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* Announcements
- Exam 1 on 2/17 (today!) from 7 PM - 9 PM
Front Matter * Make sure you check the seating chart (on Piazza)

so that you know where you’re going tonight!

- Homework 4 released 2/17 (today!), due 2/26
at 11:59 PM
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https://piazza.com/class/m5gpeq5rfa3sg/post/190

Motivation: Regularization
* Occam’s Razor: prefer the simplest hypothesis
* What does it mean for a hypothesis (or model) to be simple?

1. small number of features (model selection)
2. small number of “important” features (shrinkage)



Regularization

Given objective function: J(0)
Goal is to find: @ = argmin J(0) + Ar(6)
0

Key idea: Define regularizer r(0) s.t. we tradeoff

between fitting the data and keeping the model

simple 1

Choose form of r(0): M 1

— Example: g-norm (usually p-norm): 18]l = Z [
m=1

q 1(0) yields parame- name  optimization notes
ters that are...
0 |[|O8]lo =>_1(0m #0) zerovalues Loreg. no good computa-
tional solutions
L 68]]1 =) |0m] zero values Lireg. subdifferentiable

2 (]|0]2)% = > 62, small values L2reg. differentiable




Regularization Examples

Add an L2 regularizer to Linear Regression (aka. @egressmn)

JRR 9)4A||9||2 7 4 Q,!TI"LUIS'I?J('I'S oC
N M
1 1 T . (2 ')
_NZ;Z(H X — ())2+An;9?n Jectores

Add an L1 regularizer to Linear Regression (aka. LASSO)

Jiasso(8) = J(0) +|A|[0]]1

1 <A1 | | M
=~ Z 5 (T x® — y()2 4\ Z 16|
=1 m=1
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Regularization Examples

Add an L2 regularizer to Logistic Regression

J'(6) = J(6) HAIl6|l;
N

1 | |
=~ 2 ~logp(y¥ | x1V,6) f A % 1ﬁ Orm
1=1 =

Add an L1 regularizer to Logistic Regression

J'(68) = J(6) +|All6]]:

N
1 . .
=N E :—logp(y(z) |X(Z)79) HA E 0.,

1=1 m=1




REGULARIZATION EXAMPLE:
LOGISTIC REGRESSION



Training
Data

Test
Data

Example: Logistic Regression
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For this example, we
construct nonlinear features
(i.e. feature engineering)

Specifically, we add
polynomials up to order 9 of
the two original features x,
and x,

Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)
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Example: Logistic R

Classification with Logistic Regression ((lambda=1e-05)

egression
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.0001)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.001)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10000)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100000)
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Example: Logistic Regr

Classification with Logistic Regression (lambda
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+07)
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error

Example: Logistic Regression
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Regularization

Poll Question 1:

Suppose we are minimizing J’(8) where
J'(0) = J(0) + Ar(0)

As A increases, the minimum of J’(0)

2

/

will...

A. ...move towards the midpoint <
between J(6) and r(0)

B. ...move towards the minimum of J(0)

@ ...move towards the minimum of r(6) r(9) =

D. ...move towards a theta vector of
positive infinities

E. ...move towards a theta vector of

negative infinities
F. ...staythesame

(\ON v}




Regularization: Best Practices

Don’t Regularize the Bias (Intercept) Parameter!

In our models so far, the bias [ intercept parameter is
usually denoted by 6, - that is, the parameter for which
we fixed xg = 1

Regularizers always avoid penalizing this bias [ intercept
parameter

Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Standardizing Data

It’s common to standardize each feature by subtracting its
mean and dividing by its standard deviation

For regularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)




Takeaways

1. Nonlinear basis functions allow linear models (e.g. Linear
Regression, Logistic Regression) to capture nonlinear
aspects of the original input

2. Nonlinear features require no changes to the model (i.e.
just preprocessing)

3. Regularization helps to avoid overfitting



Feature Engineering [ Regularization Objectives

You should be able to...

Engineer appropriate features for a new task

Use feature selection techniques to identify and remove
irrelevant features

|dentify when a model is overfitting

Add a regularizer to an existing objective in order to combat
overfitting

Explain why we should not regularize the bias term

Convert linearly inseparable dataset to a linearly separable
dataset in higher dimensions

Describe feature engineering in common application areas



Source:


https://science-art.com/image/?id=2971&m=168&pagename=neural_network_3d
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* Linear model for classification

Perceptrons

* Predictions are or
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Combining Perceptrons
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+1if (h;(x) = +1and h,(x) = —1) or (h;(x) = —1and h,(x) = +1)
h(x) =

—1 otherwise
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h(x) = OR (AND(hy (%), =y (%)), AND(—hy (%), 1y (%))
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Boolean

Algebra

2/17/25

* Boolean variables are either +1 (“true”) or —1 (“false”)

* Basic Boolean operations:

* Negation: =z = —1 %z

(+1ifboth z, and z, equal + 1
*And: AND(z{,z,) =+

—1 otherwise

(+1 if either Z, Or Z, equals + 1
* Or: OR(z4,2,) =+

—1 otherwise

33



Boolean

Algebra
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* Boolean variables are either +1 ("true”) or —1 (“false”)

* Basic Boolean operations

* Negation: =z = -1 %z

* And: AND(z,,z,) = sign(z; + z, — 1.5)

* Or: OR(zq, z,) = sign(z; + z, + 1.5)

34



Boolean

Algebra

2/17/25

* Boolean variables are either +1 ("true”) or —1 (“false”)

* Basic Boolean operations

* Negation: =z = -1 %z

1
* And: AND(z4,z,) = sign ([—1.5, 1,1] l21]>

Zy

1
* Or: OR(z,,z,) = sign ([1.5, 1,1] [Zl])

Zy

35



Building a

Network

2/17/25

h(x) = OR (AND(hy (x), —hy (%)), AND(=hy (%), hy(2)))
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Building a

Network
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1) = OR [ AND(hy (6, ~hp(2)), AND( (20,1, (2) )|
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Building a

Network
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1) = OR [ AND(hy (6, ~hp(2)), AND( (20,1, (2) )|
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Building a

Network
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h(x) = OR (AND(h1 (3), (%)), AND(=hy (%), hz(x)))
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Building a

Network
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h(x) = OR (AND(h1 (3), (%)), AND(=hy (%), hz(x)))
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Building a

Network
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1) = OR | AND(hy (), ~h (%)), AND(=hy (), b (%)) |
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h(x) = OR (AND(hy (x), —hy (%)), AND(=hy (%), hy(2)))

Building a 1 e e "
Network ‘v ‘v :

42
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h(x) = OR (AND(hy (x), —hy (%)), AND(=hy (%), hy(2)))

Building a 1 e e "
Network ‘v ‘v :

h(x) = sign(sign(sign(w! x) — sign(w}x) — 1.5) +
sign(—sign(w! x) + sign(whx) — 1.5) + 1.5)

2/17/25
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h(x) = OR (AND(hy (x), —hy (%)), AND(=hy (%), hy(2)))

Building a

Network

h(x) = sign(sign(sign(w!x) — sign(wix) — 1.5) +
sign(—sign(w! x) + sign(w’x) — 1.5) + 1.5)

2/17/25 a4



h(x) = OR (AND(hy (x), —hy (%)), AND(=hy (%), hy(2)))

Building a

Network

hix) = sign(sign(sign(wlx) — sign(wix) — 1.5) +
sign(—sign(w!x) + sign(whx) —1.5) + 1.5)
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Building a

Network
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hix) = sign(sign(sign(wlx) — sign(wix) — 1.5) +
sign(—sign(w! x) + sign(w’x) — 1.5) + 1.5)
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h(x) = OR (AND(hy (x), —hy (%)), AND(=hy (%), hy(2)))

Building a 1 e e "
Network ‘v ‘v :

h(x) = sign(sign(sign(w! x) — sign(w}x) — 1.5) +
sign(—sign(w! x) + sign(whx) — 1.5) + 1.5)

2/17/25
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Multi-Layer

Perceptron
(MLP)
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Activation

Functions

1

Logisti ’ i id- te -_._'_'_'_‘—V”'—'_'_'_'_. =S
ogistic, sigmoid, or soft step o(x) T o
Hyperbolic tangent (tanh) f tanh(z) = & — ¢
w g - e;r. + E—I
0 ifz<0
Rectified linear unit (ReLU)!"! x ifx =0

= max{0,2} = 21,9

Gaussian Error Linear Unit (GELU)™!

g B |

)

= z®(z)

Softplus!®!

In(1+e”)

Exponential linear unit (ELU)!

ale’ —1) ifz <0
5 ifz >0
with parameter cx

Leaky rectified linear unit (Leaky ReLU)!""!

{ﬂ.ﬂlm ifz <0

Parametric rectified linear unit (PReLU)!"?!

NENINAIE

T ife >0
ar ifz<0
x ifx>=0

with parameter cx

Source: https://en.wikipedia.org/wiki/Activation function
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https://en.wikipedia.org/wiki/Activation_function

Poll Question 2

True or False: Linear and
logistic regression models
can be expressed as
neural networks.

A. Only true for linear
regression

B. Only true for logistic
regression

C. TOXIC

D. True for both

E. False for both

2/17/25
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Linear

Regression as a
Neural Network

2/17/25
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Logistic

Regression as a
Neural Network

2/17/25
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(Fully-
Connected) Feed

Forward Neural
Network
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Input layer: Hidden layers: Output layer:
[=0 le{1,..,L—1} =1L

Layer [ has dimension D® — Layer L has D® 4+ 1 nodes,

counting the bias node

54



(Fully-
Connected) Feed

Forward Neural
Network

2/17/25

The weights between layer [ — 1 and layer [ are a matrix:

w® e RD(D x (DU=D +1)

(D
Wi i
node j in layer [

is the weight between node i in layer [ — 1 and

55



So what are all
these layers

doing for us
anyway?

2/17/25

The weights between layer [ — 1 and layer [ are a matrix:

w® e RD(D x (DU=D +1)

Wi ; is the weight between node i in layer [ — 1 and

node j in layer [
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Neural
Network

Decision
Boundaries:
Example 1
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Figure courtesy of Matt Gormley
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Logistic Regression

Neural
Network
Decision
Boundaries:
Example 1

2/17/25 Figure courtesy of Matt Gormley



Tuned Neural Network (layers=2, activation=logistic)

Neural
Network
Decision
Boundaries:
Example 1

2/17/25 Figure courtesy of Matt Gormley



Neural
Network

Decision
Boundaries:
Example 1
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LR1 for Tuned Neural Network (layers=2, activation=logistic)

Figure courtesy of Matt Gormley
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Neural
Network

Decision
Boundaries:
Example 1
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LR2 for Tuned Neural Network (layers=2, activation=logistic)

Figure courtesy of Matt Gormley
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Neural
Network

Decision
Boundaries:
Example 1
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Tuned Neural Network (layers=2, activation=logistic)

Figure courtesy of Matt Gormley
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Tuned Neural Network (layers=2, activation=logistic)

Neural
Network
Decision
Boundaries:
Example 1

2/17/25 Figure courtesy of Matt Gormley



Neural
Network

Decision
Boundaries:
Example 2
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Logistic Regression

Neural
Network
Decision
Boundaries:
Example 2

2/17/25 Figure courtesy of Matt Gormley



Tuned Neural Network (layers=3, activation=logistic)

Neural
Network
Decision
Boundaries:
Example 2

2/17/25 Figure courtesy of Matt Gormley



Neural
Network

Decision
Boundaries:
Example 2
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LR1 for Tuned Neural Network (layers=3, activation=logistic)
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LR2 for Tuned Neural Network (layers=3, activation=logistic)
S

Neural
Network

Decision 0-
Boundaries:
Example 2

2/17/25 Figure courtesy of Matt Gormley



LR3 for Tuned Neural Network (layers=3, activation=logistic)

Neural
Network

Decision
Boundaries:
Example 2

2/17/25 Figure courtesy of Matt Gormley



Neural
Network

Decision
Boundaries:
Example 2
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Tuned Neural Network (layers=3, activation=logistic)

Figure courtesy of Matt Gormley
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Tuned Neural Network (layers=3, activation=logistic)

Neural
Network
Decision
Boundaries:
Example 2

2/17/25 Figure courtesy of Matt Gormley



Signal and

Outputs
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Every node has an incoming signal and outgoing output

Layer [ — 1 Layer [
(2-1)
Zo

Node DU~

p(-1)
(-5 i st

=0
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Signal and

Outputs
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Every node has an incoming signal and outgoing output

Layer [ — 1 Layer [

Node DU~

a® = WwOz(D and 20 = [1, f(&P)]"
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Forward
Propagation

for Making
Predictions
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- Initialize z(® = [1, x]”

*Forl=1,...,L

cq® = LD

20 =1, f(a®)]

* Output: by (x)

- Input: weights W, ..., W and a query data point x

Z(L) 1]
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Okay, but
where do

these weights

come from?
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- Initialize z(®) =

- Input: weighits W, ..., W) and a query data point x

*Forl=1,...,L

cq® = LD

20 =1, f(a®)]

* Output: hy,() 3@ (x) = z(D)
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Neural
Network

Learning
Objectives
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You should be able to...

1.
2.

Explain the biological motivations for a neural network

Combine simpler models (e.g. linear regression, binary
logistic regression, multinomial logistic regression) as
components to build up feed-forward neural network
architectures

Explain the reasons why a neural network can model
nonlinear decision boundaries for classification

Compare and contrast feature engineering with
learning features

ldentify (some of) the options available when designing
the architecture of a neural network

Implement a feed-forward neural network
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