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Reminders

* Practice Problems 1
— released on course website
 Exam 1: Mon, Feb. 17
— Time: 7:00 — 9:00pm
— Location: Your room/seat assignment will be announced on Piazza

* Homework 4: Logistic Regression
— Out: Mon, Feb 17
— Due: Wed, Feb. 26 at 11:59pm




EXAM 1 LOGISTICS



Exam 1

 Time /Location
— Time: Mon, Feb 17, at 7:00pm - 9:00pm
— Location & Seats: You have all been split across multiple rooms. Everyone has an assigned
seat in one of these room.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 1 — Lecture 7
— Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
» Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Exam 1

* How to Prepare
— Attend the Exam OHs on Friday 7
— Review exam practice problems
— Review this year’s homework problems

— Consider whether you have achieved the “learning objectives” for
each lecture [ section

— Write your one-page cheat sheet (back and front)



Exam 1

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the answer:
* we probably haven’t told you the answer

* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Exam 1

e Foundations

— Probability, Linear Algebra,
Geometry, Calculus

— Optimization

* Important Concepts
— Overfitting
— Experimental Design

e (lassification

— Decision Tree
— KNN
— Perceptron

* Regression

— KNN Regression
— Decision Tree Regression
— Linear Regression

10



LOGISTIC REGRESSION



Logistic Regression
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Logistic Regression

5. Prediction

4. Optimization
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Logistic Regression
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Logistic Regression

> ‘ Logistic Regression Distribution
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Logistic Regression

Classification with Logistic Regression
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Example: Image Classification




IM&GENET

Bird

Home  Explore
About Download

Not logged in. Login | Signup

C=
2126 92.85% B

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures  Popularity ~ Wordnet

- chordate

;- marine animal, marine creature, sea animal, sea creature (1)
i scavenger (1)

- biped (0)

I;~ predator, predatory animal (1)

i larva (49)

- acrodont (0)

- feeder (0)

- stunt (0)

(3087)

| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
#- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)

cock (1)

- hen (0)

- nester (0)

- night bird (1)

- bird of passage (0)

- protoavis (0)

- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)

- |bero-mesornis (0)

- archaeornis (0)

- ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
- passerine, passeriform bird (279)

- nonpasserine bird (0)

- bird of prey, raptor, raptorial bird (80)
- gallinaceous bird, gallinacean (114)

Percentile IDs

Treemap Visualization Images of the Synset Downloads
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IM&GENET | v
- - = e About Download

Not logged in. Login | Signup

German iris, Iris kochii 469 49.6%
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures ggfcu;ﬁ;litlg

i~ halophyte (0)
. succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

- woody plant, ligneous plant (1868)

- geophyte (0)

- desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

* bulbous plant (179)

*. iridaceous plant (27)
+. iris, flag, fleur-de-lis, sword lily (19)

. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

i~ beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

-- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)

)

Wordnet
IDs
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IMAGENET I o

Not logged in. Login | Signup

C=
Court, courtyard 165 92.61% B

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ngcu;ﬁftiﬁg }ggfdnet

U Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization Images of the Synset Downloads

¥ ImageNet 2011 Fall Release (32326)
i plant, flora, plant life (4486)
| geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
x instrumentality, instrumentation (5494)
+. structure, construction (1405)
airdock, hangar, repair shed (0)
- altar (1)
- arcade, colonnade (1)
e arch (31)
. area (344)
- aisle (0)
- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
+- corner, nook (2)

" court, courtyard (6)
- atrium (0)

- bailey (0)

- cloister (0)

- food court (0)

- forecourt (0)

L. narvie (NN
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Example: Image Classification




Example: Image Classification




Logistic Regression Objectives

You should be able to...

 Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

* Given a discriminative probabilistic model, derive the conditional

log-likelihood, its gradient, and the corresponding Bayes
Classifier

* Explain the practical reasons why we work with the log of the
ikelihood

* Implement logistic regression for binary classification

* Prove that the decision boundary of binary logistic regression is
inear




PERCEPTRON, LINEAR REGRESSION, AND
LOGISTIC REGRESSION



<)
— 5 Matching Game U@J@Q e s

xe
Poll Question:

Match the Algorithm to its Update Rule

d

1. SGD for Logistic Regression 4. 0, « 0, + (h@(X(i)) _ y(i)>
he(x) =p(y =1]x)—

_J

SV ’Cor/qsz. Least Mean Squares 5. 0, « 0, + 1
Lot o F hg(x)=6Tx F T T exp A (x ) — y )
@QDVQSS\OJ\ 0
3. Perceptron 6. 9 9 NI (i) (0)
hg(x)zsign(HTx) k< U + ( O(X )_y )xk
W=z

ANSWer: | 9% A.1=5, 2=4, 3=6 77@1:6, 2=6,3=6 |. Non%he above Jn .
67% B.1=5,2=6,3=4  94F.1=6, 2=5, 3=5
Q% C.1=6,2=4,3=4  O¥G.1=5,2=5,3=5
¢ D.1=5,2=6,3=6  S)/H.1=4, 2=5,3=6



Gradient Descent
Algorithm 1 Gradient Descent
procedure GD(D, H(O))

1:

2 6« 6%

% while not converged do

4 00— "7VeJ(O)

5 return 6
In order to apply GD to Logistic | % J(H) ]
Regression all we need is the % J(0)

2

gradient of the objective VOJ(O) _
function (i.e. vector of partial

derivatives). d 7(6)




Stochastic Gradient Descent (SW

Algorithm 1 Stochastic Gradient Descent (SG D)

= procedure SGD(D, )

x 0« Y

B while not converged do

4: fori € shuffle({1,2,...,N}) do
5:

6

060 —1VeJD(O)
return 0

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = .1, J)(6)
where J()(0) = — log pe (y'|x?).
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Logistic Regression vs. Perceptron

%oll Qgestion:
True or Just like Perceptron, one

step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the
parameters only if the current example is
incorrectly classified.

Answer:




BAYES OPTIMAL CLASSIFIER



Bayes Optimal Classifier
({ Suppose you knew the

Functiq distribution p*(y | X) or had Probabilistic Learning
Previous ?chOd AR PIOAIEINGL) S Today, we assume that our output is
was ger| t sampled from a conditional probability
functior : distribution:

Question:

How would you design a ( P)

function y = h(x) to predlct ~ P ( )

a single Iabel’ ;

E() p*(-[x'*)

Answer: Our goal is to learn a probability distribution
Our goal you’d use the Bayes it p(y|x) that best approximates p*(y|x)
best aPI| optimal classifier!




Bayes Optimal Classifier

Suppose you have an oracle that knows the data generating distribution, p*(y|x).
Q: What is the optimal classifier in this setting?
A: The Bayes optimal classifier! This is the best classifier for the distribution p* and

the loss function. f(\//fﬂ _ ﬂ/{y ‘7‘41\/5

A
N
Yr‘a(x} =5 | & 3‘3(74 1x) > ¢
B\ O o“fL\mw{;(
> TS LT
‘ S
o t f i " '\\_/I_—]\F—;( >/ )= W om G A -/
72 - o ] t’l 3 $< . F ﬁ(\:’,kfx- j_ \ ;7#704\/_
20 g;br X=0.% \OUD [; \/#,—? c\-\J 7:0
Definition: The reducible error is the expected loss of a hypothesis h(x) that could
be reduced if we knew p*(y|x) and picked the optimal h(x) for that p*. 0 5 Haswise

Definition: The irreducible error is the expected loss of a hypothesis h(x) that

could not be reduced if we knew p*(y|x) and picked the optimal h(x) for that p*. Q\’m%ﬁ o= O.00| 42



OPTIMIZATION METHOD #4:
MINI-BATCH SGD



Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N examples

» Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient of one randomly
chosen example

e Mini-Batch SGD:

Approximate true gradient by the average gradient of&J5
randomly chosen examples



Mini-Batch SGD

while not converged: 0 <~ 0 — g

Three variants of first- order optimization:

('L)
Gradient Descent: g = V.J(0 =N Z VJ
SGD: g = VJ9 () where ¢ sampled uniformly

Mini-batch SGD: g = 5 Z vJs)(9) where is sampled uniformly Vs
s=1

S= 16,82, 64, ..



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(O,°f




ineering

Feature Eng

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al.,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning
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Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Zhou et al.,
2005

O

Look-up table Classifier
(contI:xl?cL\:\fords) embedding F——> missing word
unsupervised
learning
similar words, cat:{o.11 | .23 45
similar embeddings
dog:| 0.13 | .26 -.52

CBOW model in Mikolov et al. (2013)

word /
embeddings

O Mikolov et al.,

2013

Feature Learning
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Feature Engineering

Where do features come from?

A pooling ——1 A
// \\
l ] 1 ] | ] | | l ] 1 ] 1 ]
| er IR IN 1N N
O s [ s e |
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A\ "4
Zhou et al., .
2005 word strlng
. embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al,, O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A

Ve N
NP VP ?
R
WpranZ Wynn 7
/ \

t ot 0

The [movie] showed [wars]

tree

S ®) embeddings

Socher et al.,

O 2013

4 Hermann & Blunsom,
1

U
; 2013

/

O

2005

word

embeddings

O Mikolov et al.,
2013

J string

!/~ embeddings
Socher, 2011

O Collobert & Weston,

2008

Feature Learning
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Feature Engineering

Where do features come from?

A e
) en. e Sy 9’776
word embedding ’776/; Uy, Cqy.
P e, S,
hand-crafted eatures \/Syh "l’lfb &
features o ----- >0 t"q-
= Turian et al. c,
O~ O 2010 O s,
: Hermann et al. o
Sun et al., 2011 Koo etal. 2014
O 2008
? tree
; ®) embeddings
! Socher et al.,
8 I O 2013
H A Hermann & Blunsom,
i / 2013
O :
Zhou et al., 1: / .
2005 ! word ,'I strlng
. / embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning

53



Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 5
worlds:

features A~ ----- >O e s O

e Turian et al. O
O O 2010 Hermann et al. A

. Koo et al.
Sun et al., 2011 2014

O 4‘2008

3

tree
®) embeddings

Socher et al.,

O 2013

4 Hermann & Blunsom,
1

O ! 2013
U
U4
Zhou et al., / tri
2005 word ,'I S rlng
. / embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning
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Feature Engineering for NLP

Suppose you build a logistic regression model to predict a part-
of-speech (POS) tag for each word in a sentence.

What features should you use?

[deter.} [ noun } [ noun } [ verb }

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x(1) x(2) x3) x(4) x(5) x(6)
is-capital (w;) 1 1
endswith (wy, “e”) 1 1 1
endswith (w;, “d”) 1 1
endswith (w;, “ed”) 1 1
w; == “aardvark”
w; == “hope” 1

[deter. } [ noun } [ noun } [ verb }

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
w; == “watched” 1
— Wiy, == “watched” 1
- w;_; == “watched” 1
T Wiy == :watched: (g: 1 )
— Wi, == “watched 1

[deter.} [ noun } [ noun } [ verb }

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
w. == N7 1
Wiy == “I7 1
Wiy == 17 1
Wi == VI 1
Wi, == “I1” 1

[deter. } [ noun } [ noun } [ verb }

The movie | watched depicted hope




Table from Manning (2011)

Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the

WSJ 19-21 development set.

Model Feature Templates # Sent. Token  Unk.

Feats Acc.  Acc. Acc.
3GRAMMEMM See text /248,798] 52.07% | 96.92%) 88.99%
NAACL 2003  See text and [1] [ 460,552] 55.31% [97.15%)\ 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication’  +rareFeatureThresh =5 482,364 55.67% 97.19% 88.96%
OW +<to, ’w_2>, <to, ’l.l)2> 730,178 56.23% 97.20% 89.03%
SWSHAPES +<t0, S_1>, <t0, 80>, <t0, S+1> '@1661 56.52% 97.25% 89.81%
5WSHAPESDS + distributional similarity 56.79% 90.46%

737,955

97.28%

(o) [on) ) =) oo

The movie

| watched depicted hope
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Background: Word Embeddings

One-hot vectors Word embeddings M=1021

* Standard representation of a word in NLP: *  Word embedding: real-valued vector
1-hot vector (aka. a string) representation of a word in M dimensions

* Vectors representing related words share * Related words have similar vectors
nothing in common .

Long history in NLP: Term-doc frequency
matrices, Reduce dimensionality with {LSA,
NNMF, CCA, PCA}, Brown clusters, Vector
space models, Random projections, Neural
networks [ deep learning

o

> X, & S )

> & ¢ & P L 0
cat:| o 0 0 1 0 0 0 cat: | 0.13 | .26 |... -.52

dog:| © 0 0 0 1 0 0 dog: | 0.1 | .23 ... -.45




Background: Word Embeddings

* It’s common to use neural-network trained embeddings
— Key idea: learn embeddings which are good at reconstructing the

context of a word

— Popular across HLT (speech, NLP)
* The Continuous Bag-of-words Model (CBOW) (Mikolov et al.,

2013) maximizes the likelihood of a word given its context:

Qab o
N \
S ¢ '\”‘& & &
OUTPUT:
36 | -.01 2.7 15 | -7.0
A
PROJECTION (SUM) [ -a8 |2 05
INPUT: -32 [ .99 | .. 1.0 3 | .26 | .. -52 -32 .99 | .. 1.0 01 | .13 -75
the do the fence




Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Figures from http://opencv.org
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Feature Engineering for CV

Scale Invariant

Figure 3: Model images of planar objects are shown in the
oprow. Recognitionresults below show model outlines and
mage kevs used for matching.

~eature Transform (SIFT)

V
\/

sale | o >

(next

octave) w
=

Scale >@———>
(first
octave) >@

\4

y

Difference of
Gaussian Gaussian (DOG)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

Figure from Lowe (1999) and Lowe (2004)
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NON-LINEAR FEATURES



aka. “nonlinear basis functions”

Nonlinear Features

For a linear model:

So far, input was always X=|T1,...,TM still a linear function
1P , Y , 215 | of b(x) even though a
Key Idea: let input be some function of x nonlinear function of
— original input: xR ~ where M’ > M (usually) )é los:
— new input: x' ¢ RM Xamples:
— define x' = b(x) = [b1(x), ba(x), . . ., bar (X)] - Perceptron

where b; : RM — Ris any function

Examples: (M = 1)

polynomial
radial basis function
sigmoid

log

bj(r) =27 Vje{l,...,J}

bj (CIJ) = exp ((%20-2,[@)2)

J
1
bi(x) =
() 1 + exp(—w;x)

bj(z) = log(z)

Linear regression
Logistic regression



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function .

L lals
2.0 -

1 2.0 1.2

2 13 17 15
10 11 1.9 1.0 -
0.5 -

true “unknown”
target function is

linear with 0-0-
negative slope

and gaussian 0.5 -
noise Lo

1.5

2.0

2.5

3.0
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Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=1)

2.0 -
L lals

1 2.0 1.2
1.5 -

2 13 1.7
Y 10
10 11 1.9
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=2)

[y [ [

y
1 20 12 (1.2)

1.5 -
2 1.3 1.7 (1.7)
Y 10
10 11 1.9 (1.9)
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example:

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

1

1.2 (1.2)> (1.2)3

> 13 17 (172 (.7)

y
10 11 1.9 (1.9)>(1.9)3

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Linear Regression

Linear Regression (poly=3)

15 2.0 2.5

71



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

y
1 20 12 .. (1.2

2 1.3 1.7 ... (1.7
10 11 19 .. (19p

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

72



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

y
8
1 20 12 .. (1.2) s
2 13 1.7 ... (1.7)8
y 1.0
10 11 19 .. (1.9)8
0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
~0.5 -

and gaussian
noise

1.5

Linear Regression (poly=8)

2.0 2.5

3.0

73



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

y
1 20 12 .. (1.2)° s
2 1.3 1.7 ... (1.7)?
y 1.0

10 11 19 .. (1.9)°

0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope

-0.5 -

and gaussian
noise

1.5

Linear Regression (poly=9)

2.0

2.5

3.0

74



Over-fitting

—©— Training
—O— Test

Root-Mean-Square (RMS) Error:  Erus = V2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

T —o =1 =3 ‘M—=9

b g 0.19 C0.82> 0.31 0.35
W, 6 (127 7.99 232.37
S 6 G543  -5321.83
o (17.30)  48568.31
) -231639.30
s 042.26

0 ~1061800.52
6. 1042400.18
s -557682.99
We g, 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

2.0 - !
L lls]e ]
1 20 12 .. (1.2)° s
2 1.3 1.7 ... (1.7)°
y 1.0 -
10 11 19 .. (1.9)°
0.5 -
0.0 -
-0.5 -

1.5

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0

77



Example: Linear Regression

* WithjustN=10

Goal: Learny =w' f(x) +b points we overfit!
where f(.) is a polynomial * Butwith N =100
basis function | Linear Regression (poly=9) points, the
overfitting
(mostly)
y :
IEEEES s
1 20 12 .. (1.2)° . Takeaway: more
2 13 17 .. (1.7) 15 data helps
(.7 prevent
0.1 2. 2. ey g
? ’ 7y overfitting
1.0 -
4 11 19 .. (1.9)
0.5 -
0.0 -
98 -0.5
99 ‘ ‘
1.0 1.5
100 0.9 15 ... (1.5)°
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REGULARIZATION



Overfitting

Definition: The problem of overfitting is when the model
captures the noise in the training data instead of the
underlying structure

Overtfitting can occur in all the models we’ve seen so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

* Occam’s Razor: prefer the simplest hypothesis

* What does it mean for a hypothesis (or model) to be simple?
1. small number of features (model selection)
2. small number of “important” features (shrinkage)

EO: (D 7 5\( = X( -\\T
O X2 @ X = @‘-{Xﬂ‘l’@gxs
O X}
|07¢ Xk‘
~29 X5
O X
L o j X9



1(0)

Given objective function:
Goal is to find:

model simple T

Choose form of regularizer:

M
— Common choice: p-norm: 7“(9) — Hng — {Z

Regularization

0 = argmin J(0) + \r(0)
0
Key idea: Define regularizer r(0) s.t. we tradeoff between{ﬁng the data andIeeping the

m=1

(3)
Hmlp}

L

p r(0)

yields parame-
ters that are...

name

optimization notes

0 [I8]lo = 22 1(6m 7 0)

L (16l = 316
> (6112 = 6

zero values

zero values
small values

Lo reg.

L1 reg.

L2 reg.

no good computa-
tional solutions
subdifferentiable
differentiable




