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Reminders

« Homework 5: Neural Networks
— Out: Wed, Feb-26
— Due: Sun, Mar-16 at 11:59pm




LEARNING THEORY



1.

Questions

Given a classifier with zero training error,
what can we say about true error%aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)



IMPORTANT NOTE

In our discussion of PAC
Learning, we are only
concerned with the

problem of binary
classification

There are other theoretical frameworks (including
PAC) that handle other learning settings, but this
provides us with a representative one.




Il‘/lf:/e;g € also
PAC / S LT M O d e I Apprjjl_fge £§f erred to

. Generate instances from unknown distribution p*
x®) ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y W = (xV), Vi (2)

. Learning algorithm chooses hypothesis h € ‘H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

yW = (xW), vi (1)
The expected risk minimizer has lowest true error:

h* = argmin R(h) (2)
heH

The empirical risk minimizer has lowest training error:

A

h = argmin R(h) (3)
heH



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
Fini beled examples are sufficient so that with

te |H| probability (1—4) all h € H with R(h) =0
have R(h) < e.

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...
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Realizable Agnostic

Thm. 1 N > I [log(|H]) +1log(3)] la-| Thm. 2 N > 55 [log(|#]) + log(%)]
Finite |H| beled examples are sufficient so that with | labeled examples are sufficient so that

probability (1 —4) all h € H with R(h) = 0 | with probability (1 — §) forall h € H we
have R(h) < . have that |R(h) — R(h)| < e.

Infinite |H|




Finite ||

Infinite |H|

1. Boundis inversely linear in 1.
epsilon (e.g. halving the error )
requires double the examples)

2. Boundis only logarithmicin  [€]2.
[H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
|H| (i.e. same as Realizable

case)

Realizable

% Agnostic

Thm. 1 N > I[log(|H|) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5l [log([H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |R(h) — R(h)| < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic
Thm|  For these two cases, we will use a new definition for the
Finite || gf(')e “complexity” of a Hypothesis space called VC Dimension
have R(h) < e. have that | R( R(h)| < e.
| .

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H|

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5l [log([H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — d) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=0(: g(%) +log(5)])
labeled examples-are—sufficient so that

with probability (1 — d) all h € H with
R(h) = 0have R(h) < e.

Thm. 4 N = O(é(VC(’H))—F log(3)])
l[abeled examples are fent so that

with probability (1 — ) forall h € H we
have that |R(h) — R(h)| <e.




Sample Complexity Results

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > I[log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1 —8) all k € H with R(h) = 0
have R(h) < e.

Thm. 2 N > L [log(|H]) + log(2)]
labeled examples are sufficient so that
with probability (1 — J) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O( [VC(H)log(1) + log(3)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with
R(h) = 0have R(h) < e.

Thm. 4 N = O(5 [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.




VC-DIMENSION



Finite vs. Infinite |H|

Finite |H| Infinite [H|
* Example: H = the set of all decision trees * Example: H = the set of all linear decision
of depth D over binary feature vectors of boundaries in M dimensions
length M
A
A
N o0 +
B B ‘
AN\ VAN
+ C C + +
/N /\
Y O + >
¢ Exampl€: H= the set Of a” ConjunCtionS ° Example: H= the set Of a” neural
over binary feature vectors of length M networks with 1-hidden layer with length

M inputs



Labelings & Shattering

Def 1: A hypothesis 1 applied Example: labelings
to some dataset S generates
a labeling of S.




Labelings & Shattering

Def 1: A hypothesis 1 applied Example: labelings
to some dataset S generates 2o dl S dee Lol w20
a labeling of S. e SRe P

A
Lo xts INOREEN O N6 N

Def 2: Le e the set of he X7 x X

all (distin elings of A4
S generated by hypotheses ?-/ZSZ =22

heH. ‘T

24



Labelings & Shattering

Eef 1A hgllp’:)thetsgs h aPPIitEd Example: shattering

o some dataset S generates |

a labeling of S. /’/f //‘V dec. bod & 2D
Q _

Def 2: Let H'[S] be the set of S : HISS = 4

all (distinct) labelings of . S =16 o

® l

.}S‘lgee;[e.rated by hypotheses N Y des web dualle S
1)

Def 3: H shﬁgtlters S if S .

— ® -]
JsI=2 SN P TS

or equivalently, the

hypotheses in H can

generate every possible S .

labeling of S. )
& M %/ Joes SL‘A “’u S 7



VC-dimension

Def: The VC-dimension (or Vaporik-Chervonenkis
dimension) of H is the cardinality of the largest
set S such that H can shatter S.

Special Case: If H can shatter arbitrarily large finite
sets, then the VC-dimension of H is infinity

Notation: We write VC(H') = d to say the VC-
Dimension of a hypothesis space H is d



VC-dimension Proof

Proof Technique: To prove that VC(H') = d
there are two steps:

1. show that there exists a set of d points that
can be shattered by H’
= VC(H) =>d

2. show that there does NOT existasetofd + 1
points that can be shattered by H
2> VC(H)<d+1

28
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shattered by H
2> VC(H) =d
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Proof Technique: To prove that VC(H) = d there are

: : t teps:
VC_d I m e n S I O n o S1.eps show that there exists a set of d points that can be

shattered by H
2> VC(H) =d

2. show t?ﬁtttherebdo%s ’,EIOT ?jxti)st;[set ofd+1
. . . < points that can be shattered by
VC-dimension Example: linear separators w Z.1) Vo <d 1
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4 vs.V

VC-dimension

— Proving VC-dimension requires us to show that
there exists (3) a dataset of size d that can be
shattered and that there does not exist (7) a
dataset of size d+1 that can be shattered

Shattering

— Proving that a particular dataset can be
shattered requires us to show that for all (V)
labelings of the dataset, our hypothesis class
contains a hypothesis that can correctly classify it

33



* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist () a dataset of size d+1 that

can be shattered

Question: i

VC-dimension Examples

What is the VC-dimension of H = 1D positive rays. That is for a threshold w,
everything to the right of w is labeled as +1, everything else is [abeled -1.

+




VC-dimension Examples

* Definition: If VC(H) = d, then there exists (3) a dataset of size d that can
be shattered and that there does not exist () a dataset of size d+1 that
can be shattered

Question:

What is the VC-dimension of H = 1D positive intervals. That is for an interval
(w,, w,), everything inside the interval is labeled as +1, everything else is
labeled 1.

Answer:
A=0 B=1 C=15 E=3 F=4



Sample Complexity Results

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > I[log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1 —8) all k € H with R(h) = 0
have R(h) < e.

Thm. 2 N > L [log(|H]) + log(2)]
labeled examples are sufficient so that
with probability (1 — J) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O( [VC(H)log(1) + log(3)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with
R(h) = 0have R(h) < e.

Thm. 4 N = O(5 [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.




SLT-STYLE COROLLARIES



SLT-style Corollaries

Thm. 1 N > 2 [log(|H|) + log(5)] la-
beled examples are sufficient so that with
probablllty (1-6)allh € Hwith R(h) = 0

have R(h @

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |#|). For some § > 0, with probabil-
ity at least (1 — §), for any h in H consistent with the training data

(i.e. R(h) = 0),

We can obtain

1 similar corollaries for
each of the

0 ) ] theorems...

R(h) < % [1n(|7—[|) +1n (




SLT-style Corollaries

Thm. 2 N > % [log(|7—[|) +log(%)]
labeled examples are sufficient so that
with probability (1 — (5) forallh € H we
have that |R(h h) <(&

N/

Corollary 2 (Agnostic, Finite |#|). Forsome ¢ > 0, with probability
at least (1 — d), for all hypotheses h in H,

R(h) < R(R) + \/2?\7 [1n(|7'l|) + In ((25)]




SLT-style Corollaries

Thm. 3 N=0O(= [VC(H)log(2) + log(3)])
labeled examples are sufficient so that
with probability (1 — J) all A € H with
R(h) = 0 have R(h) < e.

N

Corollary 3 (Realizable, Infinite |{|). For some é > 0, with proba-

bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) <O (% [vc(%) In (vc](VH)> T (%)D (1)




SLT-style Corollaries

Thm. 4 N = O(5 |[VC(H) + log(5)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

NS

Corollary 4 (Agnostic, Infinite |7{|). Forsome § > 0, with probabil-
ity at least (1 — 6), for all hypotheses A in H,

R(h) < R(h) + O (\/% VC(H) +In (%)D (2)

% Should these corollaries inform
how we do model selection?




Learning Theory & Model Selection

error A
(i.e. lower =»
good data fit)

Key Point: we want
to tradeoff between
low training error
and keeping H
simple (low VC-Dim)

>
VC(H)
(i.e. complexity)



Learning Theory & Model Selection

error A

(i.e. lower =» X 1 1
good data fit) R +0 {4/ 5 [VC(H) +in (5)]
bound from Corr. 4

; R(h) true error
Key Point: we want

to tradeoff between
low training error

and keeping H
simple (low VC-Dim) \
R(R) train error
- >

|
best tradeoff VC(H)

(i.e. complexity)

Ex: H = Linear Separators in RV

VC(H) = M+1

Q: In practice, how do we tradeoff between error and VC(H)?

A: Use a regularizer! That is, reducing the number of (effective) features reduces the
VC dimension. More features usually leads to a better fit to the data.




Learning Theory Objectives

You should be able to...

* ldentify the properties of a learning setting and assumptions
required to ensure low generalization error

* Distinguish true error, train error, test error

* Define PAC and explain what it means to be approximately
correct and what occurs with high probability

* Apply sample complexity bounds to real-world learning
examples

* Distinguish between a large sample and a finite sample analysis
* Theoretically motivate regularization



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our output
was generated using a deterministic target
function:

x) ~ p*(-)
y() = ¢* (%)

Our goal was to learn a hypothesis h(x) that
best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is
sampled from a conditional probability
distribution:

x() ~ p*()
y ~ p*(-x1)

Our goal is to learn a probability distribution
p(y|x) that best approximates p*(y|x)



MAXIMUM LIKELIHOOD ESTIMATION (MLE)



Likelihood Function | OneR.V.

* Given N independent, identically distributed (iid) samples
D = {x(, x®) ..., xN1 from a random variable X ...

* The likelihood function is
— Case 1: X is discrete with E)robablllt y mass function (pmf) p(x|6)
L(6) = p(x(V6) p(x*)6) ... p(x"|6)
— Case 2: X is continuous W|th probability density function (pdf) f(x|0)
%K L(6) = f(x([8) f(x)]B) ... f(x™M|8) " The likelihood tells us
how likely one sample is
* The log-likelihood function is relative to another
— Case 1: X is discrete with probability mass function (pmf) p(x|6)
40) =log p(x|8) + ... +log p(xV]6)
% — Case 2: Xis continuous with probability density function (pdf) f(x|0)
40) = log f(x|B) +... + log f(x(N)]©)



Likelihood Function | TwWoR.V.s

 Given N iid samples D = {(x®, y®), ..., (xN), y("\)} from a pair
of random variables X, Y

 The conditional likelihood function:

— Case 1: Y is discrete with pmf p(y | x, 6)
L(8) = p(y| x), 8) ... p(y™ ] x), ©)

— Case 2: Y is continuous with pdf f(y | x, 8)
S L(8) = f(y?] x, 8) ... f(y™ | xN), ©)

* The joint likelihood function:
7&, — Case 1: Xand Y are discrete with pmf p(x,y|0)
L(8) = p(x, yI|B) ... p(xM), yV]©)
% — Case 2: Xand Y are continuous with pdf f(x,y|0)
L() = f(x(, y1|@) ... f(xN), y(N)|©)



Likelihood Function @ TWoR.V.s

* Given N iid samples D = {(x(, yO), ..., (xN), y(\))} from a pair
of random variables X, Y

* The joint likelihood function:
— Case 1: Xand Y are discrete with pmf p(x,y|0)

L(6) = p(x, yI[B) ... p(x™), yM]6) Mixed
— Case 2: Xand Y are continuous with pdf f(x,y|0) discrete/
L(8) = f(x, y(|B) ... f(xM), yV|6) continuous!

— Case 3:Y is discrete with pmf p(y|B) and

K Xis continuous with pdf f(x|y,a)
L(a, B) = FO<X] v, 0) p(yVIB) -- FOX™] y™, @) p(y™]B)
— Case 4: Y is continuous with pdf f(y|B) and
X is discrete with pmf p(x|y,a)

L(a, B) = p(x] ¥, a) f(yIB) ... p(x™] y™, @) f(y®[B)

\_’




MLE

Suppose we have data D = {2V},

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. v .
O™ = argmax Hp(x(z) 0)
g =l

Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability mass (i.e. sum-to-
one constraint)

* MLE tries to allocate as much probability mass as possible to
the things we have observed...

... at the expense of the things we have not observed



Recipe for Closed-form MLE

Assume data was generated iid from some model, i.e., v“\gite
ownc oW

the generative story !
X~ p(x|6) T

Write the log-likelihood 26
40) =log p(x(|0) + ... +log p(x(N|©) — —78

Compute partial derivatives, i.e., the gradient Lome
040)/06, = ... Comter™

9/(0)/00,, = .. A
Set derivatives equal to zero and solve for 6 /0(@)
7

040)/08,,=o forallm e {y, ..., M} ]
OMLE = solution to system of M equations and M variables

Compute the second derivative and check that (0) is
concave down at @VE Cety Where




MLE EXAMPLES



MLE of Exponential Distribution

Goal:
o pdf of Exponential(\):| f(z) = Ae™
e Suppose X; ~ Exponential(A) for1 <¢ < N.
e Find MLE fordataD = {z(W} ¥V,

Steps:

e First write down log-likelihood of sample.

e Compute first derivative, set to zero, solve for .

e Compute second derivative and check that it is
concave down at AMLE,



MLE of Exponential Distribution




MLE of Exponential Distribution




MLE of Bernoulli Model

1. Model: x) ~ Bernoulli(¢) fori =1,...,N

[leedibood
2. Log-posterior:

-

L—/_A 3. Derivative:

7

4. Set to zero and solve:

\*22’

79



MLE of Bernoulli Model

1. Model: x) ~ Bernoulli(¢) fori =1,...,N

Ny = #(z = 1)
p(z?]¢) = {¢ L No = #(z'") = 0)

(1—-¢) ifz® =0
=" (1)

3. Derivative:

2. Log-posterior: MM(;;((’” = a% (N11log(¢) + Nolog(1 — ¢))
Imie(¢) = logp(D | ¢) Ny No
v TP 1-9¢
=log [ [ p(z" | ¢)
izl 4. Set to zero and solve:
=log [J ™" (1 —9)' =" NN,
=1 ¢ 1—¢
= log (Cle(l_Qb)NO) bl = N1 M
— N log(¢) + Ny log(1 — ¢) "W NI+ N, N 80



Estlmator VS. Estlmate
Og’l@q >MOP&J

Maximum likelihood ESTIMATOR Maximum likelihood ESTIMATE
* the formula used to compute the * plugs data into the estimator to
estimate with some data compute an actual number
N1 N1 V. XO) - l
OMmLE = N TN, N
o X - o
& ><(D B
12 X CYR \

3
@/MLE-’FJ



