10-301/601: Introduction
to Machine Learning
Lecture 19: Pretraining &
Fine-tuning

Matt Gormley & Henry Chai
3/24/25

* Announcements

* Exam 2 on 3/26 (Wednesday) from 7 — 9 PM

* All topics from Lecture 8 to Lecture 16 (inclusive)

+ MLE/MAP portion of Lecture 17 are in-scope
Front Matter
* Exam 1 content may be referenced but will not be

the primary focus of any question

* Please review the seating chart on Piazza and make

sure you have a seat / know where you’re going

3/24/25

||
Add & Norm
‘ Feed |

Forward
7y

N Add & Norm

Multi-Head
Attention

—tr
. - J

Positional D
Encoding 5

Input
Embedding

1

Transformers

3/24/25 Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

* In addition to multi-head

I
Add & Norm

Feed
Forward

attention, transformer

architectures use

1. Positional encodings

N x

Add & Norm

Multi-Head
Attention

Transformers

Layer normalization

3. Residual connections

Positional

Encoding 4. A fully-connected

Input feed-forward network

Embedding

1

3/24/25 Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Recall:
Scaled

Dot-product
Attention

3/24/25

* Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

i Wm;

softmax

k1| 2 3
11 OO O ||||

V4 Ué\ (% 1%
L[] L[] LI LI
X1 X9 X3 X4
(TT111 O 11 11

4

hi = Z softmax(sl, j)vj

j=1
attention weights

scores: Sqj = k4

C LT Jag
queries: q¢ = Woxy
keys: k; = Wyx;
values: v, = Wyx;

input tokens

* Approach: compute a representation for each token in

the input sequence by attending to all the input tokens
4

I O hy, = Z softmax(sz, j)vj
j=1
attention weights

Recall:
Scaled

Dot-product
Attention

scores: S — k’}qu
- 92 = 7]
vV ¢k

queries: q¢ = Woxy

keys: k; = Wyx;

1/ %) (%] [2) values: Ve = Wth
|

|
X4 input tokens
3/24/25 I N O O O

Scaled

Dot-product
Attention:
Matrix Form

3/24/25

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

ey ity i) CLil]
A A

[softmax
g .I_ .I_ .I_

V1 (%) U3 Uy
(T [IO OO

H = softmax(S)V € RV*%

attention weights

KT
scores: § =& ¢ RNXN

N
queries: Q = XW, € RV*%
keys: K = XWy € RN*%
values: V = XW,, € RV*%

design matrix: X € RV*P

Positional

Encodings

3/24/25

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

* Idea: add a position-specific embedding p; to the token

embedding x;

Xt = Xt + D¢

* Positional encodings can be

- fixed i.e., some predetermined function of t or learned

alongside the token embeddings

* absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location

* Issue: for certain activation functions, the weights in later
layers are highly sensitive to changes in the earlier layers

- Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges — slow optimization convergence

Layer

* Idea: normalize the output of a layer to always have the

Normalization same (learnable) mean, 3, and variance, ¥ 2

H—pu
o

ff=y()+B

where p is the mean and o is the standard deviation of the

values in the vector H

3/24/25

Layer

Normalization

3/24/25

Attentivg—:- reader

1.0 ;
— LSTM

0.9 — BN-LSTM
— BN-everywhere
—— LN-LSTM

O
o)

o
Sk

validation error rate
o
~l

o
wn

o
S

100 200 300 400 500 600 700 800
training steps (thousands)

* Idea: normalize the output of a layer to always have the

same (learnable) mean, 3, and variance, ¥ 2
H —_
H =y (_H) +

0}

where p is the mean and o is the standard deviation of the

values in the vector H

Source: https://arxiv.org/pdf/1607.06450.pdf

10

https://arxiv.org/pdf/1607.06450.pdf

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

56-layer

20-layer

made performance worse!

[
(=]
1

201

—
(=
T

Residual

56-layer

training error (%)
test error (%)

Connections

20-layer

(=]
(=]

1 I I 1 L 1 1
1 2 5 6 0 1 2 5 6

iter. (e4) iter. (1e4)
- Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

* Insight: neural network layers actually have a hard time

learning the identity function

3/24/25 Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Residual

Connections

3/24/25

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer

H =H(x®W) + x®

* Suppose the target function is f

* Now instead of having to learn f(x(i)), the hidden layer

just needs to learn the residual r = f(x(i)) — @

* If f is the identity function, then the hidden layer just

needs to learn r = 0, which is easy for a neural network!

12

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H =H(x®W) +xW

Residual e
Connections ™

34-layer

aals
WIS

—plain-18 18-layer ~ResNet-18
—plain-34 —ResNet-34 34-layer
10 20 30 40 50 2 10 20 30 40 50
iter. (le4) iter. (led)

3/24/25 Source: https://arxiv.org/pdf/1512.03385.pdf 13

https://arxiv.org/pdf/1512.03385.pdf

)\

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

Transformers

The language model part is just like
an RNN-LM.

Transformer layer

Transfon'n Iayer

e

3/24/25

Okay, but how
on earth do we

g0 about
training these
things?

3/24/25

)\

Transformer layer

Transfon'n Iayer

e

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

15

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Params «, (3)
2 a=ax Issues:
3 z =o(a)
4: b =z
5§ = softmax(b) 1. Hard to reuse/
6: J=—-yllogy
7 o=object(x,azb,y,J) adapt for other
: 8: return intermediate quantities o

Backpropagation: models

P rOCEd ura | Algorithm 2 Backpropagation 2. Hardto optimize
1 procedure NNBACKWARD(Training example (x, y), Params «, 3,

MEthOd Intermediates o) individual steps
i Place intermediate quantities x,a,z, b, y, J in 0 in scope
3 By =YYy
& go=gl (diag(y) - §37) 3. Hard to debug
5 88 =8pZ : .
60 g,=p gl using the finite-
7 8a=8,020(l-12) :
8 Ba = 8aX' difference check
9: return parameter gradients gq, g3

3/24/25 16

Module-based

AutoDiff

3/24/25

* Key Ildea:
* componentize the computation of the neural-

network into layers

* each layer consolidates multiple real-valued nodes
in the computation graph (a subset of them) into

one vector-valued node (aka. a module)

- Each module is capable of two actions:

* Forward computation of the output b 9

given some input I l

- Backward computation of the gradient [module J

with respect to the input given the T l

gradient with respect to the output a Ya

17

Module-based

AutoDiff

3/24/25

Linear Module The linear layer has two inputs: a vec- Sigmoid Module The sigmoid layer has only one input

tor a and parameters w € RZ*4, The output b vectora. Below o is the sigmoid applied element-
is not used by LINEARBACKWARD, but we passitin wise, and ® is element-wise multiplications.t. u®
for consistency of form. v = [ugv1, ..., upUpg].
1 procedure LINEARFORWARD(a, w) 1: procedure SIGMOIDFORWARD(a)
2 b = wa 2: b =o(a)
3 return b B return b
4: procedure LINEARBACKWARD(a, w, b, gp) 4: procedure SIGMOIDBACKWARD(a, b, g},)
5 gw:gbaT 5: ga:ngbQ(l_b)
6 ga = wlgy 6: returng,
7 return g,,, 8,
Cross-Entropy Module The cross-entropy layer has twoin-
Softmax Module The softmaxlayerhasonly oneinput puts: a gold one-hot vector a and a predicted proba-
vector a. For any vector v € R”, we have that bility distribution a. It’s output b € R is a scalar. Be-
diag(v) returns a D x D diagonal matrix whose low + is element-wise division. The output b is not
diagonal entriesare vy, va, . .., vp and whose non- used by CROSSENTROPYBACKWARD, but we pass it in
diagonal entries are zero. for consistency of form.
1 procedure SOFTMAXFORWARD(a) 1: procedure CROSSENTROPYFORWARD(a, &)
22 b = softmax(a) 2 b= —-alloga
3: return b = returnb
4: procedure SOFTMAXBACKWARD(a, b, gp,) 4: procedure CROSSENTROPYBACKWARD(a, a, b, gp)
5 ga =g (diag(b) — bb”) 50 ga=—gp(a+a)
6: return g, 6: return g,

18

Module-based

AutoDiff

3/24/25

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters ¢,

B)

A

a = LINEARFORWARD(x, v)

z = SIGMOIDFORWARD(a)

b = LINEARFORWARD(z, 3)

¥ = SOFTMAXFORWARD(b)

J = CROSSENTROPYFORWARD(y, ¥)
o = object(x,a,z,b,y,J)
return intermediate quantities o

Algorithm 2 Backpropagation

1 procedure NNBACKWARD(Training example (x, y), Parameters
a, (3, Intermediates o)

Q2 8w o WK

Place intermediate quantities x,a,z, b,y, J in o in scope
95 =45 = > Base case
gy = CROSSENTROPYBACKWARD(Y, ¥, J, g.7)

gb = SOFTMAXBACKWARD(b, ¥, g5)

g3, 8z = LINEARBACKWARD(z, b, g},)

g, = SIGMOIDBACKWARD(a, z,)

g, Ex = LINEARBACKWARD(X, a, g,) > We discard gy
return parameter gradients g, g3

3.

Easy to reuse /
adapt for other

models

Individual layers
are easier to

optimize

Simple to debug:
just run a finite-
difference check
on each layer

separately y

Module-based

AutoDiff (OOP
Version)

3/24/25

Object-Oriented Implementation:

N O B AW A

N O i AW A

* Let each module be an object and allow the control flow of

the program to define the computation graph

* No longer need to implement NNBackward(:), just follow

the computation graph in reverse topological order

class Linear (Module)
method forward(a, w)

class Sigmoid (Module)
method forward(a)

1
2
b =o(a) 3 b =wa
return b 4 return b
method backward(a, b, gp) s method backward(a, w, b, gp)
8a=8bOb® (1-b) 6 8w = gpa’
return g, 7 ga = wlgh
8

return g.,ga
class Softmax(Module)

method forward(a)
b = softmax(a)
return b

method backward(a, b, gp)
ga = &7 (d12g(b) — bb7)
return g,

class CrossEntropy (Module)
method forward(a, a)
b= —alloga
return b
method backward(a, a, b, ¢)
ga = —gp(a+a)
return g,

N O i bW N o

20

Module-based

AutoDiff (OOP
Version)

3/24/25

O 0 N O U1 A~ W N o

10

class NeuralNetwork (Module) :

method init ()
linl layer = Linear()
sig layer = Sigmoid ()
lin2 layer = Linear()
soft layer = Softmax()
ce_layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor a, Tensor 3)
a =linl_ layer.apply_fwd(x,)
z =sig_layer.apply_ fwd(a)
b =lin2_layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b)
J =ce_layer.apply_fwd(y,y)
return .J.out tensor

method backward(Tensor x, Tensor y, Tensor «, Tensor (3)
tape bwd ()
return linl_layer.in_gradients[1] , lin2_ layer.in_gradients[1]

21

global tape = stack()
class Module:
method init ()

out tensor = null
out_ gradient = 1

O 00 N O U1 B W N -

method apply fwd(List in modules)
10 in tensors = [x.out tensor for x in in modules]
11 out_tensor = forward(in tensors)

Module-based " e
AutoDiff (OOP g return sclf

. 15 method apply bwd():
Ve rSIOn) 16 in_ gradients = backward(in_ tensors , out_tensor , out gradient)
17 for i in 1,..., len(in_modules) :
18 in__modules[i] .out_ gradient += in_ gradients[i]
19 return self

21 function tape bwd():

22 while len(tape) > 0
23 m = tape.pop()
24 m.apply bwd()

3/24/25

Traditional

Supervised
Learning

3/24/25

* You have some

learning to

* You have a

* You fit a

task that you want to apply machine

labelled dataset to train with

deep learning model to the dataset

23

3/24/25

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * “gradient-based

52 L .

v optimization starting

Q

=1 from random initialization
0)

appears to often get
Shallow "Deep" PP 5

Network Network (no stuck in poor solutions for

pre-training) such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 24

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

3/24/25

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

S * |dea: if shallow

E |

- networks are easier to

d 1

= train, let’s just

0 decompose our deep

Shallow "Deep"
Network Network (no network into a series

pre-training) of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 25

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

- Start at the input layer

* Once a layer has been

network iteratively using

the training dataset
34 hidden layer

and move towards the

nd hi
output layer 2" hidden layer

trained, fix its weights ~ 1° hidden layer
and use those to train

subsequent layers
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

26

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre-training and move towards the
(Bengio et al., output layer Output layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the

network iteratively using

the training dataset
Output layer

- Start at the input layer

Pre-training and move towards the
(Bengio et al-; output layer 2" hidden layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

- Start at the input layer

* Once a layer has been

network iteratively using

the training dataset
34 hidden layer

and move towards the

nd hi
output layer 2" hidden layer

trained, fix its weights 1** hidden layer
and use those to train

subsequent layers
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

29

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

* Use the pre-trained

network iteratively using

the training dataset
34 hidden layer

weights as an
initialization and 2" hidden laver
fine-tune the entire

network e.g., via SGD 15t hidden layer

with the training dataset

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

30

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset the entire network e.g., via SGD
Su pervised with the training dataset
Pre-training
(BengiO et g | > = Classification error on MNIST handwritten digit dataset
= 3
2006) 5
52
0
Shallow "Deep" "Deep"
Network Network (no Network

pre-training) (supervised

e pre-training) .

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
Su pe rvised predict the labels with the training dataset
Pre-training
(Bengio et al . Classification error on MNIST handwritten digit dataset
°) Q\O
— 3
2006) 5
0
Shallow "Deep” "Deep"
Network Network (no Network

pre-training) (supervised

re-trainin
3/24/25 pre-tra g) .

s this the only
thing we could

do with the
training data?

3/24/25

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD

predict the labels with the training dataset

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training) (supervised

pre-training) ,

Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of

the training dataset to information and could be used

learn useful representations to recreate the inputs

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training) (supervised
pre-training)

34

Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

network iteratively using

the training dataset by

o 34 hidden layer
minimizing the

reconstruction error

lx — h(x)||5 2nd hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

35

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the
network iteratively using
the training dataset by
minimizing the
reconstruction error

|lx — h(x)]|, Reconstructed
input

* This architecture/
objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

36

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the
network iteratively using

the training dataset by

Reconstructed

Unsu pervised minimizing the hidden layer
Pre-trainin g reconstruction error
(BengiO et al,, lx — h(x) |2 2" hidden layer

2006) * This architecture/
objective defines an 15t hidden layer

autoencoder

Input layer

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised tr1282.pdf 37

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the

* This architecture/

Reconstructed
hidden layer
network iteratively using

the training dataset by

o 34 hidden layer
minimizing the

reconstruction error

lx — h(x)||5 2nd hidden layer

objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

38

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

* When fine-tuning, we’re

network iteratively using
the training dataset by
S 34 hidden layer
minimizing the
reconstruction error

lx — h(x)||5 2" hidden layer

effectively swapping out 1st higden layer
the last layer and fitting
all the weights to the

training dataset Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

39

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of
the training dataset by information and could be used
Unsu pervised minimizing the to recreate the inputs
Pre-trainin g reconstruction error
(BengiO et g I > E\f 3 Classification error on MNIST handwritten digit dataset
2006) 5
52
- I 1 n
0
Shallow "Deep" "Deep" "Deep"
Network Network (no Network Network

pre-training) (supervised (unsupervised

e pre-training) pre-training) 0

Another
dose of

Reality

3/24/25

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a-deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * Problem: what if you

v 2 don’t even have

Q

=1 enough data to train a
0)

single layer/fine-tune
Shallow "Deep" 5 Y

Network Network (no the pre-trained

pre-training) network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 41

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of

Reality

3/24/25

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

- Ideally, you want to use a large dataset related to your

goal task

42

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dose of - Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* GPT-3 pre-training data:

Quantity Weight in

Dataset (tokens) training mix
Common Crawl (filtered) 410 billion 60%
WebText2 19 billion 22%
Booksl 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

3/24/25 Source: https://arxiv.org/pdf/2005.14165.pdf 43

https://arxiv.org/pdf/2005.14165.pdf

Another
dose of

Reality

3/24/25

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

44

* Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

* Idea: leverage the LLM’s context window by passing a
few examples to the model as input,

without performing any updates to the parameters

In-context * Intuition: during training, the LLM is exposed to a
| ea rning massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

3/24/25 Source: https://arxiv.org/pdf/2111.02080.pdf 45

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

3/24/25

* Idea: leverage the LLM’s context window by passing a

few examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: < task description
sea otter => loutre de mer < examples
peppermint => menthe poivrée <

plush girafe => girafe peluche «-

cheese => ¢ prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

46

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

3/24/25

* Idea: leverage the LLM'’s context window by passing a
few one examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

One-shot Fine-tuning

The model is trained via repeated gradient updates using a

In addition to the task description, the model sees a single
large corpus of example tasks.

example of the task. No gradient updates are performed.

. o 1 sea otter => loutre de mer < example #1
1 Translate English to French: < task description
\Z
2 sea otter => loutre de mer ¢ example
gradient update
3 cheese => < prompt
\Z
1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

47

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

3/24/25

* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 cheese => «—— prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

éIe

2

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

48

https://arxiv.org/pdf/2005.14165.pdf

* Idea: leverage the LLM'’s context window by passing a
few-one zero(!) examples to the model as input,
without performing any updates to the parameters

106 Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot

FEW—ShOt, 80 —e— Zero Shot
One-shot &

o

60

40/

20

Accuracy

Zero-shot
(in-context)
Lea rn i ng 8152—;048'/;)—8; 1.3B 2.6B 6.7B _13B 175B

Parameters in LM (Billions)

* Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

3/24/25 Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Reinforcement
Learning from

Human
Feedback
(RLHF)

3/24/25

* Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

* Idea: use human feedback to determine how good or

bad some prediction/response is!

* Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation...

* |dea: use a small number of annotations to learn a

“reward” function!

50

Reinforcement
Learning from

Human
Feedback
(RLHF)

3/24/25

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

N
o

Explain reinforcement

learning to a 6 year old.

'

o)

z

We give treats and

punishments to teach...

}

Step 2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

r N

./
Explain reinforcement
learning to a 6 year old.

o

In reinforcement Es in rewards...
learning, the L
agentis...

o o

Inmachine We givetreats and
learning.. punishments to
teach...

S=
®

0-0-0-0

Nt
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=~

Write a story
about otters.

/

PPO
[¥]

LN

e o o Il

5%

/

Once upon atime...

* RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

Source: https://openai.com/blog/chatgpt

51

https://openai.com/blog/chatgpt

What the heck is

“Reinforcement
Learning”?

3/24/25

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

N
o

Explain reinforcement

learning to a 6 year old.

'

o)

z

We give treats and

punishments to teach...

}

Step 2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

r N

./
Explain reinforcement
learning to a 6 year old.

o

In reinforcement Es in rewards...
learning, the L
agentis...

o o

Inmachine We givetreats and
learning.. punishments to
teach...

S=
®

0-0-0-0

Nt
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=~

Write a story
about otters.

/

PPO
[¥]

LN

e o o Il

5%

/

Once upon atime...

* RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

Source: https://openai.com/blog/chatgpt

52

https://openai.com/blog/chatgpt

