10-301/601: Introduction to Machine Learning Lecture 15 – Learning Theory (Finite Case)

Matt Gormley & Henry Chai 3/10/25

Front Matter

- Announcements
 - HW5 released 2/27, due 3/16 at 11:59 PM
 - Exam 1 Exit Poll due 3/10 (today!) at 11:59 PM
 - Peer tutoring information will be posted to Piazza some time this week

Statistical Learning Theory Model

independent and identically distributed

Data points are generated i.i.d. from some unknown distribution

$$x^{(n)}$$
 $p^*(x)$

2. Labels are generated from some *unknown* function $\binom{n}{n} * \binom{n}{n}$

$$y^{(n)} = c^*(\boldsymbol{x}^{(n)})$$

- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest training error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Statistical Learning Theory Model

1. Data points are generated i.i.d. from some *unknown* distribution

$$\mathbf{x}^{(n)} \sim p^*(\mathbf{x})$$

2. Labels are generated from some *unknown* function

$$y^{(n)} = c^*(x^{(n)}) \in \{-1, +1\}$$

- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest training error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Types of Error

True error rate

- Actual quantity of interest in machine learning
- How well your hypothesis will perform on average across all possible data points
- Test error rate
 - Used to evaluate hypothesis performance
 - Good estimate of your hypothesis's true error
- Validation error rate
 - Used to set hypothesis hyperparameters
 - Slightly "optimistic" estimate of your hypothesis's true error
- Training error rate
 - Used to set model parameters
 - Very "optimistic" estimate of your hypothesis's true error

Types of Risk (a.k.a. Error)

• Expected risk of a hypothesis *h* (a.k.a. true error)

$$\nearrow R(h) = P_{\overrightarrow{x} \sim P^*} \left(h(\overrightarrow{x}) \neq C^*(\overrightarrow{x}) \right)$$

• Empirical risk of a hypothesis h (a.k.a. training error)

$$R(h) = P_{x} \sim D(h(x) \neq c^{*}(x))$$

$$fraining deteset$$

$$x \sim D =) x is uniformly at random chosen from $\{x^{(i)}, x^{(2)}, ..., x^{(N)}\}$

$$R(h) = \frac{1}{N} \sum_{i=1}^{N} 1(h(x^{(i)}) \neq c^{*}(x^{(i)}))$$

$$indicator function technique error rate$$$$

Three Hypotheses of Interest

1. The true function, c^*

2. The expected risk minimizer,

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$$

3. The *empirical risk minimizer*,

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h)$$

Poll Question 1: Which of the following are *always* true?

A.
$$c^* = h^*$$
 37%

$$B. c^* = \hat{h}$$

$$\mathsf{C}.\,h^*=\widehat{h}$$

D.
$$c^* = h^* = \hat{h}$$

E. None of the above 42%F. TOXIC

• The true function, c*

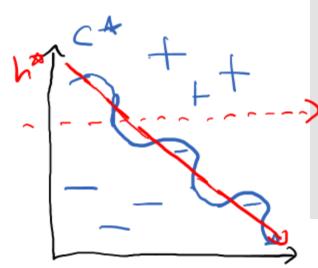
$$f| = \xi$$
 all linear decision $(c*)=0$ bounder es

The expected risk minimizer,

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h) \stackrel{?}{=} \bigcirc$$

The empirical risk minimizer,

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h)$$



Key Question

• Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

• PAC = Probably Approximately Correct

• PAC Criterion:

$$P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \ \forall \ h \in \mathcal{H}$$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

• We want the PAC criterion to be satisfied for ${\cal H}$ with small values of ϵ and δ

Sample Complexity

- The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ
- Four cases
- Realizable vs. Agnostic

 - Realizable $\to c^* \in \mathcal{H}$ Agnostic $\to c^*$ might or might not be in \mathcal{H}
 - Finite vs. Infinite

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

 $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ then with probability at least $1 - \delta \left[\text{all } h \in \mathcal{H} \right]$ with $\hat{R}(h) = 0$ have $R(h) \le \epsilon$

(sketch)

Proof of
Theorem 1:
Finite,
Realizable Case

1. Assume the worst Assum that every hypothesis in H is b.d! $(R(h) > \epsilon)'$ Z. The probability that a bad hypothusis "tricks" me (R(h) = 0) is tiny! And shrinks as M grows 3. The probability that any of the bad hypothises "tricks" me is pretty small and also shinks as MT Proof of
Theorem 1:
Finite,
Realizable Case

do some meth P (at least one and hypothesis correctly classifies M training deta points) $\leq |H|(1-\epsilon)^{M} \leq 8$ do some more moth $M \ge \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\epsilon} \right) \right)$

Proof of Theorem 1: Finite, Realizable Case

Given
$$M \ge \frac{1}{\epsilon} (\ln |H| + \ln (\frac{1}{\epsilon}))$$
 ladelled
training data points simpled from pt
the probability \exists some hypothesis $h \in H$
with $R(h) > \epsilon$ and $\hat{R}(h) = 0$ is $\leq \delta$
"Given $M \ge 1$
the probability that all bad hypotheses
 $h \in H$ with $R(h) > \epsilon$ have $\hat{R}(h) > 0$ is $\geq 1-\delta$

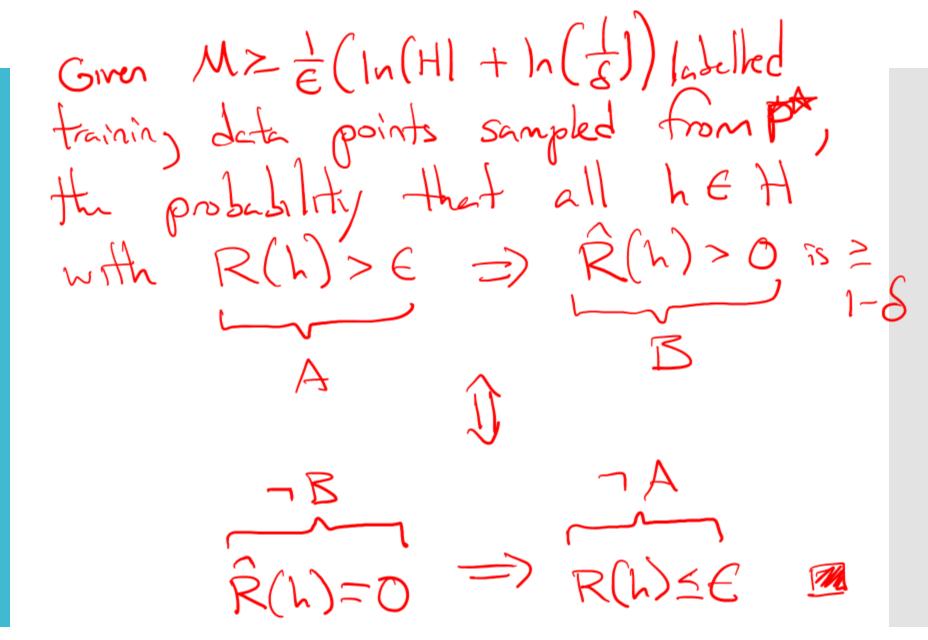
Aside: Proof by Contrapositive

- The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$
- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining "

Proof of
Theorem 1:
Finite,
Realizable Case



Poll Question 2:

• Let \mathcal{H} be the set of all *conjunctions* over M Boolean variables, $\mathbf{x} \in \{0,1\}^M$; examples of conjunctions are

$$h(\mathbf{x}) = x_1(1 - x_2)x_4x_{10}$$

•
$$h(\mathbf{x}) = (1 - x_3)(1 - x_4)x_8$$

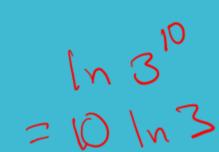
- Assuming $c^* \in \mathcal{H}$, if M=10, $\epsilon=0.1$, and $\delta=0.01$, at least how many labelled examples do we need to satisfy the PAC criterion using Theorem 1?
- A. 1 (TOXIC)

10% B.
$$10(2 \ln 10 + \ln 100) \approx 92$$
 F. $100(2 \ln 10 + \ln 10) \approx 691$

|3% C.
$$10(3 \ln 10 + \ln 100) \approx 116$$
 G. $100(3 \ln 10 + \ln 10) \approx 922$

$$30\%$$
 D $10(10 \ln 2 + \ln 100) \approx 116$ H. $100(10 \ln 2 + \ln 10) \approx 924$

(E.)
$$10(10 \ln 3 + \ln 100) \approx 156$$
 | 100(10 \ln 3 + \ln 10) \approx 1329



Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \leq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1-\delta$, all $h\in\mathcal{H}$ with $\widehat{R}(h)=0$ have $R(h)\leq\epsilon$

• Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case

• For a finite hypothesis set ${\mathcal H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1-\delta$, all $h\in\mathcal{H}$ satisfy

$$|R(h) - \hat{R}(h)| \le \epsilon$$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

R(h)

• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$\prec R(h) \leq \widehat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

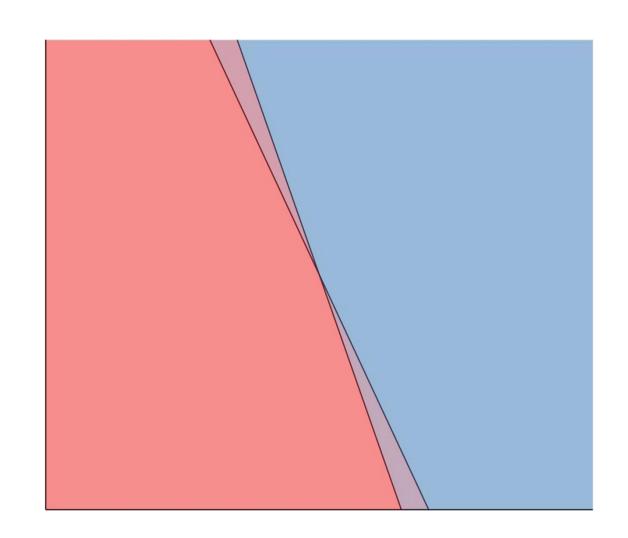
• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Intuition

For most infinite hypothesis sets \mathcal{H} , many hypotheses in \mathcal{H} will behave very similarly

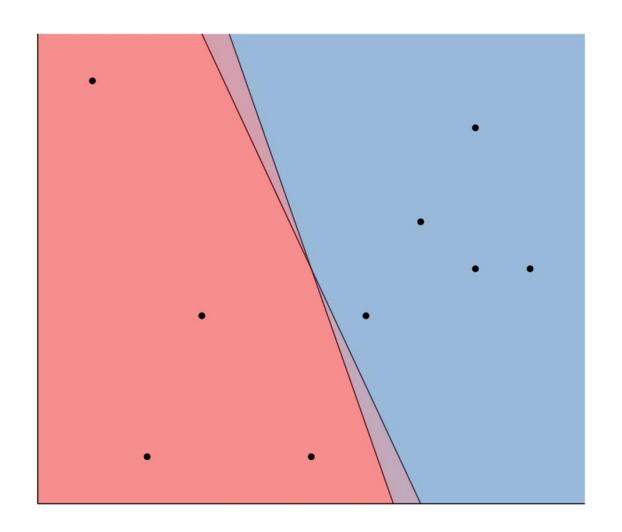


27

Intuition

For most infinite hypothesis sets \mathcal{H} , many hypotheses in \mathcal{H} will behave very similarly

Relative to a given dataset, these two hypotheses are *identical*!



3/10/25 **2**