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Reminders

Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Wed, Feb. o5 (+ 1 day)
— Due:

Exam 1 Practice Problems
— problems + solutions released: Wed, Feb. 12

Midterm Exam 1

— Tue, Feb. 18, 7:00pm - 9:00pm
Today’s In-Class Poll

— http://p9.mlcourse.org




MIDTERM EXAM LOGISTICS



Midterm Exam

 Time/Location
— Time: Evening Exam
Tue, Feb. 18, 7:00pm - 9:00pm
— Room: We will contact each student individually with your room
assignment. The rooms are not based on section.
— Seats: There will be assigned seats. Please arrive early.

— Please watch Piazza carefully for announcements regarding room / seat
assignments.
* Logistics
— Covered material: Lecture 1 - Lecture 8
— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review exam practice problems
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
danswer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Midterm 1

* Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



SAMPLE QUESTIONS



Sample Questions

1.4 Probability

Assume we have a sample space (). Answer each question with T or F.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

P(A)P(B|A)
P(A|B)

(b) [1 pts.] T or F: P(A|B) . (The sign ‘o’ means ‘is proportional to’)



Sample Questions




Sample Questions




Sample Questions

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D® and D® where DO = {(z\", y{"), .., @, yi")}
and D@ = {(? 4, . (@, y)} such that 2" € R%, 2/* € R%. Suppose d; > ds

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D™ than on dataset D®.



Sample Questions




Sample Questions




Sample Questions




Sample Questions

(a) Old and new regression lines. (b) Old and new regression lines. (c) Old and new regression lines.




Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression
he(x) = p(y = 1|x)

0, 0+ (ho(x) — y )

2. Least Mean Squares

ho(x) = 01x

5. 1

0. — 0 . .
T o e M) — )

3. Perceptron
he(x) = sign(0” x)

6. . . :
O < O + A(hg(xD) — y@)z "

A. 1=5,2=4, 3=6
B. 1=5, 2=6, 3=4
C°1=6)2=473=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
F.1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6
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Q&A



Q:

A:

Q&A

Why did we focus mostly on the Perceptron mistake

bound for linearly separable data; isn’t that an
unrealistic setting?

Not at all! Even if your data isn’t linearly separable to
begin with, we can often add features to make it so.

mﬂ t Exercise: Add

IPEE D I ® |+ another featurg to
transform this

< > .
+1 il - nonlinearly separable
y P + | @ data into linearly
P P s separable data.




OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent

Algorithm 1 Gradient Descent

1: procedure GD(D, 0(0))

2 0 — 6\

3: while not converged do
4 00— YVoJ(0O)

5 return 6




Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i: procedure SGD(D, 8©)

2 6+ 6

3: while not converged do

4: i ~ Uniform({1,2,...,N})
5

6

0 «— 0 — \VeJ¥(0)
return 6

We need a per-example objective:

Let J(0) = i1, JO(6)



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 6'?)

2 0+ 00 NN
g while not converged do ARON

4: for i € shuffle({1,2,...,N}) do :

5 0« 0 —-YVeJ(0)

6 return 6 %

In practice, it is common
to implement SGD using
sampling without
replacement (i.e.

We need a per-example objective: | shuffle({1,2,... N}), even
though most of the

N i ' '
Let J(0) =322, J(0) | wihrenacemenc e
Uniform({1,2,... N}).




Convergence Curves

Log-log plot of training MSE versus epochs Def: an epoch is a
10, ——

S 19 — — 3 single pass through
5 B — Gradient Descent ] the training data
= \ — SGD ‘
£ : . — Closed-1|‘orm | 1. For GD, only one
« 10; \ L (normal eq.s) } update per epoch
g : '-.\ 1 2. For SGD, N updates
‘9‘ | \ : per epoch
T 4'\ \ ‘ N = (# train examples)
2 10 .'|“ \ 3 e SGD red
o P ' ] reduces MSE
o a \ i <
T F\ \ : much more rapidly
‘2 t\ \\ : than GD
s . < \ | - For GD/SGD, training
2 3.‘“ - - —— 4 6 _ o_ong

10 55 > p MSE is initially large

10 10 10 due to uninformed
Epochs initialization

Figure adapted from Eric P. Xing 32






Expectations of Gradients
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Convergence of Optimizers
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SGD FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : he(x) = 07x,0 ¢ RM}




Gradient Calculation for Linear Regression

Derivative of J(*)(8):
4y gy = -4 LgTx) _ )2
dby. dek 2
; dz (OTx(0) — ()2
i i)y @ i i
= (87x®) — 4 ))_(ng( ) — y®)
Ty (3) _ (1) (@) _ @)
= (67x dek (20 iz —y )
j=1
= (7x™® — y("))mg)
Gradient of J(V)(8)

VeJ ¥ (8) =

o
75:J%(6)

Loy T (6).

= (87X — y@)x®

[used by SGD]

@Tx® — y(i))xgt)

70 — 0o

(ng(z) y(z)) (*)

Derivative of J(0):

2

d d
a6, 7 ) Zd@ 7(6)

2

Z (OT (i) (i)) 335:)
=1

2

Gradient of J(0) [used by Gradient Descent]

i do, a6, 7(0)] -Z% 1(49;,{(1‘) _ y(i))x?;'
J(0) N (T x(0) _ ()
VeJ(0) = — 2i=( . y')z;

L J(6). >N 1<0Tx<1> y )z |

N
Z (67X — y )5
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SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 6'?)
6+ 6 > Initialize parameters

1.
2
3: while not converged do

4: fori € shuffle({1,2,...,N})do
5

6

7

g — (07x(®) — 4(D)x() > Compute gradient
0+ 0 —g > Update parameters
return 6

40



GD for Linear Regression

Cradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 9(0))

0 — 6 > Initialize parameters
while not converged do

1:
2
3
4 g — S0 (7% — y)x(®) > Compute gradient
5
6

00 —ng > Update parameters
return 6




Optimization Objectives

You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function



Linear Regression Objectives

You should be able to...

Design k-NN Regression and Decision Tree
Regression

mplement learning for Linear Regression using three
optimization techniques: (1) closed form, (2) gradient
descent, (3) stochastic gradient descent

Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed




PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p*(-)
y() = ¢* (%)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p*()
y ~ p* (-[x")

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



Robotic Ffirming

_» Deterministic Probabilistic
- f Classification Is this a picture of | Is this plant
| (binary output) a wheat kernel? drought resistant?

Regression
(continuous

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?




Bayes Optimal Classifier

Whiteboard
— Bayes Optimal Classifier
— Reducible / irreducible error
— Ex: Bayes Optimal Classifier for 0/1 Loss



Maximum Likelihood Estimation
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MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Learning from Data (Frequentist)

Whiteboard

— Principle of Maximum Likelihood Estimation
(MLE)
— Strawmen:

* Example: Bernoulli
* Example: Gaussian

* Example: Conditional #1
(Bernoulli conditioned on Gaussian)

* Example: Conditional #2
(Gaussians conditioned on Bernoulli)



