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Front Matter

� Announcements

� Exam 2 on 3/26 (Wednesday) from 7 – 9 PM

� All topics from Lecture 8 to Lecture 16 (inclusive)
+ MLE/MAP portion of Lecture 17 are in-scope

� Exam 1 content may be referenced but will not be 

the primary focus of any question

� Please review the seating chart on Piazza and make 
sure you have a seat / know where you’re going
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Transformers
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Transformers
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� In addition to multi-head 
attention, transformer 
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected 
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf


Recall:
Scaled 
Dot-product 
Attention

� Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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Scaled 
Dot-product 
Attention: 
Matrix Form

� Issue: if all tokens attend to every token in the sequence, 

then how does the model infer the order of tokens?
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Positional 
Encodings
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� Issue: if all tokens attend to every token in the sequence, 
then how does the model infer the order of tokens?

� Idea: add a position-specific embedding 𝑝* to the token 
embedding 𝑥*

<𝑥* = 𝑥* + 𝑝*

� Positional encodings can be

� fixed i.e., some predetermined function of 𝑡 or learned 
alongside the token embeddings

� absolute i.e., only dependent on the token’s location in 
the sequence or relative to the query token’s location



Layer 
Normalization
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� Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified 
so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾#

𝐻2 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 
values in the vector 𝐻



Layer 
Normalization
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� Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified 
so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾#

𝐻2 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 
values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf 

https://arxiv.org/pdf/1607.06450.pdf


Residual 
Connections

� Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 
made performance worse!

� Wait but this is ridiculous: if the later layers aren’t helping, 
couldn’t they just learn the identity transformation???

� Insight: neural network layers actually have a hard time 
learning the identity function

3/24/25 11Source: https://arxiv.org/pdf/1512.03385.pdf 
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Residual 
Connections
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� Observation: early deep neural networks suffered from the 
“degradation” problem where adding more layers actually 
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻2 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!
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Transformers
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Okay, but how 
on earth do we 
go about 
training these 
things? 
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Backpropagation: 
Procedural 
Method

16

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz ⊙ z ⊙ (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ

Issues: 

1. Hard to reuse / 
adapt for other 
models

2. Hard to optimize 
individual steps 

3. Hard to debug 
using the finite-

difference check
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Module-based 
AutoDiff

� Key Idea: 

� componentize the computation of the neural-
network into layers

� each layer consolidates multiple real-valued nodes 

in the computation graph (a subset of them) into 
one vector-valued node (aka. a module)

� Each module is capable of two actions:

� Forward computation of the output 
given some input

� Backward computation of the gradient 
with respect to the input given the 

gradient with respect to the output
17

module

a

b gb

ga
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Module-based 
AutoDiff

18

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and⊙ is element-wisemultiplication s.t. u⊙
v = [u1v1, . . . , uMvM ].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ⊙ b ⊙ (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga
Cross-Entropy Module Thecross-entropy layer has two in-

puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga

3/24/25



Module-based 
AutoDiff

1. Easy to reuse / 

adapt for other 

models

2. Individual layers 

are easier to 

optimize 

3. Simple to debug: 

just run a finite-

difference check 

on each layer 

separately
19

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ◃ Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) ◃We discard gx
9: return parameter gradients gα,gβ
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Module-based 
AutoDiff (OOP 
Version) 

Object-Oriented Implementation:

� Let each module be an object and allow the control flow of 
the program to define the computation graph

� No longer need to implement NNBackward(·), just follow 
the computation graph in reverse topological order

20

1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ⊙ b ⊙ (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga3/24/25



Module-based 
AutoDiff (OOP 
Version) 

21

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]
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Module-based 
AutoDiff (OOP 
Version) 

22

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()
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Traditional 
Supervised 
Learning
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� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset



Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• “gradient-based 
optimization starting 
from random initialization 
appears to often get 

stuck in poor solutions for 
such deep networks.” 

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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• Idea: if shallow 
networks are easier to 
train, let’s just 
decompose our deep 

network into a series 
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)

3/24/25 26Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the 
network iteratively using 
the training dataset

� Start at the input layer 
and move towards the 
output layer

� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
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Pre-training
(Bengio et al., 
2006)
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Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯
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⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the 

network iteratively using 
the training dataset

� Use the pre-trained 

weights as an 
initialization and 

fine-tune the entire 
network e.g., via SGD 

with the training dataset
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Supervised
Pre-training
(Bengio et al., 
2006)
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset

� Train each layer of the 

network iteratively using 
the training dataset

� Use the pre-trained 

weights as an 
initialization and 

fine-tune the entire 
network e.g., via SGD 
with the training dataset
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� Train each layer of the 

network iteratively using 
the training dataset to 
predict the labels

� Use  pre-trained weights 
as an initialization and 

fine-tune the entire 
network e.g., via SGD 
with the training dataset

Supervised
Pre-training
(Bengio et al., 
2006)
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset



� Train each layer of the 

network iteratively using 
the training dataset to 
predict the labels

� Use  pre-trained weights 
as an initialization and 

fine-tune the entire 
network e.g., via SGD 
with the training dataset

Is this the only 
thing we could 
do with the 
training data? 
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset



Unsupervised
Pre-training
(Bengio et al., 
2006)
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� Idea: a good representation is 

one preserves a lot of 
information and could be used 
to recreate the inputs

� Train each layer of the 

network iteratively using 
the training dataset to 
learn useful representations

� Use  pre-trained weights as 
an initialization and 
fine-tune the entire network 
e.g., via SGD with the 

training dataset
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 

reconstruction error
𝒙 − ℎ 𝒙 #

� This objective defines an 
autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 #

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 #

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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Fine-tuning
(Bengio et al., 
2006)
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effectively swapping out 

the last layer and fitting 
all the weights to the 
training dataset
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� Idea: a good representation is 

one preserves a lot of 
information and could be used 
to recreate the inputs



Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• Problem: what if you 
don’t even have 
enough data to train a 
single layer/fine-tune 

the pre-trained 
network? 

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 
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Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your 

goal task
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Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� GPT-3 pre-training data:
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� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task 
i.e., not every input has a “correct” label e.g., chatbots?

Another 
dose of
Reality
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In-context 
Learning

� Problem: given their size, effectively fine-tuning LLMs 

can require lots of labelled data points. 

� Idea: leverage the LLM’s context window by passing a 
few one zero(!) examples to the model as input, 

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a 
massive number of examples/tasks and the input 
conditions the model to “locate” the relevant concepts 
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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• Key Takeaway: LLMs can perform well on novel tasks 
without having to fine-tune the model, sometimes even 
with just one or zero labelled training data points! 

https://arxiv.org/pdf/2005.14165.pdf


Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

� Insight: for many machine learning tasks, there is no 

universal ground truth, e.g., there are lots of possible 

ways to respond to a question or prompt.

� Idea: use human feedback to determine how good or 

bad some prediction/response is! 

� Issue: if the input space is huge (e.g., all possible chat 

prompts), to train a good model, we might need tons 

and tons of (potentially expensive) human annotation…

� Idea: use a small number of annotations to learn a 

“reward” function!
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Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)
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� RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt
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� RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

- What the heck is 
“Reinforcement 
- Learning”?

https://openai.com/blog/chatgpt

