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Front Matter

 Announcements

 Exam 2 on 3/26 (Wednesday) from 7 – 9 PM

 All topics from Lecture 8 to Lecture 16 (inclusive)

+ MLE/MAP portion of Lecture 17 are in-scope

 Exam 1 content may be referenced but will not be 

the primary focus of any question

 Please review the seating chart on Piazza and make 

sure you have a seat / know where you’re going
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Transformers
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Transformers

3/24/25 4Source: https://arxiv.org/pdf/1706.03762.pdf 

 In addition to multi-head 

attention, transformer 

architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected 

feed-forward network

https://arxiv.org/pdf/1706.03762.pdf


Recall:
Scaled 
Dot-product 
Attention

 Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens

5

𝑎1,1 𝑎1,2 𝑎1,3 attention weights𝑎1,4

softmax

𝑠1,1 𝑠1,2 𝑠1,3 𝑠1,4
scores:   𝑠1,𝑗 =

𝑘𝑗
𝑇𝑞1

𝑑𝑘

input tokens𝑥1 𝑥2 𝑥3 𝑥4

ℎ1

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values:   𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys:     𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ1 = ෍

𝑗=1

4

softmax 𝑠1,𝑗 𝑣𝑗
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Recall:
Scaled 
Dot-product 
Attention

 Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens

6

𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4

softmax

𝑠2,1 𝑠2,2 𝑠2,3 𝑠2,4

𝑥1 𝑥2 𝑥3 𝑥4

ℎ2

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

attention weights

scores:   𝑠2,𝑗 =
𝑘𝑗

𝑇𝑞2

𝑑𝑘

input tokens

values:   𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys:     𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ2 = ෍

𝑗=1

4

softmax 𝑠2,𝑗 𝑣𝑗
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Scaled 
Dot-product 
Attention: 
Matrix Form

 Issue: if all tokens attend to every token in the sequence, 

then how does the model infer the order of tokens?

3/24/25 7

softmax

design matrix: 𝑋 ∈ ℝ𝑁×𝐷
𝑥1 𝑥2 𝑥3 𝑥4

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values:   𝑉 = 𝑋𝑊𝑉 ∈ ℝ𝑁×𝑑𝑣

keys:     𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝑑𝑘

queries: 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝑑𝑘

scores:   𝑆 =
𝑄𝐾𝑇

𝑑𝑘
 ∈ ℝ𝑁×𝑁

𝐻 = softmax 𝑆 𝑉 ∈ ℝ𝑁×𝑑𝑣

attention weights



Positional 
Encodings
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 Issue: if all tokens attend to every token in the sequence, 

then how does the model infer the order of tokens?

 Idea: add a position-specific embedding 𝑝𝑡 to the token 

embedding 𝑥𝑡

෤𝑥𝑡 = 𝑥𝑡 + 𝑝𝑡

 Positional encodings can be

 fixed i.e., some predetermined function of 𝑡 or learned 

alongside the token embeddings

 absolute i.e., only dependent on the token’s location in 

the sequence or relative to the query token’s location



Layer 
Normalization
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 Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified 

so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 

values in the vector 𝐻



Layer 
Normalization
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 Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified 

so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 

values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf 

https://arxiv.org/pdf/1607.06450.pdf


Residual 
Connections

 Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 

made performance worse!

 Wait but this is ridiculous: if the later layers aren’t helping, 

couldn’t they just learn the identity transformation???

 Insight: neural network layers actually have a hard time 

learning the identity function
3/24/25 11Source: https://arxiv.org/pdf/1512.03385.pdf 
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Residual 
Connections
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 Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!



 Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!

Residual 
Connections

3/24/25 13Source: https://arxiv.org/pdf/1512.03385.pdf 

https://arxiv.org/pdf/1512.03385.pdf


Transformers
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Okay, but how 
on earth do we 
go about 
training these 
things? 
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Backpropagation: 
Procedural 
Method

16

Issues: 

1. Hard to reuse / 

adapt for other 

models

2. Hard to optimize 

individual steps 

3. Hard to debug 

using the finite-

difference check

3/24/25



Module-based 
AutoDiff

 Key Idea: 

 componentize the computation of the neural-

network into layers

 each layer consolidates multiple real-valued nodes 

in the computation graph (a subset of them) into 

one vector-valued node (aka. a module)

 Each module is capable of two actions:

 Forward computation of the output 

given some input

 Backward computation of the gradient 

with respect to the input given the 

gradient with respect to the output
17

module
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Module-based 
AutoDiff
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Module-based 
AutoDiff

1. Easy to reuse / 

adapt for other 

models

2. Individual layers 

are easier to 

optimize 

3. Simple to debug: 

just run a finite-

difference check 

on each layer 

separately
193/24/25



Module-based 
AutoDiff (OOP 
Version) 

Object-Oriented Implementation:

 Let each module be an object and allow the control flow of 

the program to define the computation graph

 No longer need to implement NNBackward(·), just follow 

the computation graph in reverse topological order

203/24/25



Module-based 
AutoDiff (OOP 
Version) 

213/24/25



Module-based 
AutoDiff (OOP 
Version) 

223/24/25



Traditional 
Supervised 
Learning

3/24/25 23

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset



Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• “gradient-based 

optimization starting 

from random initialization 

appears to often get 

stuck in poor solutions for 

such deep networks.” 
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• Idea: if shallow 

networks are easier to 

train, let’s just 

decompose our deep 

network into a series 

of shallow networks!
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)

3/24/25 26Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

Output layer

 Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

 Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Use the pre-trained 

weights as an 

initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Supervised
Pre-training
(Bengio et al., 
2006)
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset

 Train each layer of the 

network iteratively using 

the training dataset

 Use the pre-trained 

weights as an 

initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset
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 Train each layer of the 

network iteratively using 

the training dataset to 

predict the labels

 Use  pre-trained weights 

as an initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

Supervised
Pre-training
(Bengio et al., 
2006)
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset



 Train each layer of the 

network iteratively using 

the training dataset to 

predict the labels

 Use  pre-trained weights 

as an initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

Is this the only 
thing we could 
do with the 
training data? 
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset



Unsupervised
Pre-training
(Bengio et al., 
2006)
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 Idea: a good representation is 

one preserves a lot of 

information and could be used 

to recreate the inputs

 Train each layer of the 

network iteratively using 

the training dataset to 

learn useful representations

 Use  pre-trained weights as 

an initialization and 

fine-tune the entire network 

e.g., via SGD with the 

training dataset
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 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re 

effectively swapping out 

the last layer and fitting 

all the weights to the 

training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re 

effectively swapping out 

the last layer and fitting 

all the weights to the 

training dataset

Unsupervised
Pre-training
(Bengio et al., 
2006)
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 Idea: a good representation is 

one preserves a lot of 

information and could be used 

to recreate the inputs



Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• Problem: what if you 

don’t even have 

enough data to train a 

single layer/fine-tune 

the pre-trained 

network? 
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 Ideally, you want to use a large dataset related to your 

goal task
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Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 GPT-3 pre-training data:

3/24/25 43Source: https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task 

i.e., not every input has a “correct” label e.g., chatbots?

Another 
dose of
Reality
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In-context 
Learning

 Problem: given their size, effectively fine-tuning LLMs 

can require lots of labelled data points. 

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters

 Intuition: during training, the LLM is exposed to a 

massive number of examples/tasks and the input 

conditions the model to “locate” the relevant concepts 

3/24/25 45Source: https://arxiv.org/pdf/2111.02080.pdf 

https://arxiv.org/pdf/2111.02080.pdf


Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters

3/24/25 46Source: https://arxiv.org/pdf/2005.14165.pdf 
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without performing any updates to the parameters
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• Key Takeaway: LLMs can perform well on novel tasks 

without having to fine-tune the model, sometimes even 

with just one or zero labelled training data points! 

https://arxiv.org/pdf/2005.14165.pdf


Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

 Insight: for many machine learning tasks, there is no 

universal ground truth, e.g., there are lots of possible 

ways to respond to a question or prompt.

 Idea: use human feedback to determine how good or 

bad some prediction/response is! 

 Issue: if the input space is huge (e.g., all possible chat 

prompts), to train a good model, we might need tons 

and tons of (potentially expensive) human annotation…

 Idea: use a small number of annotations to learn a 

“reward” function!

3/24/25 50



Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

3/24/25 51Source: https://openai.com/blog/chatgpt 

 RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt


3/24/25 52Source: https://openai.com/blog/chatgpt 

 RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

- What the heck is 
“Reinforcement 
- Learning”?

https://openai.com/blog/chatgpt
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