
Logistic Regression
+ Feature Engineering

+ Regularization

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 10

Feb. 12, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Practice Problems 1
– released on course website

• Exam 1: Mon, Feb. 17
– Time: 7:00 – 9:00pm
– Location: Your room/seat assignment will be announced on Piazza

• Homework 4: Logistic Regression
– Out: Mon, Feb 17
– Due: Wed, Feb. 26 at 11:59pm

5

EXAM 1 LOGISTICS

6

Exam 1
• Time / Location

– Time: Mon, Feb 17, at 7:00pm - 9:00pm
– Location & Seats: You have all been split across multiple rooms. Everyone has an assigned

seat in one of these room.
– Please watch Piazza carefully for announcements.

• Logistics
– Covered material: Lecture 1 – Lecture 7
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)

7

Exam 1

• How to Prepare
– Attend the Exam OHs on Friday
– Review exam practice problems
– Review this year’s homework problems
– Consider whether you have achieved the “learning objectives” for

each lecture / section
– Write your one-page cheat sheet (back and front)

8

Exam 1

• Advice (for during the exam)
– Solve the easy problems first

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely missing something

– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the answer:

• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it

9

Topics for Exam 1
• Foundations

– Probability, Linear Algebra,
Geometry, Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– KNN Regression
– Decision Tree Regression
– Linear Regression

10

LOGISTIC REGRESSION

11

Logistic Regression

1. Model 2. Objective

12

Logistic Regression

3A. Derivatives 3B. Gradients

13

Logistic Regression

4. Optimization 5. Prediction

14

Logistic Regression

18

Logistic Regression

19

Logistic Regression

21

Example: Image Classification
• ImageNet LSVRC-2010 contest:

– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

24

25

26

27

Example: Image Classification

28

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

Example: Image Classification

29

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

This “softmax”
layer is Logistic

Regression!

The rest is just
some fancy

feature extraction
(discussed later in

the course)

Logistic Regression Objectives
You should be able to…
• Apply the principle of maximum likelihood estimation (MLE) to

learn the parameters of a probabilistic model
• Given a discriminative probabilistic model, derive the conditional

log-likelihood, its gradient, and the corresponding Bayes
Classifier

• Explain the practical reasons why we work with the log of the
likelihood

• Implement logistic regression for binary classification
• Prove that the decision boundary of binary logistic regression is

linear

30

PERCEPTRON, LINEAR REGRESSION, AND
LOGISTIC REGRESSION

Linear Models

31

Poll Question:
Match the Algorithm to its Update Rule

Answer:

Matching Game

35

1. SGD for Logistic Regression

2. Least Mean Squares

3. Perceptron

4.

5.

6.

�k � �k +
1

1 + exp �(h�(x(i)) � y(i))

�k � �k + (h�(x(i)) � y(i))

�k � �k + �(h�(x(i)) � y(i))x(i)
k

h�(x) = �T x

h�(x) = sign(�T x)

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6, 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
F. 1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6

I. None of the above

hθ(x) = p(y = 1 | x)

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Gradient Descent

37

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

Recall…

Stochastic Gradient Descent (SGD)

38

Recall…

We need a per-example objective:

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = � HQ; p�(yi|ti).

—

Answer:

Logistic Regression vs. Perceptron

39

Poll Question:
True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the
parameters only if the current example is
incorrectly classified.

BAYES OPTIMAL CLASSIFIER

40

Bayes Optimal Classifier

Function Approximation
Previously, we assumed that our output
was generated using a deterministic target
function:

Our goal was to learn a hypothesis h(x) that
best approximates c*(x)

Probabilistic Learning
Today, we assume that our output is
sampled from a conditional probability
distribution:

Our goal is to learn a probability distribution
p(y|x) that best approximates p*(y|x)

41

Suppose you knew the
distribution p*(y | x) or had
a good approximation to
it.

Question:
How would you design a
function y = h(x) to predict
a single label?

Answer:
You’d use the Bayes
optimal classifier!

Bayes Optimal Classifier

42

Suppose you have an oracle that knows the data generating distribution, p*(y|x).
Q: What is the optimal classifier in this setting?
A: The Bayes optimal classifier! This is the best classifier for the distribution p* and
the loss function.

Definition: The reducible error is the expected loss of a hypothesis h(x) that could
be reduced if we knew p*(y|x) and picked the optimal h(x) for that p*.

Definition: The irreducible error is the expected loss of a hypothesis h(x) that
could not be reduced if we knew p*(y|x) and picked the optimal h(x) for that p*.

OPTIMIZATION METHOD #4:
MINI-BATCH SGD

44

Mini-Batch SGD

• Gradient Descent:
Compute true gradient exactly from all N examples

• Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient of one randomly
chosen example

• Mini-Batch SGD:
Approximate true gradient by the average gradient of K
randomly chosen examples

45

Mini-Batch SGD

46

Three variants of first-order optimization:

FEATURE ENGINEERING

47

Handcrafted Features

48

NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) ∝
 exp(Θy�f())

born-in

Where do features come from?

49

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types

Where do features come from?

50

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words) embedding missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning

Where do features come from?

51

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

Convolutional Neural Networks
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder
(Socher 2011)

The [movie] showed [wars]

RAE

Where do features come from?

52

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

tree
embeddings

Socher et al.,
2013

Hermann & Blunsom,
2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

The [movie] showed [wars]

WNP,VP

WDT,NN WV,NN

S

NP VP

Where do features come from?

53

word
embeddings

tree
embeddings

hand-crafted
features

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Hermann & Blunsom,
2013

Hermann et al.
2014

word embedding
features

Turian et al.
2010

Koo et al.
2008

Refine embedding

features with

semantic/syntactic info

Where do features come from?

54

word
embeddings

tree
embeddings

word embedding
featureshand-crafted

features

best of both
worlds?

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Turian et al.
2010

Koo et al.
2008

Hermann et al.
2014

Hermann & Blunsom,
2013

Feature Engineering for NLP

Suppose you build a logistic regression model to predict a part-
of-speech (POS) tag for each word in a sentence.

What features should you use?

55
The movie I watched depicted hope
deter. noun noun nounverb verb

Per-word Features:

Feature Engineering for NLP

56
The movie I watched depicted hope
deter. noun noun nounverb verb

is-capital(wi)
endswith(wi,“e”)
endswith(wi,“d”)
endswith(wi,“ed”)
wi == “aardvark”
wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

57
The movie I watched depicted hope
deter. noun noun nounverb verb

…
wi == “watched”
wi+1 == “watched”
wi-1 == “watched”
wi+2 == “watched”
wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

58
The movie I watched depicted hope
deter. noun noun nounverb verb

…
wi == “I”
wi+1 == “I”
wi-1 == “I”
wi+2 == “I”
wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)

Feature Engineering for NLP

59
The movie I watched depicted hope
deter. noun noun nounverb verb

Table from Manning (2011)

Background: Word Embeddings

One-hot vectors
• Standard representation of a word in NLP:

1-hot vector (aka. a string)
• Vectors representing related words share

nothing in common

Word embeddings
• Word embedding: real-valued vector

representation of a word in M dimensions
• Related words have similar vectors
• Long history in NLP: Term-doc frequency

matrices, Reduce dimensionality with {LSA,
NNMF, CCA, PCA}, Brown clusters, Vector
space models, Random projections, Neural
networks / deep learning

60

0 0 0 1 0 … 0 0cat:

a an
d

be ca
t

do
g

yo
u

ze
br
a

0 0 0 0 1 … 0 0dog:

0.13 .26 … -.52cat:

0.11 .23 … -.45dog:

Background: Word Embeddings
• It’s common to use neural-network trained embeddings

– Key idea: learn embeddings which are good at reconstructing the
context of a word

– Popular across HLT (speech, NLP)
• The Continuous Bag-of-words Model (CBOW) (Mikolov et al.,

2013) maximizes the likelihood of a word given its context:

61

-.32 .99 … 1.0

the
.13 .26 … -.52

do
g

-.32 .99 … 1.0

the
.01 .13 … -.75

fence

.36 -.01 … 2.7 … -1.5 -7.0

-.48 2.1 … -.05(SUM)

INPUT:

PROJECTION
:

OUTPUT: an
d

be jum
pe
d

yo
u

ze
br
a

Feature Engineering for CV
Edge detection (Canny)

62
Figures from http://opencv.org

Corner Detection (Harris)

Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

63
Figure from Lowe (1999) and Lowe (2004)

NON-LINEAR FEATURES

66

Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define

• Examples: (M = 1)

67

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
x
Examples:
- Perceptron
- Linear regression
- Logistic regression

Example: Linear Regression

68x

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x

1 2.0 1.2

2 1.3 1.7

… … …

10 1.1 1.9

y

Example: Linear Regression

69x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x

1 2.0 1.2

2 1.3 1.7

… … …

10 1.1 1.9

Example: Linear Regression

70x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x x2

1 2.0 1.2 (1.2)2

2 1.3 1.7 (1.7)2

… … … …

10 1.1 1.9 (1.9)2

Example: Linear Regression

71x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x x2 x3

1 2.0 1.2 (1.2)2 (1.2)3

2 1.3 1.7 (1.7)2 (1.7)3

… … … … …

10 1.1 1.9 (1.9)2 (1.9)3

Example: Linear Regression

72x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x … x5

1 2.0 1.2 … (1.2)5

2 1.3 1.7 … (1.7)5

… … … … …

10 1.1 1.9 … (1.9)5

Example: Linear Regression

73x

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y

i y x … x8

1 2.0 1.2 … (1.2)8

2 1.3 1.7 … (1.7)8

… … … … …

10 1.1 1.9 … (1.9)8

Example: Linear Regression

74x

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9

Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen

Polynomial Coefficients

Slide courtesy of William Cohen

Example: Linear Regression

77x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9

• With just N = 10
points we overfit!

• But with N = 100
points, the
overfitting
(mostly)
disappears

• Takeaway: more
data helps
prevent
overfitting

Example: Linear Regression

78x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

• With just N = 10
points we overfit!

• But with N = 100
points, the
overfitting
(mostly)
disappears

• Takeaway: more
data helps
prevent
overfitting

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

3 0.1 2.7 … (2.7)9

4 1.1 1.9 … (1.9)9

… … … … …

… … … … …

… … … … …

98 … … … …

99 … … … …

100 0.9 1.5 … (1.5)9

REGULARIZATION

79

Overfitting
Definition: The problem of overfitting is when the model
captures the noise in the training data instead of the
underlying structure

Overfitting can occur in all the models we’ve seen so far:
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)

80

Motivation: Regularization

• Occam’s Razor: prefer the simplest hypothesis

• What does it mean for a hypothesis (or model) to be simple?
1. small number of features (model selection)
2. small number of “important” features (shrinkage)

82

Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff between fitting the data and keeping the
model simple

• Choose form of regularizer:
– Common choice: p-norm:

83

r(θ) = ||θ||p =

[

M
[

m=1

|θm|p
](1

p
)

p r(θ) yields parame‐
ters that are...

name optimization notes

0 ||θ||0 =
∑

(θm != 0) zero values L0 reg. no good computa‐
tional solutions

1 ||θ||1 =
∑

|θm| zero values L1 reg. subdifferentiable
2 (||θ||2)2 =

∑
θ2
m

small values L2 reg. differentiable

