10-301/601: Introduction
to Machine Learning
Lecture 13 —
Backpropagation

Henry Chai
2/24/25

* Announcements

* Exam 1 viewings this week, Tuesday — Thursday

Front Matter

* See Piazza for complete details

* Homework 4 released 2/17, due 2/26 at 11:59 PM

2/24/25

https://piazza.com/class/m5gpeq5rfa3sg/

* Given

XZ sin(In(x))
In(x) * XZ

y=fxz)=e"+

what are Y/, and %Y/, atx = 2,z = 3?

* First define some intermediate quantities, draw the

Recall: computation graph and run the “forward” computation
Agtomat!c . a=xz . g
Differentiation b=In(x) [, e
(reverse mode) ¢ = sin(b)
Z b e y
=t Y +
e =% L
f
f = C/a ,
y=d+e+f o /

2/24/25 Example courtesy of Matt Gormley

* Given

_ f(x,2) = e¥ + N sin(In(x))
y=flunz)=e In(x) XZ
° g — a_y — 1
what are °¥/,_and %/, atx = 2,z = 3? Y 0y
, o *9a = Ye = g5 =
* Then compute partial derivatives, o R
Recall: - - 9e=5r =55 =9(3)
ecadll. starting from y and working back c =3¢ afac f\3
Automatic) 9y _ 9y de | dyac
Differentiation Ieslisalle W oea Tacan
2 [y * ey = ge (—73) + gc(cos(b))
(reverse mode) Z b e Yy .y —0Y_03v3f 0yde 0dyod
; l 9a =34 " 950a " 9eda | ad oa
n +
]/C —gf()+ge()+gd(ea)
g 0¥ _0ydb oysa_ (1
c |sin / Ix = x_6b6x+6a6x_gb(x)+ga(z)

dy dyada
= ga(x)

® j—
2/24/25 Example courtesy of Matt Gormley gZ 0z 6 a aZ 4

Computation
Graph

10-301/601
Conventions

2/24/25

* The diagram represents an algorithm

* Nodes are rectangles with one node per intermediate

variable in the algorithm

 Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

* Edges are directed and do not have labels

* For neural networks:

- Each weight, feature value, label and bias term

appears as a hode

* We can include the loss function

Neural
Network

Diagram
Conventions

2/24/25

* The diagram represents a neural network
* Nodes are circles with one node per hidden unit

* Each node is labeled with the variable corresponding to

the hidden unit

* Edges are directed and each edge is labeled with its weight

* The diagram typically does not include any nodes related

to the loss computation

Matrix
Calculus

2/24/25

Denominator

Numerator

Types of

Derivatives scalar vector matrix
dy Oy 0Y
scalar S— _— S
t dy Oy @ 0Y
matrix 83} 8)’ 8Y

0X

X

0X

Table courtesy of Matt Gormley

Matrix
Calculus:

Denominator
Layout

2/24/25

* Derivatives of a
scalar always
have the same
shape as the
entity that the
derivative is

being taken

with respect to.

Types o
J p .f scalar
Derivatives
o0
scalar 99 _ [g_y]
ox &
- By
T
9 o
)
vector 9y _ | 9=
0x :
Oy
BCCP_
- Oy oy Oy 7
6X11 3X12 3X1Q
. oy Oy oy
matrix Oy | 8Xa1 90X X 20
oxX g :
Oy Oy Oy
| 0 X p1 00X pa 0Xpg 4

Table courtesy of Matt Gormley

Matrix
Calculus:

Denominator
Layout

2/24/25

Types of

Derivatives scalar vector
scalar % — [@] 8_y — [Byl Oy2 ByN]
i a_y] - Oy O0yY2 OynN
0x1 Oz Ox1 0x1
Oy Oy1 Oyz Dyn
8y 8172 8y 8172 8:,:2 8.’,[72
vector 8_)(= . 8_)(= .
Oy Oy1 Oyo YN
L Oz p | Oxp Ozxzp Oz p

Table courtesy of Matt Gormley

Recall: —a%%_ -gﬂ %@ %m'
° f)&/ é%g; 9 fiﬁi fiﬁi - éﬁZ&
Po" QUESthn 1: 8_X: : a_i: 85132 Oz2 Oz
_ _ Dy ou O Oyn
Suppose y = g(u) and u = h(x) T Er -
y] Answers: % _
ox
Jy Ju
" oy’ o
Matrix Calculus u [TITTTTT] p, 297 0u
ou 0x
Ay dut
oy T ouT
x [III11] . L2
Jy Ou. -
. . E. (=——
Which of the following is the correct (TOXIC) ou Bx)
definition of the chain rule? F. None of the above

2/24/25

Gradient
Descent

for Neural
Network
Training

2/24/25

* Initialize all weights

‘ Input: D = {(x("),y("))},lz:l,n(o)

W((Ol)), . ((OL)) to small, random

numbers and sett = 0 (??7?)

* While TERMINATION CRITERION is not satisfied (??7?)

*Forl=1,...,L
- Compute ¢ = V,ofp (W(%), (%)) (?7?7)

- Update W: W((tlil) = ((tl)) —1oGW

*Incrementt:t=t+ 1

(1) (L)

* Output: W(t) y o Wi

11

Computing

Gradients

2/24/25

N
(1) (L) _ (1)
tn (WE, - W) = z £ (W),
(1 (L)
" 04y 04 B 04
)) 0
oWy owy | a”ﬁdal)
047 04 04
_) 0) ©)
= | 9w, ow, | 5W3da1>
00, oty 4y
O O 0
W0y, W, OW () gat-1)
(n) (1) (L)
vy _ 0t ()
ONE (l)
6wha — ow,

w (L
(t)

)

12

Computing

Gradients:
Intuition

2/24/25

- A weight affects the prediction of the network (and

therefore the error) through downstream signals/outputs

* Use the chain rule!

* Any weight going into the same node will affect the

prediction through the same downstream path
- Compute derivatives starting from the last layer and

move “backwards”

- Store computed derivatives and reuse for efficiency

(automatic differentiation)

13

Computing

Partial
Derivatives

2/24/25

Computing V,,y€p (W(%) W((t))) reduces to computing

LVAQ)
(l)

6W

()

Insight: w,, only affects VASORVIP Slgl)

Layer [— 1 Layer [

14

Computing

Partial
Derivatives

2/24/25

Computing V,,y€p (W(l) W((t))) reduces to computing

()’
94
aw(l)
() (D
Insight: w,, only affects VASORVIP Sy
(n) (n) (D)
Chain rule: ad () (%() 65()
l l l
ow, ds,” \ ow,
4d(-1)

sV _
Slgz) _ z ngzc)l -1 _, 9% Oc(lz 1)

a=0

Compute outputs o™ v [€ {0, ...

aW(l)

, L} by forward propagation

15

Computing

Partial
Derivatives

2/24/25

Computing V,,y€p (W(%) W((t))) reduces to computing

Insight: ngc)l

Chain rule:

LVAQ)
(l)

6W

only affects (™ via S

ge™ et [g5V

ow 350 \ ow)

b
94
O

O]
ﬁsb

(D

16

Computing

Partial
Derivatives

2/24/25

Insight: s

(D
b

only affects #(™ via o,

(D)

Layer [

17

Computing

Partial
Derivatives

2/24/25

Insight: st(,l)only affects £(M via Olgl)

l VAW, ao(l)
Chain rule: 51§) — D 1(91)
aob 6Sb

0, w\ 09,
Ob = f(Sb) o —as(l) —
b

“Vanishing gradients”: repeatedly
multiplying by something <1 causes =
the gradient to approach zero!

when f(z) =

of (ss”)
Oslgl)

€Xp (_Slgl)) 1
<

(1 + exp (—s,gl>))2 -

1

1+exp(—2z)

18

2/17/25

Recall:
Other

Activation
Functions

1

= max{0,2} = 21,9

Logisti ’ i id- te -_._'_'_'_‘—V”'—'_'_'_'_. =S
ogistic, sigmoid, or soft step o(x) T o
Hyperbolic tangent (tanh) f tanh(z) = & — ¢
w g - e;r. + E—I
0 ifz<0
Rectified linear unit (ReLU)!"! x ifx =0

Gaussian Error Linear Unit (GELU)™!

i =

)

= z®(z)

Softplus!®!

In(1+e”)

Exponential linear unit (ELU)!

ale’ —1) ifz <0
5 ifz >0
with parameter cx

Leaky rectified linear unit (Leaky ReLU)!""!

{ﬂ.ﬂlm ifz <0

Parametric rectified linear unit (PReLU)!"?!

NN HE

T ife >0
ar ifz<0
x ifx>=0

with parameter cx

Source: https://en.wikipedia.org/wiki/Activation function

19

https://en.wikipedia.org/wiki/Activation_function

Computing

Partial
Derivatives

2/24/25

Insight: olgl) affects £(™ via S£l+1),

Layer [

Node b

(I+1)
s S S (1HD)

Sd(l+1)

Layer [+ 1

20

Computing

Partial
Derivatives

2/24/25

Insight: olgl) affects £(™ via S£l+1), . sc(ll(;fl))
(1+1)
3™ q(+1 3.9 <aSC(l+1)>
Chain rule: = z
) (1+1) (D
do, ~ 0s, do,
a® (1+1)
+1) _), @ _ 95
Sc = Wep Op PO
b=0 b
d(l+1)
VAW
_ 5(l+1) (W(l+1))
) Z C c,b
do,

c=1

(141
— "Ye,b

21

Computing

Partial
Derivatives

2/24/25

l
s _ 08 (ao,g)>
O

ao,g” Oslgl)
d(l+1)
B (1+1) (. (141 (D>
— z O¢ (Wc,b) (1_(0b))
c=1
o0 =V t® (W), .., W)

= WD 50+ (1= 6@ @ o®)
where (O is the element-wise product operation
Sanity check: W{+1) ¢ R x (aP+1) 54

l
s+ ¢]Rd(+Dy 1 <0

w D’ g+ g p(a®+1)x 1 the same size as 0V

22

Computing

Gradients

2/24/25

™ as,g” W (-1
owl = % ow® =8 (o)

2 — g, (-D"

Sanity check: 00—D € R V+1) x1 54
50 e RAVx1 50

sWo-D" ¢ Rd(l)x(d(l_l)“), the same size as W |

23

Can recursively compute 6V using 6¢+1); need to
compute the base case: 5L

* Assume the output layer is a single node and the error

function is the squared error: 8 = 5%, o) = o{¥)

Computing)
Partial and ¢ (W, ., W) = (o - y®)
Derivativ
erivatives e (0§L)'3’(n)) p ,
51(L) = e — (O§L) — y(n))
(L) (L)
ds, Js,

2/24/25

24

Back-

propagation

2/24/25

“Input: WD . W) and D = {(x(n)'y(n))}:ﬂ

* Initialize: £ = 0 and ¢H =0 O TAORVE 1,..,L
*Forn=1,..,N

- Run forward propagation with x(™ to get 0%, ..., 0¥

- (Optional) Increment £q: £ = €5 + (02 — y(n))2

0 ogl’)

- Initialize: 8% = 2 (0§L) — y(n)) 5D
S1

*Forl=L-1,..,1
- Compute 60 = w+D" gD (1-0Y © oY)
Increment GO GO = GO 4 §Wo0-D"

- Output: GV, ..., G, the gradients of £ w.rt W, . W)

25

Backpropagation

Learning
Objectives

2/24/25

You should be able to...

- Differentiate between a neural network diagram and a computation graph
+ Construct a computation graph for a function as specified by an algorithm
* Carry out the backpropagation on an arbitrary computation graph

 Construct a computation graph for a neural network, identifying all the given
and intermediate quantities that are relevant

* Instantiate the backpropagation algorithm for a neural network

* Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2)
when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

* Apply the empirical risk minimization framework to learn a neural network
* Use the finite difference method to evaluate the gradient of a function

* ldentify when the gradient of a function can be computed at all and when it
can be computed efficiently

* Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

45

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 13 – Backpropagation
	Slide 2: Front Matter
	Slide 3
	Slide 4
	Slide 5: Computation Graph 10-301/601 Conventions
	Slide 6: Neural Network Diagram Conventions
	Slide 7: Matrix Calculus
	Slide 8: Matrix Calculus: Denominator Layout
	Slide 9: Matrix Calculus: Denominator Layout
	Slide 10: Matrix Calculus
	Slide 11: Gradient Descent for Neural Network Training
	Slide 12: Computing Gradients
	Slide 13: Computing Gradients: Intuition
	Slide 14: Computing Partial Derivatives
	Slide 15: Computing Partial Derivatives
	Slide 16: Computing Partial Derivatives
	Slide 17: Computing Partial Derivatives
	Slide 18: Computing Partial Derivatives
	Slide 19: Recall: Other Activation Functions
	Slide 20: Computing Partial Derivatives
	Slide 21: Computing Partial Derivatives
	Slide 22: Computing Partial Derivatives
	Slide 23: Computing Gradients
	Slide 24: Computing Partial Derivatives
	Slide 25: Back-propagation
	Slide 26: Recall: Gradient Descent
	Slide 27: Non-convexity
	Slide 28: Stochastic Gradient Descent for Neural Networks
	Slide 29: Mini-batch Stochastic Gradient Descent for Neural Networks
	Slide 30: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 31: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 32: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 33: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 34: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 35: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 36: Adam (Adaptive Moment Estimation) = SGD + Momentum + RMSProp
	Slide 37: Random Restarts
	Slide 38: Random Restarts
	Slide 39: Random Restarts
	Slide 40: Terminating Gradient Descent
	Slide 41: Terminating Gradient Descent “Early”
	Slide 42: Neural Networks and Regularization
	Slide 43: Neural Networks and “Strange” Regularization (Bishop, 1995)
	Slide 44: Neural Networks and “Strange” Regularization (Srivastava et al., 2014)
	Slide 45: Backpropagation Learning Objectives

