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10-301/601: Introduction 
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Lecture 17 – Convolutional 
Neural Networks



Front Matter

� Announcements

� HW6 released 3/16, due 3/22 at 11:59 PM

� You can only use at most two late days on HW6

� Exam 2 on 3/26 (next Wednesday) from 7 -9 PM

� All topics from Lecture 8 to Lecture 16 (inclusive)
+ the portion of today’s lecture on MLE/MAP 
are in-scope

� Exam 1 content may be referenced but will not be 
the primary focus of any question
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Recall: 
Bernoulli 
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙! 1 − 𝜙 "#!

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 $ , the log-likelihood is

ℓ 𝜙 = ,
%&"

$

log 𝑝 𝑥 % |𝜙 = ,
%&"

$

log𝜙! ! 1 − 𝜙 "#! !

ℓ 𝜙 = ,
%&"

$

𝑥 log𝜙 + 1 − 𝑥 log 1 − 𝜙

ℓ 𝜙 = 𝑁" log𝜙 + 𝑁' log 1 − 𝜙

where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 $  and 𝑁' is 
the number of 0’s



Recall: 
Bernoulli 
MLE

3/17/25 4

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙! 1 − 𝜙 "#!

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
3𝜙
−

𝑁'
1 − 3𝜙

= 0 →
𝑁"
3𝜙
=

𝑁'
1 − 3𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − 3𝜙 = 𝑁' 3𝜙 → 𝑁" = 3𝜙 𝑁' +𝑁"

𝜕ℓ
𝜕𝜙

→ 3𝜙 =
𝑁"

𝑁' +𝑁"
=
𝑁"
𝑁

where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 $  and 𝑁' is 
the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙! 1 − 𝜙 "#!

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
3𝜙
−

𝑁'
1 − 3𝜙

= 0 →
𝑁"
3𝜙
=

𝑁'
1 − 3𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − 3𝜙 = 𝑁' 3𝜙 → 𝑁" = 3𝜙 𝑁' +𝑁"

𝜕ℓ
𝜕𝜙

→ 3𝜙 =
𝑁"

𝑁' +𝑁"
=
𝑁"
𝑁

where 𝑁" is the number of heads in our dataset and 𝑁' is 
the number of tails



Poll Question 1:

Flip your coin 5 times and 
based on the results of 
your flip, report the MLE 
of your coin
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A.  0/5
B.  1/5
C.  2/5
D.  3/5
E.  𝜋/5 (TOXIC)
F.  4/5
G.  5/5

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙! 1 − 𝜙 "#!

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
3𝜙
−

𝑁'
1 − 3𝜙

= 0 →
𝑁"
3𝜙
=

𝑁'
1 − 3𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − 3𝜙 = 𝑁' 3𝜙 → 𝑁" = 3𝜙 𝑁' +𝑁"

𝜕ℓ
𝜕𝜙

→ 3𝜙 =
𝑁"

𝑁' +𝑁"
=
𝑁"
𝑁

where 𝑁" is the number of heads in our dataset and 𝑁' is 
the number of tails



� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior 
distribution over the parameters

� MLE finds 3𝜃 = argmax
(

	𝑝 𝒟 𝜃

� MAP finds 3𝜃 = argmax
(

	𝑝 𝜃 𝒟

MAP finds 3𝜃 = argmax
(

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 3𝜃 = argmax
(

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 3𝜃. = argmax
(

	log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation
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likelihood prior

log-posterior



Coin 
Flipping
MAP
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙! 1 − 𝜙 "#!

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙)#" 1 − 𝜙 *#"

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ∫'
"𝜙)#" 1 − 𝜙 *#"𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Beta 
Distribution
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So why use this 
strange looking 
Beta prior?
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The Beta 
distribution is 
the conjugate 
prior for the 
Bernoulli 
distribution!
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙! 1 − 𝜙 "#!

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙)#" 1 − 𝜙 *#"

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ∫'
"𝜙)#" 1 − 𝜙 *#"𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Coin 
Flipping
MAP
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� Given 𝑁 iid samples 𝑥 " , … , 𝑥 $ , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 +,
%&"

$

log 𝑝 𝑥 % 𝜙

ℓ 𝜙 = log
𝜙)#" 1 − 𝜙 *#"

Β 𝛼, 𝛽
+,
%&"

$

log𝜙! ! 1 − 𝜙 "#! !

ℓ 𝜙 = 𝛼 − 1 log𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = +,
%&"

$

𝑥 % log𝜙 + 1 − 𝑥 % log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁" log𝜙 + 𝛽 − 1 + 𝑁' log 1 − 𝜙
ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin 
Flipping
MAP
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� Given 𝑁 iid samples 𝑥 " , … , 𝑥 $ , the partial derivative of 
the log-posterior is
𝜕ℓ
𝜕𝜙

=
𝛼 − 1 + 𝑁"

𝜙
−

𝛽 − 1 + 𝑁'
1 − 𝜙

	 	 ⋮

→ 3𝜙+,- =
𝛼 − 1 + 𝑁"

𝛽 − 1 + 𝑁' + 𝛼 − 1 + 𝑁"
�𝛼 − 1	is a “pseudocount” of the number of 1’s (or heads) 

you’ve “observed” 

�𝛽 − 1	is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁' = 2):

𝜙+./ =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙+,- =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=
110
212

≈
1
2



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁' = 2):

𝜙+./ =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙+,- =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=
10
12

= 𝜙+./



M(C)LE for 
Linear 
Regression 

� One way of conceptualizing linear regression is that the 
residuals are random variables!

𝑦 = 𝜽0𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎1 → 𝑦 ∼ 𝑁 𝒘0𝒙, 𝜎1

� Then given 𝑋 =

1 𝒙 " 0

1 𝒙 1 0

⋮ ⋮
1 𝒙 $ 0

 and 𝒚 =

𝑦(")

𝑦(1)
⋮

𝑦($)
	the MLE of 𝜽 is

163/17/25

T𝛽 = argmax
*

log 𝑃 𝑌 𝐴, 𝛽

= argmax
*

log exp −
1
2𝜎1 𝑨𝛽 − 𝒀 0 𝑨𝛽 − 𝒀

= argmin
*

𝑨𝛽 − 𝒀 0 𝑨𝛽 − 𝒀 = 𝑨0𝑨 #"𝑨0𝒀



� One way of conceptualizing linear regression is that the 
residuals are random variables!

� If the residuals are Gaussian …

𝑦 = 𝜽0𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎1 → 𝑦 ∼ 𝑁 𝒘0𝒙, 𝜎1

� … then given 𝑋 =
1 𝒙 " 0

⋮ ⋮
1 𝒙 $ 0

 and 𝒚 =
𝑦 "

⋮
𝑦 $

	the MLE of 𝜽 isM(C)LE for 
Linear 
Regression 

173/17/25

𝜽̂ = argmax
𝜽

	log 𝑃 𝒚 𝑋, 𝜽

= argmin
𝜽

𝑋𝜽 − 𝒚 0 𝑋𝜽 − 𝒚 = 𝑋0𝑋 #"𝑋0𝒚

⋮

a.k.a. the OLS solution!



MAP for 
Linear 
Regression 

183/17/25

� One way of conceptualizing linear regression is that the 
residuals are random variables!

� If the residuals are Gaussian …

𝑦 = 𝜽0𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎1 → 𝑦 ∼ 𝑁 𝒘0𝒙, 𝜎1

� … and we use a Gaussian prior on the weights …

𝜃5 ∼ 𝑁 0,
𝜎1

𝜆
	∀	𝑑 ∈ 0,… , 𝐷

� … then, the MAP of 𝜽 is the ridge regression solution!

𝜽̂+,- = 𝑋0𝑋 + 𝜆𝐼67" #"𝑋0𝒚



MLE/MAP 
Learning 
Objectives

You should be able to…

� Recall probability basics, including but not limited to: 
discrete and continuous random variables, probability 
mass functions, probability density functions, events vs. 
random variables, expectation and variance, joint 
probability distributions, marginal probabilities, 
conditional probabilities, independence, conditional 
independence

� State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

� State the principle of maximum a posteriori estimation 
and explain why we use it

� Derive the MLE or MAP parameters of a simple model in 
closed form

193/17/25



Deep Learning

� From Wikipedia’s page on Deep Learning…

� Deep learning = more than one layer

3/17/25 20Source: https://en.wikipedia.org/wiki/Deep_learning

https://en.wikipedia.org/wiki/Deep_learning


Deep Learning
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First layer: computes the 
perceptrons’ predictions

Second layer: combines 
lower-level components



Convolutional 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful 
macro-features are shift or location-invariant, e.g., an 
edge in the upper left corner of a picture looks like an 
edge in the center

� Strategy: learn a filter for macro-feature detection in a 
small window and apply it over the entire image
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Convolutional 
Filters

� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

3/17/25 23

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗



Convolutional 
Filters

� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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=

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 1 + 1 ∗ −4
+ 2 ∗ 1 + 0 ∗ 0 + 2 ∗ 1 + 4 ∗ 0 = 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0



Convolutional 
Filters

� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 2 ∗ −4
+ 2 ∗ 1 + 2 ∗ 0 + 4 ∗ 1 + 4 ∗ 0 = −1

0 -1



Convolutional 
Filters

� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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=

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗



Convolutional 
Filters

3/17/25 27Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


Poll Question 2: 

What effect do you think the 
following filter will have on an 
image? 

A. Sharpen the image

B. Blur the image
C. Shift the image left

D. Rotate the image clockwise
E. Nothing (TOXIC)

3/17/25 28Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


More 
Filters

3/17/25 29Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

Convolutional 
Filters
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0	|	1	|	0

0	|	1	|	0

1	|	-4	|	1

=
0 1 0

1 -4 1

0 1 0
∗



0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

Convolutional 
Filters
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� Convolutions can be represented by a feed forward neural 

network where:

1. Nodes in the input layer are only connected to 
some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

� Many fewer weights than a fully connected layer!

� Convolution weights are learned using gradient descent/ 
backpropagation, not prespecified



� What if relevant features exist at the border of our image?

� Add zeros around the image to allow for the filter to be 
applied “everywhere” e.g. a padding of 1 with a 3x3 filter 
preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Convolutional 
Filters: Padding
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=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0 1 2 2 1 0
1 0 -1 -1 0 1
2 -2 -5 -5 -2 2
1 2 -2 -1 3 1
1 -1 0 -5 0 1
0 2 -1 0 2 0



Downsampling: 
Pooling
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

𝑚𝑎𝑥
00 0

� Combine multiple adjacent nodes into a single node
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0

2 3
𝑚𝑎𝑥
pooling

Downsampling: 
Pooling

� Combine multiple adjacent nodes into a single node

� Reduces the dimensionality of the input to subsequent 
layers and thus, the number of weights to be learned

� Protects the network from (slightly) noisy inputs



� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1

1 -2
∗

-2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1

1 -2
∗

-2 -2

� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2



� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1

1 -2
∗

-2 -2 1



� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

3/17/25 38

Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0



� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

� Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

� Many relevant macro-features will tend to span large 

portions of the image, so taking strides with the 
convolution tends not to miss out on too much

3/17/25 39

Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0 1 1

1 2 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0



LeNet (LeCun et al., 1998)
3/17/25 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 40

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


• Used sigmoid (or logistic) activation functions between layers and mean-pooling, both 
of which are pretty uncommon in modern architectures 

3/17/25 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

• One of the earliest, most famous deep learning models – achieved remarkable 

performance at handwritten digit recognition (< 1% test error rate on MNIST) 

41

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Wait how did we go from 6 to 16?
3/17/25 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 42

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Channels
3/17/25 43



• An image can be represented as the sum of red, green and blue pixel intensities

3/17/25

• Each color corresponds to a channel

4 1 2 16 3 6

1 7 5 8 19 27

5 2 5 12 17 8

0 4 9 9 6 11

5 2 6 14 15 8

26 3 6 8 4 9

0 15 24 6 1 8

7 4 9 5 24 17

4 6 8 9 5 3

16 5 2 8 2 1

5 2 14 11 7 8

15 2 5 0 9 8

44



• An image can be represented as a tensor or multidimensional array

3/17/25

4 1 2 16 3 6

1 7 5 8 19 27

5 2 5 12 17 8

0 4 9 9 6 11

5 2 6 14 15 8

26 3 6 8 4 9

0 15 24 6 1 8

7 4 9 5 24 17

4 6 8 9 5 3

16 5 2 8 2 1

5 2 14 11 7 8

15 2 5 0 9 8

Example: 
3	×	4	×	6 tensor

45



� Given multiple input channels, we can specify a filter for 

each one and sum the results to get a 2-D output tensor

�  For 𝑐 channels and ℎ	×	𝑤 filters, we have 𝑐ℎ𝑤 + 𝑐 
learnable parameters (each filter has a bias term)

Convolutions 
on Multiple 
Input Channels

3/17/25 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 46

http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html


Convolutions 
on Multiple 
Input Channels

� Given multiple input channels, we can specify a filter for 

each one and sum the results to get a 2-D output tensor

�  Questions:

1. Why might we want a different filter for each input? 

2. Why do we combine them together into a single 
output channel?

3/17/25 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 47

http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html


3/17/25 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

• Channels in hidden layers correspond to different macro-features, which we might 

want to manipulate differently → one filter per channel

48

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


3/17/25 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

• We can combine these macro-features into a new, interesting, “higher-level” feature 

• But we don’t always need to combine all of them! 
• Different combinations → multiple output channels
• Common architecture: more output channels and smaller outputs in deeper layers
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