computation graph in reverse topological order

20

1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ⊙ b ⊙ (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga3/24/25

Module-based
AutoDiff (OOP
Version)

21

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

3/24/25

Module-based
AutoDiff (OOP
Version)

22

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()

3/24/25

Traditional
Supervised
Learning

3/24/25 23

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

3/24/25 24

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• “gradient-based
optimization starting
from random initialization
appears to often get

stuck in poor solutions for
such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

3/24/25 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Idea: if shallow
networks are easier to
train, let’s just
decompose our deep

network into a series
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 26Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the
network iteratively using
the training dataset

� Start at the input layer
and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 27Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 28Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 29Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

3/24/25 30Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

3/24/25 31

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

3/24/25 32

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

Is this the only
thing we could
do with the
training data?

3/24/25 33

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 34

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

� Train each layer of the

network iteratively using
the training dataset to
learn useful representations

� Use pre-trained weights as
an initialization and
fine-tune the entire network
e.g., via SGD with the

training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset by
minimizing the

reconstruction error
𝒙 − ℎ 𝒙 #

� This objective defines an
autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 35Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 #

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 36Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 #

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 37Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 #

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 38Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

3/24/25 39Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 #

� When fine-tuning, we’re
effectively swapping out

the last layer and fitting
all the weights to the
training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 #

� When fine-tuning, we’re
effectively swapping out

the last layer and fitting
all the weights to the
training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 40

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

3/24/25 41

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Problem: what if you
don’t even have
enough data to train a
single layer/fine-tune

the pre-trained
network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your

goal task

3/24/25 42

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� GPT-3 pre-training data:

3/24/25 43Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task
i.e., not every input has a “correct” label e.g., chatbots?

Another
dose of
Reality

3/24/25 44

In-context
Learning

� Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

� Idea: leverage the LLM’s context window by passing a
few one zero(!) examples to the model as input,

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a
massive number of examples/tasks and the input
conditions the model to “locate” the relevant concepts

3/24/25 45Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

3/24/25 46Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

3/24/25 47Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

3/24/25 48Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

3/24/25 49Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks
without having to fine-tune the model, sometimes even
with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Reinforcement
Learning from
Human
Feedback
(RLHF)

� Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

� Idea: use human feedback to determine how good or

bad some prediction/response is!

� Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

� Idea: use a small number of annotations to learn a

“reward” function!
3/24/25 50

Reinforcement
Learning from
Human
Feedback
(RLHF)

3/24/25 51Source: https://openai.com/blog/chatgpt

� RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt

3/24/25 52Source: https://openai.com/blog/chatgpt

� RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

- What the heck is
“Reinforcement
- Learning”?

https://openai.com/blog/chatgpt

