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Reminders

• Post-Exam Followup:
– Exam Viewing
– Exit Poll: Exam 1
– Grade Summary 1

• Homework 4: Logistic Regression
– Out: Mon, Feb 17
– Due: Wed, Feb 26 at 11:59pm
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Neural Network Architectures

Even for a basic Neural Network, there are many design 
decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters
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Neural Network
Example: Neural Network with 2 
Hidden Layers and 2 Hidden Units
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Neural Network (Matrix Form)
Example: Arbitrary Feed-forward Neural Network
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LOSS FUNCTIONS & OUTPUT LAYERS
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Neural Network for Classification
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Neural Network for Regression
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Objective Functions for NNs

14Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared error

2. Binary Cross-Entropy:
– the same objective as Binary Logistic Regression
– i.e. negative log likelihood
– This requires our output y to be a probability in [0,1]



Multiclass Output
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Objective Functions for NNs
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3. Cross-Entropy for Multiclass Outputs:
– i.e. negative log likelihood for multiclass outputs
– Suppose output is a random variable Y that takes one of K values
– Let y(i) represent our true label as a one-hot vector:

– Assume our model outputs a length K vector of probabilities:

– Then we can write the log-likelihood of a single training example (x(i), y(i)) 
as:

0 00 00 …1 0
1 52 63 …4 K

y(i) = 

y = softmax(fscores(x, θ))



Deeper Networks
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Deeper Networks
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Q: How many layers should we use?

Deeper Networks
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Deeper Networks
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Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

22
Figures from Lee et al. (ICML 2009)
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Neural Network Errors
Poll Question 1: For which of the datasets 
below does there exist a one-hidden layer 
neural network that achieves zero 
classification error? Select all that apply.

24

Poll Question 2: For which of the datasets 
below does there exist a one-hidden layer 
neural network for regression that achieves 
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)



Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary logistic 

regression, multinomial logistic regression) as components to 
build up feed-forward neural network architectures

• Explain the reasons why a neural network can model nonlinear 
decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing the 
architecture of a neural network

• Implement a feed-forward neural network
25



APPROACHES TO DIFFERENTIATION
Computing Gradients
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

27

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

28

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



Approaches to Differentiation

• Question 1:
When can we compute the gradients for an arbitrary neural 
network?

• Question 2:
When can we make the gradient computation efficient?

29

Training



Approaches to Differentiation

1. Finite Difference Method
• Pro: Great for testing 

implementations of 
backpropagation

• Con: Slow for high dimensional 
inputs / outputs

• Required: Ability to call the function 
f(x) on any input x

2. Symbolic Differentiation
• Note: The method you learned in high-

school
• Note: Used by Mathematica / Wolfram 

Alpha / Maple
• Pro: Yields easily interpretable 

derivatives
• Con: Leads to exponential computation 

time if not carefully implemented
• Required: Mathematical expression 

that defines f(x)

30



Approaches to Differentiation

3. Automatic Differentiation – Reverse Mode
• Note: Called Backpropagation when 

applied to Neural Nets
• Pro: Computes partial derivatives of 

one output f(x)i with respect to all 
inputs xj in time polynomial in the 
computation time of f(x)

• Con: Slow for high dimensional 
outputs (e.g. vector-valued 
functions)

• Required: Algorithm for computing 
f(x)

4. Automatic Differentiation - Forward Mode
• Note: Easy to implement. Uses dual 

numbers.
• Pro: Computes partial derivatives of 

all outputs f(x)i with respect to one 
input xj in time polynomial in the 
computation time of f(x)

• Con: Slow for high dimensional 
inputs (e.g. vector-valued x)

• Required: Algorithm for computing 
f(x)

31



THE FINITE DIFFERENCE METHOD

32



Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon

33
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Differentiation Quiz

34

Training

A. [42, -72]
B. [72, -42]
C. [100, 127]
D. [127, 100]

E. [1208, 810]
F. [810, 1208]
G. [1505, 94]
H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Poll Question 3: Differentiation Quiz #1
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Differentiation Quiz

Differentiation Quiz #2:

37
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THE CHAIN RULE OF CALCULUS
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Chain Rule
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Definition 1: Definition 2: Definition 3:
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Chain Rule

41

Training

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)
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Chain Rule

42
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Chain Rule:
Given: 

…
Backpropagation 
is just repeated 
application of the 
chain rule from 
Calculus 101.



FORWARD COMPUTATION FOR A 
COMPUTATION GRAPH

Algorithm

43



Backpropagation

Whiteboard
– From equation to forward computation
– Representing a simple function as a computation graph
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Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



Backpropagation
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Now let’s solve this in a different way!

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.
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Given:

Forward Computation: Computation Graph: Backward Computation



Backpropagation
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Updates for 
Backpropagation:

gx =

∂y

∂x
=

K∑

k=1

∂y

∂uk

∂uk

∂x

=

K∑

k=1

guk

∂uk

∂x

Backprop is efficient 
b/c of reuse in the 
forward pass and 
the backward pass.


