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Matt Gormley & Henry Chai
3/17/25



* Announcements
* HW6 released 3/16, due 3/22 at 11:59 PM
* You can only use at most two late days on HW6

- Exam 2 on 3/26 (next Wednesday) from 7 -9 PM

Front Matter

* All topics from Lecture 8 to Lecture 16 (inclusive)

+ the portion of today’s lecture on MLE/MAP
are in-scope

* Exam 1 content may be referenced but will not be

the primary focus of any question
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Recall:

Bernoulli
MLE

3/17/25

* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = d*(1 —p)' ™
* Given N iid samples {x(l) x(N)} the log-likelihood is

f(qﬁ)—zlogp(x(”)lcb) Zlogc])x(")(l p)1-x™

N

= leogqb +(1 —x)log(1—¢)

n=1

= N, log¢ + Ny log(1 — ¢)

where N; is the number of 1’s in {x(l), ...,x(N)} and N is
the number of 0’s



* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|g) = p*(1 — p)'™*

* The partial derivative of the log-likelihood is

Recall: Ny Ny Ny N
Bernoulli ¢ 1—¢ ¢ 1-¢
MLE R R R
- N1(1 — ¢) = No¢ = Ny = ¢(Ng + Ny)
s Ny Ny
No+N;, N

where N; is the number of 1’s in {x(l), ...,x(N)} and N is
the number of 0’s
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* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|gp) = ¢*(1 — ¢p)' ™

* The partial derivative of the log-likelihood is

Flipping b 1-9¢ b 1-¢
MLE N Nl(l _ 65) — NOCB - N; = QB(NO + Ny)
~ NN
TN AN, N

where N; is the number of heads in our dataset and N is
the number of tails
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Poll Question 1:

Flip your coin 5 times and
based on the results of
your flip, report the MLE
of your coin

. 0/5
. 1/5
. 2/5
. 3/5
. 1/5 (TOXIC)
. 4/5
. 5/5

3/17/25

* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|gp) = ¢*(1 — ¢p)' ™

* The partial derivative of the log-likelihood is

Ny No _ M N

¢ 1-9¢ ¢ 1-¢

- N;(1—¢) = Nop > Ny = $(Ny + Ny)

Ny N
No+N; N

where N; is the number of heads in our dataset and N is
the number of tails

5=



Maximum a
Posteriori

(MAP)
Estimation
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* Insight: sometimes we have prior information we want

to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior

distribution over the parameters
* MLE finds 8 = argmax p(D|6)
6

* MAP finds 8 = argmax p(6|D)
0
= argmax p(D|0)p(6)/r(D)
= argmax p(D|60)p(6)
0

PN

likelihood prior

= argmax logp(D|6) + logp(O)
6 — _/
~—

log-posterior




* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

Coin p(x|p) = ¢p*(1 — )™
F|ipping - Assume a Beta prior over the parameter ¢, which has pdf
MAP = -
9 (1= )F!
f(qbla,ﬁ) _ B(C(,ﬁ)

where B(a, B) = fol d*1(1 — ¢p)B~1d¢ is a normalizing

constant to ensure the distribution integrates to 1
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Beta

Distribution

3/17/25
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So why use this

strange looking
Beta prior?
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The Beta
distribution is
the conjugate

prior for the
Bernoulli
distribution!

3/17/25

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢
* The pmf of the Bernoulli distribution is
p(x|p) = p*(1 — $)'™*
- Assume a Beta prior over the parameter ¢, which has pdf

¢* (1 — )Pt
B(a, )

where B(a, B) = fol d*1(1 — ¢p)B~1d¢ is a normalizing

constant to ensure the distribution integrates to 1

f(@la,p) =

11



Coin

Flipping
MAP
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* Given N iid samples {x(l), e x(N)}, the log-posterior is

£(¢) = log f(pla, f) + Z logp(x™|)

N

a-101 ﬁl N N
=log¢ B((aﬁq;) +Zl g p*™ (1 — o)1=

=(a—1)logp + (p — 1) log(l — ¢) —logB(a, B)

N
+ z x™ log ¢ + (1- x(”)) log(1 — ¢)
n=1

= (a: 1+ Nylogp+(B—1+ Ny)log(1l— o)
—logB(a, )

12



Coin

Flipping
MAP
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- Given N iid samples {x(1), ..., x(M)}, the partial derivative of

the log-posterior is
¢ (a—1+Ny) (B—-1+Ny)

ap ¢ 1—¢

(a — 1+ N;)
+N0)+((X—1+N1)

—>43MAP=(IB_1

a — 1isa “pseudocount” of the number of 1’s (or heads)

you’ve “observed”

*f — lis a “pseudocount” of the number of 0’s (or tails)

you’ve “observed”

13



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 101 and f = 101, then

(101 —1+4+10) 110 1
dmap = — 51575
(101 —1+4+10)+ (101 —-1+4+2) 212 2

14



Coin

Flipping
MAP:
Example

3/17/25

* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior witha = 1 and f = 1, then

- (1-1+10) 10
¢MAP_(1—1+10)+(1—1+2)_12_¢MLE

15



* One way of conceptualizing linear regression is that the
residuals are random variables!

M(C)LE for

Linear
Regression

/ ) ’éﬂx ) Kt‘\l\x@\ XKQX(-A
;_4,7 : '| — ; { ? X

3/17/25 16



M(C)LE for

Linear
Regression
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residuals are random variables!

* If the residuals are Gaussian ...

* One way of conceptualizing linear regression is that the

y =0Tx + e wheree ~N(0,0%) >y ~Nw'x,c?)

° ...then given X =

1 @

1 ™'

0 = argmax log P(y|X, )
0

andy =

_y(l)_

y ™

the MLE of O is

= argmin (X0 — )T (X0 —y) = (XTX) "1 xTy
9

a.k.a. the OLS solution!

17



MAP for

Linear
Regression

3/17/25

- One way of conceptualizing linear regression is that the

residuals are random variables!

* If the residuals are Gaussian ...

y =0"x + e wheree ~N(0,0%) >y ~ N(w'x,0?)

* ... and we use a Gaussian prior on the weights ...

0.2
0,4 NN(O,T) vdeo,..,D

* ... then, the MAP of 0 is the ridge regression solution!

Opapr = XTX + AUp) Xy

18



You should be able to...

* Recall probability basics, including but not limited to:
discrete and continuous random variables, probability
mass functions, probability density functions, events vs.
random variables, expectation and variance, joint
probability distributions, marginal probabilities,
conditional probabilities, independence, conditional

Lea rning independence

ObjECtiVES - State the principle of maximum likelihood estimation and
explain what it tries to accomplish

MLE/MAP

- State the principle of maximum a posteriori estimation
and explain why we use it

* Derive the MLE or MAP parameters of a simple model in
closed form

3/17/25 19



Deep Learning

3/17/25

* From Wikipedia’s page on Deep Learning...

Definition |edit]

Deep learning is a class of machine learning algorithms
thatl111(PP199-200) ;565 multiple layers to progressively extract higher
level features from the raw input. For example, in image processing,
lower layers may identify edges, while higher layers may identify the
concepts relevant to a human such as digits or letters or faces.

* Deep learning = more than one layer

Source: https://en.wikipedia.org/wiki/Deep learning

20


https://en.wikipedia.org/wiki/Deep_learning

Deep Learning

3/17/25

First layer: computes the
perceptrons’ predictions

Second layer: combines
lower-level components

h(x)

21



* Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

* Idea: use the first few layers to identify relevant macro-

: features, e.g., edges
Convolutional S EH8

Neural * Insight: for spatially-structured inputs, many useful
macro-features are shift or location-invariant, e.g., an

Networks

edge in the upper left corner of a picture looks like an
edge in the center

- Strategy: learn a filter for macro-feature detection in a
small window and apply it over the entire image

3/17/25 22



Convolutional

Filters

3/17/25

* Images can be represented as matrices, where each

element corresponds to a pixel

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

0({0]0(0]|0|O
11221
0 0 0 1 0
0(2(414|2|0

* 1 /-4 1
013|310
0[1(2|3|1(0 01119
0(0{1|11(0]0

23



* Images can be represented as matrices, where each

element corresponds to a pixel

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololo]o]lo
Filter 0
ters ol1]2]211]0 T1Te
ol2lalal2]o0
* |1 4|1 =
ol1l3]3]1]0
ol1l2]3]1]0 V8
olol1]1]0]0

0+x0)+O*1D)+O0*x0)+O0*1)+ (1*—4)
+2+«1)+0*x0)+2*x1)+(4=x0)=0

3/17/25
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* Images can be represented as matrices, where each

element corresponds to a pixel

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololofo]o
Filter 011
ters ol1]2]211]0 T1Te
ol2lalal2]0
* |1 4|1 =
ol1l3]3]1]0
ol1l2]3]1]0 V8
olol1]1]0]0

0x0)+O*1D)+O0*x0)+(A*x1)+(2*x—4)
+R2+«1D)+@2*0)+4*x1)+4=+x0)=-1

3/17/25
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Convolutional

Filters

3/17/25

* Images can be represented as matrices, where each

element corresponds to a pixel

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

0[0|]0|0(0]O
1121211 O0(-1]1-1(0
0 0 0/ 1|0
01241420 -2|1-51-5]-2
*x |1 -4 1 =
0O(1(3|3(1]0 21-21-1(3
0/ 1|0
0(1|1213(1]0 -110(-5]10
0O(0|1|1({0]0

26



Convolutional
Filters

3/17/25

Operation

Kernel w

Image result g(x,y)

0 0 O
Identity 0 1 0
0 0 0
1 0 -1
0 0 O
-1 0 1
0 1 0
Edge detection 1 -4 1
0 1 0

Source: https://en.wikipedia.org/wiki/Kernel (image processing)

27
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Poll Question 2:
What effect do you think the

following filter will have on an

image?

A. Sharpen the image

B. Blur the image

C. Shift the image left

D. Rotate the image clockwise
E. Nothing (TOXIC)

—
O S

N3
—
[ T
|

3/17/25 Source: https://en.wikipedia.org/wiki/Kernel (image processing) 28



https://en.wikipedia.org/wiki/Kernel_(image_processing)

M O re Sharpen
Filters

Operation Kernel w Image result g(x,y)
0 0 O
Identity 0 1 0
0 0 O
gt =10
=1l &5 =l
g -1 0
5 1 1 11
ox blur 11 1 1
(normalized) 9
1 11

3/17/25 Source: https://en.wikipedia.org/wiki/Kernel (image_processing)

29
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Convolutional

Filters

3/17/25

* Images can be represented as matrices, where each

element corresponds to a pixel

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

0—~e==esag££_\\
oltl21211l6 14T 0l-1]/-1]0
ol214t4(2]0] — 21-5]-5]-2
1131310 2121-1]3

0 1 0
1120310 1lo0|-50
ol1l1]olo0

30



* Convolutions can be represented by a feed forward neural

network where:

1. Nodes in the input layer are only connected to

some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

Convolutional

Filters

- Many fewer weights than a fully connected layer!

* Convolution weights are learned using gradient descent/

3/17/25 backpropagation, not prespecified 3



- What if relevant features exist at the border of our image?

- Add zeros around the image to allow for the filter to be
applied “everywhere” e.g. a padding of 1 with a 3x3 filter

preserves image size and allows every pixel to be the center

Convolutional

Filters: Padding

olRr|(rRr|IN|~|O
Nla | N|g|lol-
1 1 1 1
R lCINn|u = |
1 1 1 1
Slu|m|ul|= |
N([o|lw|n|o|-
olRr|(Rr|IN|~|O

=il NHell ol Noll Nl =N Nl Ne)
(il Neoll Bl el Nel leoll el Nan)

SOOI RPrINIR,]|O]|O

Sl DN]|WIHSIDN|IO|O

SlrRr|W|IWIHIDN|IO|O

el Neoll o Bl B Bl =2 R =)

(=l Nl Bl Nel el Nel Nl N

S| || |OC|O|O

3/17/25 32



Downsampling:

Pooling

3/17/25

- Combine multiple adjacent nodes into a single node

0-4-14-1]0
\
2lslsl
\max
1101-5]0

33



- Combine multiple adjacent nodes into a single node

— T —
pooling 2|3

0(-1|-1|0
-2|1-5|-5|-2 max 010
2 |-21-1|3
-1101(-5]|0

Downsampling:

Poolin
5 * Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Protects the network from (slightly) noisy inputs

3/17/25



* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololololo]o
ol1[22]1]0 >
ol2]44a]2]0 0 1

D s o[1|3]3]1]o] " 1 2 ~

ownsampling. N e

Stride olol1]1]o]o0
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* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololololo]o
ol1l2]2]1]0 =15
ol2[44a]2]0 0 1

D s o[1|3]3]1]o] " 1 2 ~

ownsampling. N e

Stride olol1]1]o]o0

3/17/25



* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololololo]o
ol1l22]1]0 5T
ol2l44a]2]0 0 1

D s o[1|3]3]1]o] " 1 2 ~

ownsampling. N e

Stride olol1]1]o]o0

3/17/25



* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololofofo]o
ol1l2121110 5T
ol2lalal2]0 0 1
% = | 0
Downsampling: AEIEAEAENLANE
: PIINg: ol1l213]1]0
Stride olol1l1]0]o0

3/17/25



Downsampling:

Stride

3/17/25

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0(0|]0(0]|0|O
112121
0 0 2(-2|1
0[2(414|2|0 0 1
* = (0|1]|1
0[1(3]|3[|1/0 1|-2
1120
0(1(2|3(1|0
0O[{0(1]1]0|O0

* Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Many relevant macro-features will tend to span large
portions of the image, so taking strides with the

convolution tends not to miss out on too much

39
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C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps C5: layer
6@14x14 120

84

’ =

Convolutions Subsampling Convolutions  Subsampling

LeNet (LeCun et al., 1998)

Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf

F6: layer OUTPUT

10

‘ Full conAection | Gaussian connections

Full connection

40


http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
A 6@28x28

S2: f. maps
6@14x14

SECIUZIN
NNNREE
SE RS
~HHNSEs
SURSSS

‘ Fu
Convolutions Subsampling Convolutions  Subsampling FUIl connection

One of the earliest, most famous deep learning models — achieved remarkable

performance at handwritten digit recognition (< 1% test error rate on MINIST)

Used sigmoid (or logistic) activation functions between layers and mean-pooling, both

of which are pretty uncommon in modern architectures

3/17/25 Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf



http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

C3:f. maps 16@10x10

INPUT g1@ ngitztge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer .
5@14x14 120 & taver QUTPUT

N | |
’ ‘ Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Wait how did we go from 6 to 167

3/17/25 Source: http://vision.stanford.edu/cs598 springoz/papers/Lecung8.pdf 42



http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf




* Animage can be represented as the sum of red, green and blue pixel intensities

e Each color corresponds to a channel

3/17/25
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4 | 1|2 16| 3|6

, 1
Example: 5 2 | 6 | 14 | 15

3 X 4 X 6 tensor c

26 4 6 | 8 |9
0

0 6| 5| 2 | 8

! 5 2 14| 11

15/ 2| 5|0

* Animage can be represented as a tensor or multidimensional array

45



* Given multiple input channels, we can specify a filter for

each one and sum the results to get a 2-D output tensor

Input Kernel Input Kernel Output
11213

112

. TS — ol I B Rl e
Convolutions 0122—*0'%: ele] == _ =]z

. 345 H

on Multiple el L N iy

Input Channels o7 B2

* For ¢ channels and h X w filters, we have chw + ¢

learnable parameters (each filter has a bias term)

3/17/25 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html



http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html

* Given multiple input channels, we can specify a filter for

each one and sum the results to get a 2-D output tensor

L 112
T il I I R e
Convolutions JKE Hﬂ: [ele] == _ [=]=
on Multiple eERINNBE SR E Rl
Input Channels o7 B2
* Questions:

1. Why might we want a different filter for each input?

2. Why do we combine them together into a single

output channel?

3/17/25 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 47



http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html
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INPUT
32x32

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS: layer rg.|aver OUTPUT

C1: feature maps
6@28x28

S2: f. maps
6@14x14

N | |
’ ‘ Full conAection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Channels in hidden layers correspond to different macro-features, which we might

want to manipulate differently — one filter per channel

Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf

48
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01 2 3 45 6 7 8 9 10111213 1415

C3: f. maps 16@10x10 T X% B B
1 (X X X X X X X X X X

S2: f. maps 2 X X X X X X X X X X
6@14x14 3 X X X X X X X X XX
4 X X X X X X X X X X

5 X X X X X X X X X X

TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

* We can combine these macro-features into a new, interesting, “higher-level” feature
* But we don’t always need to combine all of them!

 Different combinations — multiple output channels

 Common architecture: more output channels and smaller outputs in deeper layers

Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf
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