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* Announcements

* HWS5 released 2/27, due 3/16 at 11:59 PM
Front Matter - Exam 1 Exit Poll due 3/10 (today!) at 11:59 PM

* Peer tutoring information will be posted to Piazza

some time this week
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Statistical

Learning
Theory Model
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Data points are generated i.i.d. from some unknown
distribution

x™ ~ p*(x)

Labels are generated from some unknown function
ym = c*(x("))

The learning algorithm chooses the hypothesis (or
classifier) with lowest training error rate from a
specified hypothesis set, H

Goal: return a hypothesis (or classifier) with low true
error rate



1. Data points are generated i.i.d. from some unknown
distribution

x™ ~ p*(x)

2. Labels are generated from some unknown function

Statistical y™® = c*(x™) € {-1,+1)}

Learning
Theory Model 3. The learning algorithm chooses the hypothesis (or

classifier) with lowest training error rate from a
specified hypothesis set, H

4. Goal: return a hypothesis (or classifier) with low true
error rate
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* True error rate
* Actual quantity of interest in machine learning

* How well your hypothesis will perform on average across all
possible data points

* Test error rate
- Used to evaluate hypothesis performance

Types of Error

- Good estimate of your hypothesis’s true error

* Validation error rate
- Used to set hypothesis hyperparameters

- Slightly “optimistic” estimate of your hypothesis’s true error

* Training error rate
- Used to set model parameters

* Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk

(a.k.a. Error)
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* Expected risk of a hypothesis h (a.k.a. true error)
R(h) = P, . p+(c*(x) # h(x))

* Empirical risk of a hypothesis h (a.k.a. training error)
R(h) = Px~D(c*(x) +* h(x))

- %Z 1(c"(x™) = h(x™))
— %i 1 (y<n> " h(xm)))

N
where D = {(x™, y("))}n=1 is the training data set and
x ~ D denotes a point sampled uniformly at random from D



1. The true function, c*

Three 2. The expected risk minimizer,

Hypotheses of

Interest h e
3. The empirical risk minimizer,

h* = argmin R(h)

h = argmin R(h)
heX
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Poll Question 1:
Which of the
following are always
true?

A.c*

B.c"
C.h"
D.c*

E. None of the above
F. TOXIC
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* The true function, c*

* The expected risk minimizer,

h* = argmin R(h)
heX

* The empirical risk minimizer,

h = argmin R(h)
heX



* Given a hypothesis with zero/low training error, what

Key Question

can we say about its true error?
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PAC Learning
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* PAC = Probably Approximately Correct

* PAC Criterion:
P(|[R(h) —R(W)|<e)=1-6VheXH

for some € (difference between expected and empirical
risk) and 6 (probability of “failure”)

- We want the PAC criterion to be satisfied for

H with small values of € and 6

10



Sample

Complexity
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* The sample complexity of an algorithm/hypothesis set,
is the number of labelled training data points needed to

satisfy the PAC criterion for some 6 and €
* Four cases
* Realizable vs. Agnostic
° Realizable » ¢c* € H
* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite
* Finite = |H| < o

* Infinite - |H| = o

11



Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

1 1
M > —(1n(|}[|) +1n (_))
€ o)

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

12



Proof of
Theorem 1:

Finite,
Realizable Case
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1. Assume there are K “bad” hypotheses in H, i.e.,
h{, h,, ..., hg that all have R(hy) > €

2. Pick one bad hypothesis, h;,
A. Probability that h;, correctly classifies the first
training data point < 1 — €
B. Probability that h;, correctly classifies all M
training data points < (1 — e)

3. Probability that at least one bad hypothesis correctly

classifies all M training data points =
P(h, correctly classifies all M training data points U
h, correctly classifies all M training data points U

U hg correctly classifies all M training data points)

13



Proof of
Theorem 1:

Finite,
Realizable Case
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P(h, correctly classifies all M training data points U
h, correctly classifies all M training data points U

U hg correctly classifies all M training data points)

K
< z P(hy, correctly classifies all M training data points)
k=1

by the union bound: P(AU B) = P(A) + P(B) — P(A N B)
< P(A) + P(B)

14



Proof of
Theorem 1:

Finite,
Realizable Case
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K

P(h; correctly classifies all M training data points)

k=1
<k(1-e" <|H|(1-e)™

because k < |H |

3.

Probability that at least one bad hypothesis correctly
classifies all M training data points < |H|(1 — )™

Using the fact that 1 — x < exp(—x) V x,
|H](1 — )™ < |H ]| exp(—e)" = |H]| exp(—Me)

Probability that at least one bad hypothesis correctly
classifies all M training data points < |H'| exp(—Me),
which we want to be low, i.e., |H| exp(—Me) < 6

15



)
|7| exp(—Me) < § - exp(—Me) < —

|H |
sl
Proof of RN
Theorem 1: w1 i))
Finite, - ‘E( n(IiHI
Realizable Case 1( <|H|>>
- M=>—[In|—
€ o)
1 1
S M> —(ln(l?—[l) +1n (—))
€ o)
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Proof of
Theorem 1:

Finite,
Realizable Case
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6. Given M > E(ln(l}[l) + In (%)) labelled training

data points, the probability that 3 a bad hypothesis
h, € H withR(hy) > eand R(h) = 0is < 6
)

Given M > i(ln(l}[l) + In (%)) labelled training data

points, the probability that all hypotheses h; € H with
R(hy) > ehave R(h,) >0is>1—§

17



Aside: Proof by

Contrapositive
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* The contrapositive of a statement A = Bis =B = -4

- A statement and its contrapositive are logically equivalent,

i.,e., A = B meansthat =B = =4

* Example: “it’s raining = Henry brings am umbrella”

is the same as saying

“Henry didn’t bring an umbrella = it’s not raining ”

18



Proof of
Theorem 1:

Finite,
Realizable Case
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6. Given M > E(ln(l}[l) + In (%)) labelled training

data points, the probability that 3 a bad hypothesis
h, € H withR(hy) > eand R(h) = 0is < 6
)

Given M > i(ln(l}[l) + In (%)) labelled training data

points, the probability that all hypotheses h; € H with
R(hy) > ehave R(h,) >0is>1—§

19



Proof of
Theorem 1:

Finite,
Realizable Case
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6. Given M > E(ln(l}[l) + In (%)) labelled training

data points, the probability that all hypotheses h;, €
H with R(hy) > e have R(h,) > 0is>1—6
)

Given M > i(ln(l}[l) + In (%)) labelled training data

points, the probability that all hypotheses h;, € H with
R(hy) = 0haveR(hy) <€is>1—16

(proof by contrapositive)

20



* Let H be the set of all conjunctions over M Boolean

variables, x € {0,1}; examples of conjunctions are

*h(x) = x1(1 — x3)x4%10

Poll Question 2: TR0 = (1= x3)(1 = xa)xg
* Assumingc* € H,if M = 10,e = 0.1,and 6 = 0.01, at
Hint - Recall least how many labelled examples do we need to satisfy
M the PAC criterion using Theorem 17
1 1
= (ln(IH ) +1In (— . 1(TOXIC)

. 10(2In10+1n100) =92 F. 100(2In10 +1In10) = 691
. 10(3In10+1n100) = 116 G. 100(3In10 +In10) = 922
.10(10In2 +1n100) =~ 116 H. 100(10In2 +1n10) ~ 924
. 10(10In3 +1In100) = 156 |. 100(10In3 +1n10) =~ 1329 .
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Theorem 1:

Finite,
Realizable Case

3/10/25

* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

1 1
M > —(1n(|}[|) +1n (_))
€ o)

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

- Making the bound tight and solving for € gives...

22



* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |S| = M,

Statistical all h € H with R(h) = 0 have
Learning 1 .
Theory R(h) < M(MI% ) +1In (5»

Corollary with probability at least 1 — §.
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Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p”, if the number of labelled training data points satisfies

1 2
M > = (1n(|7—[|)+ln(5)>

then with probability at least 1 — §, all h € HH satisfy
IR(h) —R(h)| < €

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Again, making the bound tight and solving for € gives...

24



Statistical
Learning

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

R(h) < R(h) + V ﬁ (ln(lf]—[l) +In (g))

with probability at least 1 — 6.

25



What happens

when

3/10/25

?

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

R(h) < R(h) + V ﬁ (ln(l?—[l) +In (g))

with probability at least 1 — 6.

26



Intuition

For most infinite hypothesis sets H,
many hypotheses in H will behave
very similarly
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Intuition

For most infinite hypothesis sets H,
many hypotheses in H will behave
very similarly

Relative to a given dataset, these
two hypotheses are identical!
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