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Neural Network Architectures

Even for a basic Neural Network, there are many design
decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)
4. Form of objective function

5. How to initialize the parameters



Neural Network

Example: Neural Network with 2
Hidden Layers and 2 Hidden Units
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Neural Network (Matrix Form)

Example: Arbitrary Feed-forward Neural Network

p € RP2
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LOSS FUNCTIONS & OUTPUT LAYERS



Neural Network for Classification
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Neural Network for Regression

(D) Output (Iilnear)
[ y =082 ] < R

(C) Hidden (sigmoid)
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Objective Functions for NNs

1.

Quadratic Loss:
— the same objective as Linear Regression
— i.e. mean squared error

: 1

J=to(y,y") =5y —y")’
WA el
dy =Y~y Pl‘eé\cxceé
2. Binary Cross-Entropy:

— the same objective as Binary Logistic Regressm:r[)

— i.e. negative log likelihood V =

- |TEiSnreega .|ve og likeli OOQ/ ?Z / D o

quires our output y to be a probability in 0,1]/\7 £ [V

J =ton(y,y¥) = —(y?log(y) + (1 — y™)log(1 — y))
A _ (ol gyt
dy Y y—1
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Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,
W respectively on the first layer and W, on the second,

output layer.
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W
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Figure from Glorot & Bentio (2010) “
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Objective Functions for NNs

Cross-Entropy for Multiclass Outputs:
— i.e. negative log likelihood for multiclass outputs
— Suppose output is a random variable Y that takes one of K values

3.

— Let y® represent our true label as a one-hot vector:

| ~ (1)

yO=lo|lo|lo|1]o|lo]..|o0 -4
1 2 3 4 5 6 ... K

— Assume our model outputs a length K vector of probabilities:

y = softmax(fscores(X, 0))

— Then we can write the log-likelihood of a single training example (x®, y®)

as:

K
J=Llep(y,y?)=—Y_ y log(yx)
k=1

VAL
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Deeper Networks

Q: How many layers should we use?




Deeper Networks

Q: How many layers should we use?
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Deeper Networks

Q: How many layers should we use?




Feature Learning

II decision |

| objects

| lines

Figures from Lee et al. (ICML 2009)

Loblects |
II parts |
[ fines |

pixels

Traditional feature

engineering: build up

levels of abstraction
by hand

Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data

— eachlayerisa
learned feature
representation

— sophistication
increases in higher
layers
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Feature Learning

CBDN on Faces
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Figures from Lee et al. (ICML 2009)

Traditional feature

engineering: build up

levels of abstraction
by hand

Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data

— eachlayerisa
learned feature
representation

— sophistication
increases in higher
layers
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Neural Network Errors

Poll Question 1: For which of the datasets Poll Question 2: For which of the datasets
below does there exist a one-hidden layer below does there exist a one-hidden layer
neural network that achieves zero neural network for regression that achieves
classification error? Select all that apply. nearly zero MSE? Select all that apply.
K14 o 4 B) /0% A A o
A) 90°% ) 9% 1489, B) 65%

(o) ++
+ =T \'\./’/
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Neural Networks Objectives

You should be able to...

Explain the biological motivations for a neural network

Combine simpler models (e.g. linear regression, binary logistic
regression, multinomial logistic regression) as components to
build up feed-forward neural network architectures

Explain the reasons why a neural network can model nonlinear
decision boundaries for classification

Compare and contrast feature engineering with learning
features

Identify (some of) the options available when designing the
architecture of a neural network

Implement a feed-forward neural network



APPROACHES TO DIFFERENTIATION



Background

1. Given training data:

{wia Y, g\il

2. Choose each of these:

— Decision function

Y = fe(wz')

— Loss function

f(:g’ yz) < R

A Recipe for
Machine Learning

3. Define goal: w

N
0" = arg mein Z U(fo(x:),y;)

1=1

4. Train with SGD:

(take small steps
opposite the gradient)

H(t+1) = H(t) — ntVE(fe(iUz)a yz)



Bec
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Training Approaches to Differentiation

* Question 1:
When can we compute the gradients for an arbitrary neural

network?

* Question 2:
When can we make the gradient computation efficient?



Given f : R* — RB, f(x)

Compute

3f(X)iv. :

! 8£Uj % J\JX%

1. Finite Difference Method

Pro: Great for testing
implementations of
backpropagation

Con: Slow for high dimensional
inputs [ outputs

Required: Ability to call the function
f(x) on any input x

Approaches to Differentiation
?QFMLQ" %_—; ‘%j{§>

Az—_i | @:ﬁfawkrs

2. Symbolic Differentiation

Note: The method you learned in high-
school

Note: Used by Mathematica / Wolfram
Alpha [ Maple

Pro: Yields easily interpretable
derivatives

Con: Leads to exponential computation
time if not carefully implemented

Required: Mathematical expression
that defines f(x)

30



Given f : R4 = RE, f(x)

iy Approaches to Differentiation

Compute

a.’I?j

3. Automatic Differentiation — Reverse Mode 4. Automatic Differentiation - Forward Mode
* Note: Called Backpropagation when ¢  Note: Easy to implement. Uses dual

applied to Neural Nets numbers.

* Pro: Computes partial derivatives of ¢ Pro: Computes partial derivatives of
one output f(x), with respect to all all outputs f(x), with respect to one
inputs x; in time polynomial in the input x; in time polynomial in the
computation time of f(x) computation time of f(x)

* Con: Slow for high dimensional * Con: Slow for high dimensional
outputs (e.g. vector-valued inputs (e.g. vector-valued x)
functions) * Required: Algorithm for computing

* Required: Algorithm for computing f(x)

f(x)
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THE FINITE DIFFERENCE METHOD



Training Finite Difference Method

The centered finite difference approximation is: Loy e swell

0 _(JO+e-d;)—J(O —¢€-d,;))

(1)

where d; is a 1-hot vector consisting of all zeros except for the ith
entry of d;, which hasvalue1. — —
° 5(8)

Notes: i

* Suffers from issues of
floating point precision, in i
practice

e Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

» O




Training Differentiation Quiz

Poll Question 3: Differentiation Quiz #1

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = explaz) - log(x) | Tz

Answer: Answers below are in the form [dy/dx, dy/dz]

A, [42,-72] E. [1208, 810] T = loxe
B. [72,-42] F. [810,1208]

C. [100,127] G. [1505, 94]

D. [127,100 H. [94,1505]



Training Differentiation Quiz

Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:
y=a(B"o((a®)o((aV)x))

where y € R, x € RP” 3 ¢ RP® and a® isa D@ x DGE-1)
matrix. Nonlinear functions are applied elementwise:

o(a) = [o(a1),...,0(ar)]"
Let o be sigmoid: o(a) = He;p_a

What is g—ﬁf‘/j and 82%7;) forall i, j.
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THE CHAIN RULE OF CALCULUS



Given

Computation
Graph

Chain Rule

Training

Definition 1:
\/ = y(’?’b
V= 760

)Il:'
oJ
[
a

X

a/‘}_g/"
<
|
o [&
[

Chain Rule

Definition 2:

Definition 3:

0 g
‘C‘): X Ue&
j xeR




Training Chain Rule

e



Training Chain Rule




FORWARD COMPUTATION FOR A
COMPUTATION GRAPH



Training Backpropagation

Whiteboard
— From equation to forward computation
— Representing a simple function as a computation graph

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(2) A log(x) | Tz




Training

Backpropagation

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = explaz) - log(x) | Tz

i Now let’s solve this in a different way!
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Forward Computation:

CS'N‘QJ\ X = 2 ) 'Z=3

G = XZ

L = \o&(x)
c = swn(b)

d = CX?(OB
e = Y,

S = Ya

v = dter§

Zd sin(log(x))

Given: Yy = exp(zz)+

log(x) xz
Computation Graph: Backward Computation
X L o1
3‘{ by

1,@51 - )5e'41,34ﬂ§1

UW 3 sg 5 (PM\ ‘Cz;_
s\a &m\g\p —f& @&“’s@*@&

R de
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1 E () 493 Q (;Q(-%ZB
Ix=- aqsaz>+(s»»<‘/x>
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Training

Updates for
Backpropagation:
= 9y duy

Backpropagation

_ 9y _
gx_@:z;_ Our Ox
k=1

K 3uk
= u 5
k=1

Backprop is efficient
b/c of reuse in the
forward pass and
the backward pass.




