
10-301/601: Introduction
to Machine Learning
Lecture 19: Pretraining &
Fine-tuning
Matt Gormley & Henry Chai

3/24/25

Front Matter

 Announcements

 Exam 2 on 3/26 (Wednesday) from 7 – 9 PM

 All topics from Lecture 8 to Lecture 16 (inclusive)

+ MLE/MAP portion of Lecture 17 are in-scope

 Exam 1 content may be referenced but will not be

the primary focus of any question

 Please review the seating chart on Piazza and make

sure you have a seat / know where you’re going

3/24/25 2

Transformers

3/24/25 3Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Transformers

3/24/25 4Source: https://arxiv.org/pdf/1706.03762.pdf

 In addition to multi-head

attention, transformer

architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected

feed-forward network

https://arxiv.org/pdf/1706.03762.pdf

Recall:
Scaled
Dot-product
Attention

 Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

5

𝑎1,1 𝑎1,2 𝑎1,3 attention weights𝑎1,4

softmax

𝑠1,1 𝑠1,2 𝑠1,3 𝑠1,4
scores: 𝑠1,𝑗 =

𝑘𝑗
𝑇𝑞1

𝑑𝑘

input tokens𝑥1 𝑥2 𝑥3 𝑥4

ℎ1

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values: 𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys: 𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ1 = ෍

𝑗=1

4

softmax 𝑠1,𝑗 𝑣𝑗

3/24/25

Recall:
Scaled
Dot-product
Attention

 Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

6

𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4

softmax

𝑠2,1 𝑠2,2 𝑠2,3 𝑠2,4

𝑥1 𝑥2 𝑥3 𝑥4

ℎ2

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

attention weights

scores: 𝑠2,𝑗 =
𝑘𝑗

𝑇𝑞2

𝑑𝑘

input tokens

values: 𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys: 𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ2 = ෍

𝑗=1

4

softmax 𝑠2,𝑗 𝑣𝑗

3/24/25

Scaled
Dot-product
Attention:
Matrix Form

 Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

3/24/25 7

softmax

design matrix: 𝑋 ∈ ℝ𝑁×𝐷
𝑥1 𝑥2 𝑥3 𝑥4

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values: 𝑉 = 𝑋𝑊𝑉 ∈ ℝ𝑁×𝑑𝑣

keys: 𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝑑𝑘

queries: 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝑑𝑘

scores: 𝑆 =
𝑄𝐾𝑇

𝑑𝑘
 ∈ ℝ𝑁×𝑁

𝐻 = softmax 𝑆 𝑉 ∈ ℝ𝑁×𝑑𝑣

attention weights

Positional
Encodings

3/24/25 8

 Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

 Idea: add a position-specific embedding 𝑝𝑡 to the token

embedding 𝑥𝑡

෤𝑥𝑡 = 𝑥𝑡 + 𝑝𝑡

 Positional encodings can be

 fixed i.e., some predetermined function of 𝑡 or learned

alongside the token embeddings

 absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location

Layer
Normalization

3/24/25 9

 Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the

values in the vector 𝐻

Layer
Normalization

3/24/25 10

 Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the

values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf

Residual
Connections

 Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

 Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

 Insight: neural network layers actually have a hard time

learning the identity function
3/24/25 11Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Residual
Connections

3/24/25 12

 Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

 Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

Residual
Connections

3/24/25 13Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Transformers

3/24/25 14

Okay, but how
on earth do we
go about
training these
things?

3/24/25 15

Backpropagation:
Procedural
Method

16

Issues:

1. Hard to reuse /

adapt for other

models

2. Hard to optimize

individual steps

3. Hard to debug

using the finite-

difference check

3/24/25

Module-based
AutoDiff

 Key Idea:

 componentize the computation of the neural-

network into layers

 each layer consolidates multiple real-valued nodes

in the computation graph (a subset of them) into

one vector-valued node (aka. a module)

 Each module is capable of two actions:

 Forward computation of the output

given some input

 Backward computation of the gradient

with respect to the input given the

gradient with respect to the output
17

module

3/24/25

Module-based
AutoDiff

183/24/25

Module-based
AutoDiff

1. Easy to reuse /

adapt for other

models

2. Individual layers

are easier to

optimize

3. Simple to debug:

just run a finite-

difference check

on each layer

separately
193/24/25

Module-based
AutoDiff (OOP
Version)

Object-Oriented Implementation:

 Let each module be an object and allow the control flow of

the program to define the computation graph

 No longer need to implement NNBackward(·), just follow

the computation graph in reverse topological order

203/24/25

Module-based
AutoDiff (OOP
Version)

213/24/25

Module-based
AutoDiff (OOP
Version)

223/24/25

Traditional
Supervised
Learning

3/24/25 23

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

3/24/25 24

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• “gradient-based

optimization starting

from random initialization

appears to often get

stuck in poor solutions for

such deep networks.”
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

3/24/25 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• Idea: if shallow

networks are easier to

train, let’s just

decompose our deep

network into a series

of shallow networks!
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 26Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 27Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

 Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 28Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

 Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

3/24/25 29Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

3/24/25 30Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Use the pre-trained

weights as an

initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

3/24/25 31

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

 Train each layer of the

network iteratively using

the training dataset

 Use the pre-trained

weights as an

initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Train each layer of the

network iteratively using

the training dataset to

predict the labels

 Use pre-trained weights

as an initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

3/24/25 32

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

 Train each layer of the

network iteratively using

the training dataset to

predict the labels

 Use pre-trained weights

as an initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

Is this the only
thing we could
do with the
training data?

3/24/25 33

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 34

 Idea: a good representation is

one preserves a lot of

information and could be used

to recreate the inputs

 Train each layer of the

network iteratively using

the training dataset to

learn useful representations

 Use pre-trained weights as

an initialization and

fine-tune the entire network

e.g., via SGD with the

training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 35Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 36Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 37Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 38Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

3/24/25 39Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re

effectively swapping out

the last layer and fitting

all the weights to the

training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re

effectively swapping out

the last layer and fitting

all the weights to the

training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

3/24/25 40

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Idea: a good representation is

one preserves a lot of

information and could be used

to recreate the inputs

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

3/24/25 41

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• Problem: what if you

don’t even have

enough data to train a

single layer/fine-tune

the pre-trained

network?
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 Ideally, you want to use a large dataset related to your

goal task

3/24/25 42

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 GPT-3 pre-training data:

3/24/25 43Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

Another
dose of
Reality

3/24/25 44

In-context
Learning

 Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

 Intuition: during training, the LLM is exposed to a

massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

3/24/25 45Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

3/24/25 46Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

3/24/25 47Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

3/24/25 48Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

3/24/25 49Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Reinforcement
Learning from
Human
Feedback
(RLHF)

 Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

 Idea: use human feedback to determine how good or

bad some prediction/response is!

 Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

 Idea: use a small number of annotations to learn a

“reward” function!

3/24/25 50

Reinforcement
Learning from
Human
Feedback
(RLHF)

3/24/25 51Source: https://openai.com/blog/chatgpt

 RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt

3/24/25 52Source: https://openai.com/blog/chatgpt

 RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

- What the heck is
“Reinforcement
- Learning”?

https://openai.com/blog/chatgpt

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 19: Pretraining & Fine-tuning
	Slide 2: Front Matter
	Slide 3: Transformers
	Slide 4: Transformers
	Slide 5: Recall: Scaled Dot-product Attention
	Slide 6: Recall: Scaled Dot-product Attention
	Slide 7: Scaled Dot-product Attention: Matrix Form
	Slide 8: Positional Encodings
	Slide 9: Layer Normalization
	Slide 10: Layer Normalization
	Slide 11: Residual Connections
	Slide 12: Residual Connections
	Slide 13: Residual Connections
	Slide 14: Transformers
	Slide 15: Okay, but how on earth do we go about training these things?
	Slide 16: Backpropagation: Procedural Method
	Slide 17: Module-based AutoDiff
	Slide 18: Module-based AutoDiff
	Slide 19: Module-based AutoDiff
	Slide 20: Module-based AutoDiff (OOP Version)
	Slide 21: Module-based AutoDiff (OOP Version)
	Slide 22: Module-based AutoDiff (OOP Version)
	Slide 23: Traditional Supervised Learning
	Slide 24: Reality
	Slide 25: Reality
	Slide 26: Pre-training (Bengio et al., 2006)
	Slide 27: Pre-training (Bengio et al., 2006)
	Slide 28: Pre-training (Bengio et al., 2006)
	Slide 29: Pre-training (Bengio et al., 2006)
	Slide 30: Fine-tuning (Bengio et al., 2006)
	Slide 31: Supervised Pre-training (Bengio et al., 2006)
	Slide 32: Supervised Pre-training (Bengio et al., 2006)
	Slide 33: Is this the only thing we could do with the training data?
	Slide 34: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 35: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 36: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 37: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 38: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 39: Fine-tuning (Bengio et al., 2006)
	Slide 40: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 41: Another dose of Reality
	Slide 42: Another dose of Reality
	Slide 43: Another dose of Reality
	Slide 44: Another dose of Reality
	Slide 45: In-context Learning
	Slide 46: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 47: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 48: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 49: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 50: Reinforcement Learning from Human Feedback (RLHF)
	Slide 51: Reinforcement Learning from Human Feedback (RLHF)
	Slide 52

