
Henry Chai

2/24/25

10-301/601: Introduction
to Machine Learning
Lecture 13 –
Backpropagation

Front Matter

2/24/25 2

 Announcements

 Exam 1 viewings this week, Tuesday – Thursday

 See Piazza for complete details

 Homework 4 released 2/17, due 2/26 at 11:59 PM

https://piazza.com/class/m5gpeq5rfa3sg/

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

 First define some intermediate quantities, draw the

computation graph and run the “forward” computation

2/24/25 3

Recall:
Automatic
Differentiation
(reverse mode)

𝑎 = 𝑥𝑧

𝑏 = ln 𝑥

𝑐 = sin 𝑏

𝑑 = 𝑒𝑎

𝑒 = ൗ𝑎
𝑏

𝑓 = Τ𝑐
𝑎

𝑦 = 𝑑 + 𝑒 + 𝑓

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

Example courtesy of Matt Gormley

• 𝑔𝑧 =
𝜕𝑦

𝜕𝑧
=

𝜕𝑦

𝜕𝑎

𝜕𝑎

𝜕𝑧
= 𝑔𝑎 𝑥

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

 Then compute partial derivatives,

starting from 𝑦 and working back

2/24/25 4

Recall:
Automatic
Differentiation
(reverse mode)

Example courtesy of Matt Gormley

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

• 𝑔𝑦 =
𝜕𝑦

𝜕𝑦
= 1

• 𝑔𝑑 = 𝑔𝑒 = 𝑔𝑓 = 1

• 𝑔𝑐 =
𝜕𝑦

𝜕𝑐
=

𝜕𝑦

𝜕𝑓

𝜕𝑓

𝜕𝑐
= 𝑔𝑓

1

𝑎

• 𝑔𝑏 =
𝜕𝑦

𝜕𝑏
=

𝜕𝑦

𝜕𝑒

𝜕𝑒

𝜕𝑏
+

𝜕𝑦

𝜕𝑐

𝜕𝑐

𝜕𝑏

• 𝑔𝑏 = 𝑔𝑒 −
𝑎

𝑏2 + 𝑔𝑐 cos 𝑏

• 𝑔𝑎 =
𝜕𝑦

𝜕𝑎
=

𝜕𝑦

𝜕𝑓

𝜕𝑓

𝜕𝑎
+

𝜕𝑦

𝜕𝑒

𝜕𝑒

𝜕𝑎
+

𝜕𝑦

𝜕𝑑

𝜕𝑑

𝜕𝑎

• 𝑔𝑎 = 𝑔𝑓
−𝑐

𝑎2 + 𝑔𝑒
1

𝑏
+ 𝑔𝑑 𝑒𝑎

• 𝑔𝑥 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑏

𝜕𝑏

𝜕𝑥
+

𝜕𝑦

𝜕𝑎

𝜕𝑎

𝜕𝑥
= 𝑔𝑏

1

𝑥
+ 𝑔𝑎 𝑧

Computation
Graph
10-301/601
Conventions

2/24/25 5

 The diagram represents an algorithm

 Nodes are rectangles with one node per intermediate

variable in the algorithm

 Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

 Edges are directed and do not have labels

 For neural networks:

 Each weight, feature value, label and bias term

appears as a node

 We can include the loss function

Neural
Network
Diagram
Conventions

2/24/25 6

 The diagram represents a neural network

 Nodes are circles with one node per hidden unit

 Each node is labeled with the variable corresponding to

the hidden unit

 Edges are directed and each edge is labeled with its weight

 The diagram typically does not include any nodes related

to the loss computation

Matrix
Calculus

Types of
Derivatives

scalar vector matrix

scalar

vector

matrix

Numerator

D
en

om
in

at
or

Table courtesy of Matt Gormley2/24/25 7

Matrix
Calculus:
Denominator
Layout

 Derivatives of a

scalar always

have the same

shape as the

entity that the

derivative is

being taken

with respect to.

Types of
Derivatives

scalar

scalar

vector

matrix

Table courtesy of Matt Gormley2/24/25 8

Matrix
Calculus:
Denominator
Layout

Types of
Derivatives

scalar vector

scalar

vector

Table courtesy of Matt Gormley2/24/25 9

Poll Question 1:

Answers:

Matrix Calculus

10

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the correct
definition of the chain rule?

Recall:

(TOXIC)

2/24/25

Gradient
Descent
for Neural
Network
Training

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

 Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random

numbers and set 𝑡 = 0 (???)

 While TERMINATION CRITERION is not satisfied (???)

 For 𝑙 = 1, … , 𝐿

 Compute 𝐺 𝑙 = ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 (???)

 Update 𝑊 𝑙 : 𝑊 𝑡+1
𝑙

= 𝑊 𝑡
𝑙

− 𝜂0𝐺 𝑙

 Increment 𝑡: 𝑡 = 𝑡 + 1

 Output: 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

112/24/25

Computing
Gradients

∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

=

𝜕ℓ𝒟

𝜕𝑤1,0
𝑙

𝜕ℓ𝒟

𝜕𝑤1,1
𝑙

⋯
𝜕ℓ𝒟

𝜕𝑤
1,𝑑 𝑙−1

𝑙

𝜕ℓ𝒟

𝜕𝑤2,0
𝑙

𝜕ℓ𝒟

𝜕𝑤2,1
𝑙

⋯
𝜕ℓ𝒟

𝜕𝑤
2,𝑑 𝑙−1

𝑙

⋮ ⋮ ⋱ ⋮
𝜕ℓ𝒟

𝜕𝑤
𝑑 𝑙 ,0

𝑙

𝜕ℓ𝒟

𝜕𝑤
𝑑 𝑙 ,1

𝑙
…

𝜕ℓ𝒟

𝜕𝑤
𝑑 𝑙 ,𝑑 𝑙−1

𝑙

2/24/25 12

ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

= ෍

𝑛 = 1

𝑁

ℓ(𝑛) 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

𝜕ℓ𝒟

𝜕𝑤𝑏,𝑎
𝑙

= ෍

𝑛 = 1

𝑁
𝜕ℓ(𝑛) 𝑊 𝑡

1
, … , 𝑊 𝑡

𝐿

𝜕𝑤𝑏,𝑎
𝑙

Computing
Gradients:
Intuition

 A weight affects the prediction of the network (and

therefore the error) through downstream signals/outputs

 Use the chain rule!

 Any weight going into the same node will affect the

prediction through the same downstream path

 Compute derivatives starting from the last layer and

move “backwards”

 Store computed derivatives and reuse for efficiency

(automatic differentiation)

2/24/25 13

Computing
Partial
Derivatives

Computing ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 reduces to computing

2/24/25 14

𝑓𝑓

𝑓

1

⋮

Layer 𝑙 − 1 Layer 𝑙

𝑤𝑏,𝑎
𝑙

Node 𝑎

Node 𝑏

𝑠𝑏
𝑙⋮

Insight: 𝑤𝑏,𝑎
𝑙

 only affects ℓ 𝑛 via 𝑠𝑏
𝑙

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

Computing
Partial
Derivatives

Computing ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 reduces to computing

2/24/25 15

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

=
𝜕ℓ 𝑛

𝜕𝑠𝑏
𝑙

𝜕𝑠𝑏
𝑙

𝜕𝑤𝑏,𝑎
𝑙

Chain rule:

𝑠𝑏
𝑙

= ෍

𝑎 = 0

𝑑 𝑙−1

𝑤𝑏,𝑎
𝑙

𝑜𝑎
𝑙−1

→
𝜕𝑠𝑏

𝑙

𝜕𝑤𝑏,𝑎
𝑙

= 𝑜𝑎
𝑙−1

Compute outputs 𝒐 𝑙 ∀ 𝑙 ∈ 0, … , 𝐿 by forward propagation

Insight: 𝑤𝑏,𝑎
𝑙

 only affects ℓ 𝑛 via 𝑠𝑏
𝑙

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

Computing
Partial
Derivatives

Computing ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 reduces to computing

2/24/25 16

Chain rule:

𝛿𝑏
𝑙

≔
𝜕ℓ 𝑛

𝜕𝑠𝑏
𝑙

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

=
𝜕ℓ 𝑛

𝜕𝑠𝑏
𝑙

𝜕𝑠𝑏
𝑙

𝜕𝑤𝑏,𝑎
𝑙

Insight: 𝑤𝑏,𝑎
𝑙

 only affects ℓ 𝑛 via 𝑠𝑏
𝑙

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

2/24/25 17

Computing
Partial
Derivatives

Insight: 𝑠𝑏
𝑙

only affects ℓ 𝑛 via 𝑜𝑏
𝑙

𝑓

Layer 𝑙

𝑜𝑏
𝑙

Node 𝑏

𝑠𝑏
𝑙

2/24/25 18

Computing
Partial
Derivatives

𝛿𝑏
𝑙

=
𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

𝜕𝑜𝑏
𝑙

𝜕𝑠𝑏
𝑙

Chain rule:

𝑜𝑏
𝑙

= 𝑓 𝑠𝑏
𝑙

→
𝜕𝑜𝑏

𝑙

𝜕𝑠𝑏
𝑙

=
𝜕𝑓 𝑠𝑏

𝑙

𝜕𝑠𝑏
𝑙

=
exp −𝑠𝑏

𝑙

1 + exp −𝑠𝑏
𝑙

2 ≤ 1

when 𝑓 𝑧 =
1

1+exp −𝑧

Insight: 𝑠𝑏
𝑙

only affects ℓ 𝑛 via 𝑜𝑏
𝑙

“Vanishing gradients”: repeatedly
multiplying by something < 1 causes

the gradient to approach zero!

Recall:
Other
Activation
Functions

2/17/25 19Source: https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function

2/24/25 20

Computing
Partial
Derivatives

𝑓

⋮

Layer 𝑙 + 1Layer 𝑙

Node 𝑏

𝑜𝑏
𝑙

𝑓

𝑓

1

𝑠1
𝑙+1

𝑠
𝑑 𝑙+1

𝑙+1

Insight: 𝑜𝑏
𝑙

 affects ℓ 𝑛 via 𝑠1
𝑙+1

, … , 𝑠
𝑑 𝑙+1

𝑙+1

2/24/25 21

𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

= ෍

𝑐 = 1

𝑑 𝑙+1

𝜕ℓ 𝑛

𝜕𝑠𝑐
𝑙+1

𝜕𝑠𝑐
𝑙+1

𝜕𝑜𝑏
𝑙

𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

= ෍

𝑐 = 1

𝑑 𝑙+1

𝛿𝑐
𝑙+1

𝑤𝑐,𝑏
𝑙+1

Chain rule:

𝑠𝑐
𝑙+1

= ෍

𝑏 = 0

𝑑 𝑙

𝑤𝑐,𝑏
𝑙+1

𝑜𝑏
𝑙

→
𝜕𝑠𝑐

𝑙+1

𝜕𝑜𝑏
𝑙

= 𝑤𝑐,𝑏
𝑙+1

Computing
Partial
Derivatives

Insight: 𝑜𝑏
𝑙

 affects ℓ 𝑛 via 𝑠1
𝑙+1

, … , 𝑠
𝑑 𝑙+1

𝑙+1

2/24/25 22

Computing
Partial
Derivatives

= ෍

𝑐 = 1

𝑑 𝑙+1

𝛿𝑐
𝑙+1

𝑤𝑐,𝑏
𝑙+1

1 − 𝑜𝑏
𝑙

2

𝛿𝑏
𝑙

=
𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

𝜕𝑜𝑏
𝑙

𝜕𝑠𝑏
𝑙

𝜹 𝑙 ≔ ∇𝒔 𝑙 ℓ 𝑛 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

where ⊙ is the element-wise product operation

Sanity check: 𝑊 𝑙+1 ∈ ℝ𝑑 𝑙+1 × 𝑑 𝑙 +1 and

 𝜹 𝑙+1 ∈ ℝ𝑑 𝑙+1 × 1 so

 𝑊 𝑙+1 𝑇
𝜹 𝑙+1 ∈ ℝ 𝑑 𝑙 +1 × 1, the same size as 𝒐 𝑙 !

𝜹 𝑙 = 𝑊 𝑙+1 𝑇
𝜹 𝑙+1 ⊙ 1 − 𝒐 𝑙 ⊙ 𝒐 𝑙

Computing
Gradients

2/24/25 23

∇𝑊 𝑙 ℓ 𝑛 = 𝜹 𝑙 𝒐 𝑙−1 𝑇

Sanity check: 𝒐 𝑙−1 ∈ ℝ 𝑑 𝑙−1 +1 × 1 and

 𝜹 𝑙 ∈ ℝ𝑑 𝑙 × 1 so

 𝜹 𝑙 𝒐 𝑙−1 𝑇
∈ ℝ𝑑 𝑙 × 𝑑 𝑙−1 +1 , the same size as 𝑊 𝑙 !

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

= 𝛿𝑏
𝑙 𝜕𝑠𝑏

𝑙

𝜕𝑤𝑏,𝑎
𝑙

= 𝛿𝑏
𝑙

𝑜𝑎
𝑙−1

Computing
Partial
Derivatives

Can recursively compute 𝜹 𝑙 using 𝜹 𝑙+1 ; need to

compute the base case: 𝜹 𝐿

2/24/25 24

• Assume the output layer is a single node and the error

function is the squared error: 𝜹 𝐿 = 𝛿1
𝐿

, 𝒐 𝐿 = 𝑜1
𝐿

and ℓ 𝑛 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

= 𝑜1
𝐿

− 𝑦 𝑖
2

𝛿1
𝐿

=
𝜕𝑒 𝑜1

𝐿
, 𝑦 𝑛

𝜕𝑠1
𝐿

=
𝜕

𝜕𝑠1
𝐿

𝑜1
𝐿

− 𝑦 𝑛
2

𝛿1
𝐿

= 2 𝑜1
𝐿

− 𝑦 𝑛
𝜕𝑜1

𝐿

𝜕𝑠1
𝐿

Back-
propagation

2/24/25 25

 Input: 𝑊 1 , … , 𝑊 𝐿 and 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

 Initialize: ℓ𝒟 = 0 and 𝐺 𝑙 = 0 ⊙ 𝑊 𝑙 ∀ 𝑙 = 1, … , 𝐿

 For 𝑛 = 1, … , 𝑁

 Run forward propagation with 𝒙 𝑛 to get 𝒐 1 , … , 𝒐 𝐿

 (Optional) Increment ℓ𝒟: ℓ𝒟 = ℓ𝒟 + 𝑜 𝐿 − 𝑦 𝑛 2

 Initialize: 𝜹 𝐿 = 2 𝑜1
𝐿

− 𝑦 𝑛 𝜕𝑜1
𝐿

𝜕𝑠1
𝐿

 For 𝑙 = 𝐿 − 1, … , 1

 Compute 𝜹 𝑙 = 𝑊 𝑙+1 𝑇
𝜹 𝑙+1 ⊙ 1 − 𝒐 𝑙 ⊙ 𝒐 𝑙

 Increment 𝐺 𝑙 : 𝐺 𝑙 = 𝐺 𝑙 + 𝜹 𝑙 𝒐 𝑙−1 𝑇

 Output: 𝐺 1 , … , 𝐺 𝐿 , the gradients of ℓ𝒟 w.r.t 𝑊 1 , … , 𝑊 𝐿

Backpropagation
Learning
Objectives

You should be able to…

 Differentiate between a neural network diagram and a computation graph

 Construct a computation graph for a function as specified by an algorithm

 Carry out the backpropagation on an arbitrary computation graph

 Construct a computation graph for a neural network, identifying all the given
and intermediate quantities that are relevant

 Instantiate the backpropagation algorithm for a neural network

 Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2)
when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

 Apply the empirical risk minimization framework to learn a neural network

 Use the finite difference method to evaluate the gradient of a function

 Identify when the gradient of a function can be computed at all and when it
can be computed efficiently

 Employ basic matrix calculus to compute vector/matrix/tensor derivatives.

2/24/25 45

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 13 – Backpropagation
	Slide 2: Front Matter
	Slide 3
	Slide 4
	Slide 5: Computation Graph 10-301/601 Conventions
	Slide 6: Neural Network Diagram Conventions
	Slide 7: Matrix Calculus
	Slide 8: Matrix Calculus: Denominator Layout
	Slide 9: Matrix Calculus: Denominator Layout
	Slide 10: Matrix Calculus
	Slide 11: Gradient Descent for Neural Network Training
	Slide 12: Computing Gradients
	Slide 13: Computing Gradients: Intuition
	Slide 14: Computing Partial Derivatives
	Slide 15: Computing Partial Derivatives
	Slide 16: Computing Partial Derivatives
	Slide 17: Computing Partial Derivatives
	Slide 18: Computing Partial Derivatives
	Slide 19: Recall: Other Activation Functions
	Slide 20: Computing Partial Derivatives
	Slide 21: Computing Partial Derivatives
	Slide 22: Computing Partial Derivatives
	Slide 23: Computing Gradients
	Slide 24: Computing Partial Derivatives
	Slide 25: Back-propagation
	Slide 26: Recall: Gradient Descent
	Slide 27: Non-convexity
	Slide 28: Stochastic Gradient Descent for Neural Networks
	Slide 29: Mini-batch Stochastic Gradient Descent for Neural Networks
	Slide 30: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 31: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 32: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 33: Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks
	Slide 34: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 35: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 36: Adam (Adaptive Moment Estimation) = SGD + Momentum + RMSProp
	Slide 37: Random Restarts
	Slide 38: Random Restarts
	Slide 39: Random Restarts
	Slide 40: Terminating Gradient Descent
	Slide 41: Terminating Gradient Descent “Early”
	Slide 42: Neural Networks and Regularization
	Slide 43: Neural Networks and “Strange” Regularization (Bishop, 1995)
	Slide 44: Neural Networks and “Strange” Regularization (Srivastava et al., 2014)
	Slide 45: Backpropagation Learning Objectives

