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Reminders

• Homework 5: Neural Networks
– Out: Wed, Feb-26
– Due: Sun, Mar-16 at 11:59pm
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LEARNING THEORY
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Questions
1. Given a classifier with zero training error, 

what can we say about true error (aka. 
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about true error (aka. 
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)
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IMPORTANT NOTE

In our discussion of PAC 
Learning, we are only 
concerned with the 

problem of binary 
classification
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There are other theoretical frameworks (including 
PAC) that handle other learning settings, but this 

provides us with a representative one.



PAC / SLT Model

11

We’ve also referred to 

this as the “Function 

Approximation View”



Three Hypotheses of Interest
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SAMPLE COMPLEXITY RESULTS
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…
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Realizable Agnostic

Four Cases we care about…



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

1. Bound is inversely linear in 
epsilon (e.g. halving the error 
requires double the examples)

2. Bound is only logarithmic in 
|H| (e.g. quadrupling the 
hypothesis space only requires 
double the examples)

1. Bound is inversely quadratic in 
epsilon (e.g. halving the error 
requires 4x the examples)

2. Bound is only logarithmic in 
|H| (i.e. same as Realizable 
case) 



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

For these two cases, we will use a new definition for the 
“complexity” of a Hypothesis space called VC Dimension



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



VC-DIMENSION
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Finite vs. Infinite |H|

Finite |H|
• Example: H = the set of all decision trees 

of depth D over binary feature vectors of 
length M

• Example: H = the set of all conjunctions 
over binary feature vectors of length M

Infinite |H|
• Example: H = the set of all linear decision 

boundaries in M dimensions

• Example: H = the set of all neural 
networks with 1-hidden layer with length 
M inputs
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Def 1: A hypothesis ℎ applied 
to some dataset 𝑆 generates 
a labeling of 𝑆.

Def 2: Let ℋ[𝑆] be the set of 
all (distinct) labelings of 
𝑆	generated by hypotheses 
ℎ ∈ ℋ.

Def 3: ℋ shatters 𝑆 if 
ℋ 𝑆 = 2 !  

or equivalently, the 
hypotheses in ℋ can 
generate every possible 
labeling of 𝑆.

Labelings & Shattering
Example: labelings
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Def 1: A hypothesis ℎ applied 
to some dataset 𝑆 generates 
a labeling of 𝑆.

Def 2: Let ℋ[𝑆] be the set of 
all (distinct) labelings of 
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hypotheses in ℋ can 
generate every possible 
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Labelings & Shattering
Example: shattering
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Def: The VC-dimension (or Vaporik-Chervonenkis 
dimension) of ℋ is the cardinality of the largest 
set 𝑆 such that ℋ can shatter 𝑆.

Special Case: If ℋ can shatter arbitrarily large finite 
sets, then the VC-dimension of ℋ is infinity

Notation: We write VC ℋ = 𝑑 to say the VC-
Dimension of a hypothesis space ℋ is 𝑑

VC-dimension
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Proof Technique: To prove that VC ℋ = 𝑑	
there are two steps:

1. show that there exists a set of 𝑑 points that 
can be shattered by ℋ
è VC ℋ ≥ 𝑑	

2. show that there does NOT exist a set of 𝑑 + 1 
points that can be shattered by ℋ
è VC ℋ < 𝑑 + 1	

VC-dimension Proof



VC-dimension Example: linear separators
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VC-dimension
Proof Technique: To prove that VC ℋ = 𝑑	 there are 
two steps:

1. show that there exists a set of 𝑑 points that can be 
shattered by ℋ
è VC ℋ ≥ 𝑑	

2. show that there does NOT exist a set of 𝑑 + 1 
points that can be shattered by ℋ
è VC ℋ < 𝑑 + 1	



VC-dimension Example: linear separators
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VC-dimension
Proof Technique: To prove that VC ℋ = 𝑑	 there are 
two steps:

1. show that there exists a set of 𝑑 points that can be 
shattered by ℋ
è VC ℋ ≥ 𝑑	

2. show that there does NOT exist a set of 𝑑 + 1 
points that can be shattered by ℋ
è VC ℋ < 𝑑 + 1	



∃ vs. ∀
VC-dimension
– Proving VC-dimension requires us to show that 

there exists (∃) a dataset of size d that can be 
shattered and that there does not exist (∄) a 
dataset of size d+1 that can be shattered

Shattering
– Proving that a particular dataset can be 

shattered requires us to show that for all (∀) 
labelings of the dataset, our hypothesis class 
contains a hypothesis that can correctly classify it
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VC-dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:
A = 0 B = 1 C = 1.5 D = 2 E = 3 F = 4

Question:
What is the VC-dimension of H = 1D positive rays. That is for a threshold w, 
everything to the right of w is labeled as +1, everything else is labeled -1.

+-
w



VC-dimension Examples
• Definition: If VC(H) = d, then there exists (∃) a dataset of size d that can 

be shattered and that there does not exist (∄) a dataset of size d+1 that 
can be shattered
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Answer:
A = 0 B = 1 C = 1.5 D = 2 E = 3 F = 4

Question:
What is the VC-dimension of H = 1D positive intervals. That is for an interval 
(w1, w2), everything inside the interval is labeled as +1, everything else is 
labeled -1.

+- -
w1 w2



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



SLT-STYLE COROLLARIES
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SLT-style Corollaries
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Solve the inequality in Thm.1 for 
epsilon to obtain Corollary 1

We can obtain 
similar corollaries for 

each of the 
theorems…



SLT-style Corollaries
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SLT-style Corollaries
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SLT-style Corollaries
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Should these corollaries inform 
how we do model selection?



Learning Theory & Model Selection
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VC(H)
(i.e. complexity)

error
(i.e. lower è 
good data fit)

Key Point: we want 
to tradeoff between 

low training error 
and keeping H 

simple (low VC-Dim)



Learning Theory & Model Selection
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VC(H)
(i.e. complexity)

error
(i.e. lower è 
good data fit)

train error

part of Corr. 4

true error
bound from Corr. 4

best tradeoff

Ex: H = Linear Separators in RM

VC(H) = M+1
Q: In practice, how do we tradeoff between error and VC(H)? 
A: Use a regularizer! That is, reducing the number of (effective) features reduces the 
VC dimension. More features usually leads to a better fit to the data.

Key Point: we want 
to tradeoff between 

low training error 
and keeping H 

simple (low VC-Dim)



Learning Theory Objectives
You should be able to…
• Identify the properties of a learning setting and assumptions 

required to ensure low generalization error
• Distinguish true error, train error, test error
• Define PAC and explain what it means to be approximately 

correct and what occurs with high probability
• Apply sample complexity bounds to real-world learning 

examples
• Distinguish between a large sample and a finite sample analysis
• Theoretically motivate regularization
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PROBABILISTIC LEARNING
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Probabilistic Learning

Function Approximation
Previously, we assumed that our output 
was generated using a deterministic target 
function:

Our goal was to learn a hypothesis h(x) that 
best approximates c*(x)

Probabilistic Learning
Today, we assume that our output is 
sampled from a conditional probability 
distribution:

Our goal is to learn a probability distribution 
p(y|x) that best approximates p*(y|x)
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MAXIMUM LIKELIHOOD ESTIMATION (MLE)
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Likelihood Function
• Given N independent, identically distributed (iid) samples           

D = {x(1), x(2), …, x(N)} from a random variable X …

• The likelihood function is 
– Case 1: X is discrete with probability mass function (pmf) p(x|θ)

  L(θ) = p(x(1)|θ) p(x(2)|θ) … p(x(N)|θ)
– Case 2: X is continuous with probability density function (pdf) f(x|θ) 

  L(θ) = f(x(1)|θ) f(x(2)|θ) … f(x(N)|θ)

• The log-likelihood function is
– Case 1: X is discrete with probability mass function (pmf) p(x|θ)

  l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)
– Case 2: X is continuous with probability density function (pdf) f(x|θ) 

   l(θ) = log f(x(1)|θ) +… + log f(x(N)|θ)
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The likelihood tells us 
how likely one sample is 

relative to another

One R.V.



Likelihood Function
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Two R.V.s

• Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair 
of random variables X, Y

• The conditional likelihood function:
– Case 1: Y is discrete with pmf  p(y | x, θ)

  L(θ) = p(y(1) | x(1), θ) …p(y(N) | x(N), θ) 
– Case 2: Y is continuous with pdf f(y | x, θ)

  L(θ) = f(y(1) | x(1), θ) …f(y(N) | x(N), θ) 

• The joint likelihood function:
– Case 1: X and Y are discrete with pmf  p(x,y|θ)

  L(θ) = p(x(1), y(1)|θ) … p(x(N), y(N)|θ)
– Case 2: X and Y are continuous with pdf  f(x,y|θ) 

  L(θ) = f(x(1), y(1)|θ) … f(x(N), y(N)|θ)



Likelihood Function
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Two R.V.s

• Given N iid samples D = {(x(1), y(1)), …, (x(N), y(N))} from a pair 
of random variables X, Y

• The joint likelihood function:
– Case 1: X and Y are discrete with pmf  p(x,y|θ)

  L(θ) = p(x(1), y(1)|θ) … p(x(N), y(N)|θ)
– Case 2: X and Y are continuous with pdf  f(x,y|θ) 

  L(θ) = f(x(1), y(1)|θ) … f(x(N), y(N)|θ)
– Case 3: Y is discrete with pmf  p(y|β) and 

      X is continuous with pdf  f(x|y,α) 
  L(α, β) = f(x(1)| y(1), α) p(y(1)|β) … f(x(N)| y(N), α) p(y(N)|β)

– Case 4: Y is continuous with pdf  f(y|β) and 
      X is discrete with pmf  p(x|y,α) 
  L(α, β) = p(x(1)| y(1), α) f(y(1)|β) … p(x(N)| y(N), α) f(y(N)|β)

Mixed 
discrete/ 

continuous!



MLE
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability mass (i.e. sum-to-

one constraint)
• MLE tries to allocate as much probability mass as possible to 

the things we have observed…

…at the expense of the things we have not observed
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Recipe for Closed-form MLE
1. Assume data was generated iid from some model, i.e., write 

the generative story
 x(i) ~ p(x|θ)

2. Write the log-likelihood
 l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives, i.e., the gradient
 𝜕l(θ)/𝜕θ1 = …
 …
 𝜕l(θ)/𝜕θM = …

4. Set derivatives equal to zero and solve for θ
 𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
 θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is 
concave down at θMLE 70



MLE EXAMPLES
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MLE of Exponential Distribution
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• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.

Goal:

Steps:



MLE of Exponential Distribution
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• First write down log-likelihood of sample.

�(�) =
N�

i=1

HQ; f(x(i)) (1)

=
N�

i=1

HQ;(� 2tT(��x(i))) (2)

=
N�

i=1

HQ;(�) + ��x(i) (3)

= N HQ;(�) � �
N�

i=1

x(i) (4)

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



MLE of Exponential Distribution
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• Compute first derivative, set to zero, solve for �.

d�(�)

d�
=

d

d�
N HQ;(�) � �

N�

i=1

x(i) (1)

=
N

�
�

N�

i=1

x(i) = 0 (2)

� �MLE =
N

�N
i=1 x(i)

(3)

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



MLE of Bernoulli Model
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1. Model: x(i) ∼ Bernoulli(φ) for i = 1, . . . , N

p(x(i)|φ) =

{

φ if x(i) = 1

(1− φ) if x(i) = 0

= φx
(i)

(1− φ)1−x
(i)

2. Log‐posterior:

"MLE(φ) = log p(D | φ)

= log
N
∏

i=1

p(x(i) | φ)

= log
N
∏

i=1

φx
(i)

(1− φ)1−x
(i)

= log
(

φN1(1− φ)N0
)

= N1 log(φ) +N0 log(1− φ)

N1 = #(x(i) = 1)

N0 = #(x(i) = 0)

3. Derivative:

∂"MLE(φ)

∂φ
=

∂

∂φ
(N1 log(φ) +N0 log(1− φ))

=
N1

φ
−

N0

1− φ

4. Set to zero and solve:

N1

φ
−

N0

1− φ
= 0

⇒φMLE =
N1

N1 +N0

=
N1

N



MLE of Bernoulli Model
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Estimator vs. Estimate

Maximum likelihood ESTIMATOR
• the formula used to compute the 

estimate with some data

Maximum likelihood ESTIMATE
• plugs data into the estimator to 

compute an actual number 

81

3. Derivative:

∂"MLE(φ)

∂φ
=

∂
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N1

N


