10-301/601: Introduction
to Machine Learning
Lecture 19: Pretraining &
Fine-tuning

Matt Gormley & Henry Chai
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* Announcements
* Exam 2 on 3/26 (Wednesday) from 7 =9 PM

* All topics from Lecture 8 to Lecture 16 (inclusive)
+ MLE/MAP portion of Lecture 17 are in-scope

Front Matter

* Exam 1 content may be referenced but will not be

the primary focus of any question

* Please review the seating chart on Piazza and make

sure you have a seat / know where you’re going

3/24/25
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* In addition to multi-head

| Y
Add & Norm .
- attention, transformer
Feed
FETLIER. architectures use

1. Positional encodings

Add & Norm

Multi-Head
Attention

Transformers

Layer normalization
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Input _
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Recall:
Scaled

Dot-product
Attention

3/24/25

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens
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j=1
attention weights

[ softmax

l _ kjay
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d1 queries: q; = Wyx;

keys:  k; = Wyx;

values: v, = Wyx;

input tokens



- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

h, 4
T [ h, = z softmax(sz, j)vj
Recall: j=1
Scaled 421 attention weights
Dot-product [ softmax )
g L l _ __kjaz
Attent|0n 52,1 S 2 S scores. Sz’j == ﬁ
q1 C{zl | 2 | __ queries: q; = Wyx;
(11
k1 / kz 4_ keyS: kt — Wth
(111 [LI | | [] []
v U2 Uy values: v, = Wyx,
(1] | | O I
IxllI | X, X3 X4 input tokens
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Scaled

Dot-product
Attention:
Matrix Form
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* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

lm L\-L L\-, M
\\{_’9

softmax

;.I_.I_.I_

d4

k1 kz k3 k4.

(%1 (%) (%! Uy
(T [ OO OO
x1 xz x3 X4

H = softmax(S)V € RNX%v

attention weights

QKT NXN
scores: S =— € R
Vagk

queries: Q = XW, € RV*4
keys: K = XWj, € RVN*%
values: V = XW, € RV*dv

design matrix: X € RV*P



Positional

Encodings

3/24/25

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

* Idea: add a position-specific embedding p; to the token

embedding x;

Xt = Xt T+ D¢

* Positional encodings can be

- fixed i.e., some predetermined function of t or learned

alongside the token embeddings

* absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location



* Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

- Small changes to weights in early layers are amplified
so weights in deeper layers have to deal with massive

dynamic ranges — slow optimization convergence

Layer

* ldea: normalize the output of a layer to always have the

Normallzatlon same (learnable) mean, 3, and variance, y?

H—pu
o

1r=y( )+ﬁ

where 1 is the mean and ¢ is the standard deviation of the

values in the vector H

3/24/25



Layer

Normalization

3/24/25

Attentivg reader

1.0 -
— LSTM

0.9 — BN-LSTM
— BN-everywhere
— LN-LSTM
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foe]

o
SL

validation error rate
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training steps (thousands)

* ldea: normalize the output of a layer to always have the

same (learnable) mean, 3, and variance, y2
H —_
H =y (_ﬂ) + [

0}

where 1 is the mean and ¢ is the standard deviation of the

values in the vector H

Source: https://arxiv.org/pdf/1607.06450.pdf
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Residual

Connections

3/24/25

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

56-layer

20-layer

made performance worse!

[
=
1

201

training error (%)
test error (%)

=]
=

1 2 5 6 0 1 2 5 6

iter.3 (1(34)4 iter.3 (1«34)4
* Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

* Insight: neural network layers actually have a hard time

learning the identity function
Source: https://arxiv.org/pdf/1512.03385.pdf
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Residual

Connections
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer

H = H(x®) + x®

* Suppose the target function is f

* Now instead of having to learn f(x(i)), the hidden layer

just needs to learn the residual r = f(x(i)) — 5D

* If f is the identity function, then the hidden layer just

needs to learn r = 0, which is easy for a neural network!

12



Residual
Connections
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made performance worse!

H = H(x®) + x®

Source: https://arxiv.org/pdf/1512.03385.pdf

ResNet-18
—ResNet-34

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

* |dea: add the input embedding back to the output of a layer

34-layer

10

20 30 40 50
iter. (led)
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Transformers
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A

Transfomnl:r layer

= i

Transformgr layer ]
[ Transformeb' layer J

L~
X, | %46‘ i’/)ﬂ i ; X,

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
— 3. layer normalization
— 4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

14



Okay, but how
on earth do we

go about
training these
things?
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A

Transfomnl:r layer

= i

Transformer layer

]

e o il i

Transformeb' layer

x%;l//ﬂ i ./ X,

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.
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Algorithm 1 Forward Computation
1: procedure NNFORWARD(Training example (x, y), Params «, 3)

2 a=ax Issues:
3: z=o(a)
4: b = Bz
5§ = softmax(b) 1. Hard to reuse /
6: J=—-yllogy
72 0=object(x,azb,y,J) adapt for other
8: return intermediate quantities o

Backpropagation: models

P ro CEd ura I Algorithm 2 Backpropagation 7. Hard to thimize
1: procedure NNBACKWARD(Training example (x, y), Params «, 3,

MEth Od Intermediates o) individual steps
7% Place intermediate quantities x,a,z,b,y, J in o in scope
3 gy =-Yy+Yy
% gb=gj (diag(y) —yy") 3. Hard to debug

_ oT,T

5 g8 — 8pZ . -
60 g, =gl using the finite-
7 g2 =8,0z20(1—-12) .
& 8o = gaX' difference check
9 return parameter gradients g, g3

3/24/25 16



Module-based

AutoDiff

3/24/25

* Key ldea:
* componentize the computation of the neural-

network into layers

- each layer consolidates multiple real-valued nodes
in the computation graph (a subset of them) into

one vector-valued node (aka. a module)

- Each module is capable of two actions:

° Forward computation of the output b 9b

given some input T l

- Backward computation of the gradient [ module J

with respect to the input given the I l

gradient with respect to the output a  Ja

17



Module-based

AutoDiff

3/24/25

Linear Module The linear layer has two inputs: a vec-
tor a and parameters w € REZ*4. The output b
is not used by LINEARBACKWARD, but we pass it in
for consistency of form.

1 procedure LINEARFORWARD(a, w)
BE b =wa

3 return b

4: procedure LINEARBACKWARD(a, w, b, gp)
5 8w =gpadl

6 8a = ngb

7 return g.,, 8a

Softmax Module The softmaxlayer has only oneinput
vector a. For any vector v € R”, we have that
diag(v) returns a D x D diagonal matrix whose
diagonal entriesare vy, va, ..., vp and whose non-
diagonal entries are zero.

1: procedure SOFTMAXFORWARD(a)

2 b = softmax(a)

= return b

4: procedure SOFTMAXBACKWARD(a, b, gp,)
5. ga = gy, (diag(b) — bb")

6: return g,

Sigmoid Module The sigmoid layer has only one input
vectora. Below o is the sigmoid applied element-
wise, and © is element-wise multiplication s.t. u©
v = [uqvy, ..., Up O]

1: procedure SIGMOIDFORWARD(a)

2 b =o(a)

3 return b

4: procedure SIGMOIDBACKWARD(a, b, gp)
55 Ba=8bObO(1-b)

6: return g,

Cross-Entropy Module The cross-entropy layer has twoin-
puts: a gold one-hot vector a and a predicted proba-
bility distribution a. It’s output b € R is a scalar. Be-
low -+ is element-wise division. The output b is not
used by CROSSENTROPYBACKWARD, but we pass it in
for consistency of form.

1: procedure CROSSENTROPYFORWARD(a, &)

2 b= —alloga

=5 return b

4: procedure CROSSENTROPYBACKWARD(a, a, b, g5)
5 8a=—gr(a+a)

6: return g,

18



Module-based

AutoDiff

3/24/25

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters ¢,

B)

o e R o b

a = LINEARFORWARD(X, &)

z = SIGMOIDFORWARD(a)

b = LINEARFORWARD(z, (3)

y = SOFTMAXFORWARD(b)

J = CROSSENTROPYFORWARD(y, )
o = object(x,a,z,b,y,J)
return intermediate quantities o

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters
a, (3, Intermediates o)

2T 9 W WO

Place intermediate quantities x,a,z,b,y, J in o in scope

g =9 =1 > Base case
gy = CROSSENTROPYBACKWARD(y, ¥, J, 9.7)

gb = SOFTMAXBACKWARD(b, ¥, g5 )

g3, 8z = LINEARBACKWARD(z, b, gp)

g, = SIGMOIDBACKWARD(a, z, g )

g, Ex = LINEARBACKWARD(X, &, g5 ) > We discard gy

return parameter gradients g, g3

3.

Easy to reuse /
adapt for other

models

Individual layers
are easier to

optimize

Simple to debug:
just run a finite-
difference check
on each layer

separately y



Object-Oriented Implementation:

* Let each module be an object and allow the control flow of

the program to define the computation graph

* No longer need to implement NNBackward(-), just follow

the computation graph in reverse topological order

class Linear (Module)
method forward(a, w)

class Sigmoid (Module)
method forward(a)

1 1
2 2
Module-based : b — o(a) 3 b — wa
. 4 return b 4 return b
AutoDiff (OOP 5 method backward(a, b, gp) s method backward(a, w, b, gp)
- 6 ga:gb@b@(l—b) 6 gw:gbaT
Ve rS|O n) 7 return g, 7 8a = ngb
8 return g., ga
1 class Softmax(Module)
2 method forward(a) 1 class CrossEntropy (Module)
3 b = softmax(a) > method forward(a, a)
4 return b : b= —alloga
5 method backward(a, b, gy) , return b
6 8a = gE (diag(b) - bbT) 5 method backward(a, a, b, ¢p)
7 return g, 6 ga=—go(a+a)
3/24/25 7 return g, 20



Module-based

AutoDiff (OOP
Version)

3/24/25

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig_ layer = Sigmoid ()
lin2_layer = Linear()
soft_layer = Softmax()
ce layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor «, Tensor (3)
a =linl_layer.apply fwd(x, a)
z =sig_ layer.apply_fwd(a)
b =lin2_layer.apply fwd(z, 3)
y =soft__layer.apply_ fwd(b)
J =ce_layer.apply_fwd(y,¥)
return J.out tensor

method backward(Tensor x, Tensor y, Tensor oo, Tensor 3)

—2 tape__bwd ()

return linl_layer.in gradients[1] , lin2 layer.in_gradients[1]

21



Module-based

AutoDiff (OOP
Version)

3/24/25

global tape =

class Module:

method init ()
out tensor = null
out_ gradient = 1

method apply fwd(List in_modules)
«——2in_ tensors = [x.out tensor for x in in modules]
out_ tensor = forward(in tensors)

—) tape.push (self)
return self

method apply_bwd():
< in_gradients = backward(in_tensors , out tensor , out gradient)
for i in 1,..., len(in_modules) :
in_modules[i] .out gradient += in_gradients[i]
return self

function tape bwd():
while len(tape) > 0
~—>m = tape.pop()
m.apply bwd()

22



Traditional

Supervised
Learning

3/24/25

* You have some

learning to

* You have a

* You fit a

task that you want to apply machine

labelled dataset to train with

deep learning model to the dataset

23
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* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have aftinyt labelled dataset to train with

* You fit & massivg deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * “gradient-based
- 2 optimization starting
S 1 TR
fromfrandom initializatior)
0
appears to often get
Shallow "Deep" PP 8
Network Network (no stuck in poor solutions for

pre-training) ¢, deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 24
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* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with
* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * |dea: if shallow
- 2 networks are easier to
Q
= 1 train, let’s just
0 decompose our deep
Shallow "Deep"
Network Network (no network into a series

pre-training) of shallow networks!

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 25
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* Train each layer of the Output layer
network iteratively using

the training dataset
34 hidden layer

- Start at the input layer

Pre-training and move towards the
(Bengio etal, output layer 2" hidden layer

2006)

* Once a layer has been
trained, fix its weights ~ 1° hidden layer
and use those to train

subsequent layers Input layer

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre'training and move towards the
(Bengio et al., output layer Output layer

2006)

* Once a layer has been
trained, fix its weights ~ 1° hidden layer
and use those to train —=

subsequent layers Input layer

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the
network iteratively using

the training dataset
Output layer

- Start at the input layer
and move towards the

output layer

* Once a layer has been
trained, fix its weights '~ 1°hidden layer
and use those to train s

subsequent layers Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

28
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Pre-training

(Bengio et al.,
2006)

* Train each layer of the

Output layer

network iteratively using

the training dataset

- Start at the input layer
and move towards the

output layer

* Once a layer has been
trained, fix its weights
and use those to train

subsequent layers

34 hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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Fine-tuning

(Bengio et al.,
2006)

3/24/25

* Train each layer of the  Output layer

* Use the pre-trained

network iteratively using

the training dataset
34 hidden layer

weights as an
initialization and 27 hidden layer
fine-tune the entire

network e.g., via SGD 15t hidden layer

with the training dataset
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

30
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* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset the entire network e.g., via SGD
Su pervised with the training dataset
Pre-training
(Bengio et al < Classification error on MNIST handwritten digit dataset
> S
2006) 5
0
Shallow "Deep"
Network Network (no

pre-training)

3/24/25 31



* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
Supervised predict the labels with the training dataset
Pre-training
(Bengio et al < Classification error on MNIST handwritten digit dataset
o7 S
2006) s
0
Shallow "Deep"” "Deep"”
Network Network (no Network

pre-training)  (supervised

re-trainin
3/24/25 P g) .



s this the only
thing we could

do with the
training data?

3/24/25

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
predict the labels with the training dataset
= Classification error on MNIST handwritten digit dataset
5
-1 11

Shallow "Deep" "Deep"
Network Network (no Network
pre-training)  (supervised

pre-training) .



Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of

the training dataset to information and could be used

learn useful representations  to recreate the inputs

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training)  (supervised
pre-training)

34



Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

network iteratively using
the training dataset by
S 34 hidden layer
minimizing the
reconstruction error

lx — h(x)]|, 2nd hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the
network iteratively using
the training dataset by
minimizing the
reconstruction error

lx — h(x)]|, Reconstructed

* This architecture/
objective defines an

autoencoder
=

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

36
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Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* This architecture/

* Train each layer of the

network iteratively using

the training dataset by Reconstructed

minimizing the hidden layer

reconstruction error

lx — h(x)]|, 2nd hidden layer

objective defines an 15t hidden layer
autoencoder >

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 37
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Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the

* This architecture/

Reconstructed
hidden layer
network iteratively using

the training dataset by

o 34 hidden layer
minimizing the
reconstruction error 2

lx — h(x)]|, 2nd hidden layer

objective defines an 15t hidden layer

autoencoder > )

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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Fine-tuning

(Bengio et al.,
2006)

3/24/25

* Train each layer of the Output layer

* When fine-tuning, we're

network iteratively using
the training dataset by
R 34 hidden layer
minimizing the
reconstruction error

lx — h(x)]|, 2nd hidden layer

effectively swapping out  qsthigden layer
the last layer and fitting
all the weights to the

. I I
training dataset nputlayer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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Unsupervised
Pre-training

(Bengio et al.,
2006)

3/24/25

* Train each layer of the * Idea: a good representation is

network iteratively using one preserves a lot of
the training dataset by information and could be used
minimizing the to recreate the inputs

reconstruction error

Classification error on MNIST handwritten digit dataset

3
O
a2
0
Shallow "Deep" "Deep" "Deep"
Network Network (no Network

pre-training)  (supervised
pre-training) pre=trating)

40



* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a- deep learning model to the dataset

Another
dose of * Surprise, surprise: it overfits and your test error is super high
Rea ||ty < ; Classification error on MNIST handwritten digit dataset

S * Problem: what if you

“;:'; ’ don’t even have

Q1 .

enough data to train a
0

single layer/fine-tune
Shallow "Deep" 5 ver/

Network Network (no the pre-trained
pre-training)

network?

3/24/25 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 41
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* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive decp .

dose of * Surprise, surprise: it overfits and your test error is super high
Reality * Key observation: you can pre-train on basically any labelled
or unlabelled dataset!

- Ideally, you want to use a large dataset related to your

goal task

3/24/25

42



* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dOSE Of * Surprise, surprise: it overfits and your test error is super high

Reality - Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* GPT-3 pre-training data:

Quantity Weight in

Dataset (tokens) training mix
Common Crawl (filtered) 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

3/24/25 Source: https://arxiv.org/pdf/2005.14165.pdf 43
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* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dOSE Of * Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

- Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

3/24/25



° Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

* Idea: leverage the LLM'’s context window by passing a
few examples to the model as input,

without performing any updates to the parameters

In-context * Intuition: during training, the LLM is exposed to a
Lea rning massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

3/24/25 Source: https://arxiv.org/pdf/2111.02080.pdf 45
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* Idea: leverage the LLM'’s context window by passing a

few examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: < task description
sea otter => loutre de mer < examples
peppermint => menthe poivrée ¢

plush girafe => girafe peluche

cheese => < prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
N2
N\ %

1 peppermint => menthe poivrée < example #2

gradient update

e|<_

v

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt
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* Idea: leverage the LLM'’s context window by passing a
few one examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

One-shot Fine-tuning

The model is trained via repeated gradient updates using a

In addition to the task description, the model sees a single
large corpus of example tasks.

example of the task. No gradient updates are performed.

. o 1 sea otter => loutre de mer < example #1
1 Translate English to French: < task description
N\
2 sea otter => loutre de mer ¢ example
gradient update
3 cheese => <« prompt
v

1 peppermint => menthe poivrée <« example #2

gradient update

e|<_

v

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

47


https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

3/24/25

* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 cheese => «—— prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer «—— example #1
\%
N\

1 peppermint => menthe poivrée < example #2

gradient update

e|<_

2

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt
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* Idea: leverage the LLM'’s context window by passing a
few-one zero(!) examples to the model as input,

without performing any updates to the parameters

ioo Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot

Few-shot, ek
One-shot &

—

Zero-shot
(in-context)
Lea rn i ng 8{?’(—— 0.4B 7 VEB\B 1.3B 2.6B 6.7B i3B 175B

Parameters in LM (Billions)

Accuracy
& 3
\

N
o

* Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

3/24/25 Source: https://arxiv.org/pdf/2005.14165.pdf
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Reinforcement
Learning from

Human
Feedback
(RLHF)

3/24/25

* Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

* Idea: use human feedback to determine how good or

bad some prediction/response is!

* Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation...

* |dea: use a small number of annotations to learn a

“reward” function!

50



Step1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and

train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A promptis {3 A prompt and i":; A new prompt is e
sampled from our Explain reinforcement several model Explain reinforcement sampled from Write a story
prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. the dataset. about otters.
. sampled.
In reinforcemeant Explain rawards...
Reinforcement | S L4
B The PPO model is O
. A labeler @ (c] (D) initialized from the N
Le a r n I n g rO l I I demonstrates the e omsmnete supervised policy. P2
desired output 74 .
H behavior. = ¥ f
u I I l a n l Alabeler ranks the The pto Iicty generates Once upon a time...
outputs from best an output.
Feedback ©:0:0-0 !
This data is used to LN RM
The reward model
ina- . N 7
fi ntT1 tune G'?T 3‘5 W ¢ calculates a reward ./;‘?.A.
R L H F wi syperwse 4 o for the output. W
learning. @@@ . o
This data is used L, *
to train our =y The reward is used
reward model. to update the
0-0-0-0 e

policy using PPQ.

* RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

3/24/25 Source: https://openai.com/blog/chatgpt 51
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Step1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and

train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

W h h h k . A promptis i‘; A prompt and 'i":! A new prompt is e
a t t e e C I S sampled from our Explain reinforcement several model Explain reinforcement sampled from Write a story
prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. the dataset. about otters.
o’ . sampled.
In reinforcemeant Explain rawards...
Reinforcement * S ® y
B The PPO model is O
. )) ? Alabeler @ (c) (0] initialized from the I
Le a rn I n g demonstrates the e omsmnete supervised policy. P2
. desired output Vs g
: We gi d
behavior = ¥ f
l A labeler ranks the The pto Iicty generates Oncs upon a time..
outputs from best an output.
.SFF. to worst. 0-0-0-0 *
This data is used to LN RM
The reward model
ina- ~ N 7 .0
fi m; tune G'?T 3‘5 R ¢ calculates a reward e X
l\;gmsi;'gemse 4 o for the output. W
BEEE This data is used .é?.s&. *
to train our =y The reward is used
reward model. to update the
0-0-0-0 e

policy using PPQ.

* RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

Source: https://openai.com/blog/chatgpt 52
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