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Reminders

* Homework 8: Reinforcement Learning
— Out: Fri, Apr 10
— Due: Wed, Apr 22 at 11:59pm

* Homework 9: Learning Paradigms

— Out: Wed, Apr. 22
— Due: Wed, Apr. 29 at 11:59pm

— Can only be submitted up to 3 days late,
so we can return grades before final exam

* Today’s In-Class Poll
— http://poll.mlcourse.org




ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?

. supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction
. ensemble learning

. distant supervision

) hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

U 00O

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification o :E
categorical Multiclass Classification *é_B
ordinal Ordinal Classification 2 - §.~
real Regression Y N S 0
ordering Ranking i %’D {::E
multiple discrete  Structured Prediction _g é T 06.2
multiple continuous (e.g. dynamical systems) § = %f{:}
both discrete & (e.g. mixed graphical models) | ‘& ; nC 5
cont. TL=z2Y9
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2.  Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

inductive bias
generalization / overfitting
bias-variance decomposition
generative vs. discriminative
deep nets, graphical models
PAC learning

distant rewards



Learning Paradigms

Paradigm

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised

< Clustering

— Dimensionality Reduction
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

Data

D={x",y"}Y, x~p*()andy=c*(-)

y® eR

y e {1,...,K}

y e {+1,-1}

y'") is a vector

D={x"}, x~p*()

predict {7} | where z(V) € {1,..., K}

convert each x") € RM tou'”) € RX with K << M
D = {x,y ) U (x}
D = {(x(l),y(l)), (x(‘z),y('z))! (x(3),y(3)), .

D = {x}¥ | and can query y'") = ¢*(-) at a cost
D = {(3(1),0(1)), (s52),a(2), .. }

D = {(3(1),0(1),r(1))’(3(2),0(2),,.(2))“._}



DIMENSIONALITY REDUCTION



PCA OQOutline

* Dimensionality Reduction
— High-dimensional data
— Learning (low dimensional) representations

* Principal Component Analysis (PCA)
— Examples: 2D and 3D
— Data for PCA
— PCA Definition
— Objective functions for PCA
— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors /
Eigenvalues

* PCA Examples
— Face Recognition
— Image Compression



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)




High Dimension Data

Examples of high dimensional data:

— Multilingual News Stories
(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Subject  Object

Image from (Wehbe et al., 2014)
1"

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:
— Customer Purchase Data

Matt's You could be seoing usetul stuff here!
Amazon Sign 0 10 get your order stivtus, Dalances and fowards

Recommended for you, Matt

Pets ] i Baby Products Engineering Books



Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques
for extracting hidden (potentially lower dimensional) structure

from high dimensional datasets.

Useful for:
e Visualization

* More efficient use of resources
(e.g., time, memory, communication)

* Statistical: fewer dimensions = better generalization

* Noise removal (improving data quality)

* Further processing by machine learning algorithms

Slide from Nina Balcan



Shortcut Example

17
Photo from https://[www.springcarnival.org/booth.shtml


https://www.youtube.com/watch?v=MlJN9pEfPfE

PRINCIPAL COMPONENT
ANALYSIS (PCA)



PCA OQOutline

* Dimensionality Reduction
— High-dimensional data
— Learning (low dimensional) representations

* Principal Component Analysis (PCA)

— Examples: 2D and 3D

— Data for PCA

— PCA Definition

— Objective functions for PCA

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors [ Eigenvalues
* PCA Examples

— Face Recognition

— Image Compression



Principal Component Analysis (PCA)

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be

obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset
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Slide from Barnabas Poczos




15t PCA axis

Slide from Barnabas Poczos
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2"d PCA axis
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Slide from Barnabas Poczos




Data for PCA

i (X(l))T'

o {X(i)}N X (X(2))T
o 1=1

()T

We assume the data is centered

L)
p= < X =
P

Q: What if A: Subtract
your data is off the
not centered? sample mean



Sample Covariance Matrix

The sample covariance matrix is given by:

1 N

Xik = 37 > (@ = )y — )
1=1

Since the data matrix is centered, we rewrite as:
——
| (X( ))

> — —_XIX (x(2)T
N X = .

()T



Principal Component Analysis (PCA)

Whiteboard
— Strawman: random linear projection
— PCA Definition
— Objective functions for PCA



Maximizing the Variance

Quiz: Consider the two projections below
1. Which maximizes the variance?
2.  Which minimizes the reconstruction error?

Option A Option B

27



Background:
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the
vector v (n X 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)
such that:

Av = Av

Av = Av
The linear transformation A is only

stretching vectorv.

That is, Av is a scalar multiple of v.




Principal Component Analysis (PCA)

Whiteboard
— PCA, Eigenvectors, and Eigenvalues



PCA

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
I = (v xO)v[? = [[xD|2 - (v xD)? (1)

since viv = ||v||? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

N
1 _ .
v = argmin — |[x® — (vIx®)v||? (2)
vilivz=1 V ZT
| N
o : (i)([2 T (i)\2
= argmin — [|x\||* — (v x'") (3)
vi|lv|2=1 &V ;
R
— . Ty (1))2
= argmax — » (v'x'") (3)
vi||v||2=1 Z

=1
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PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance minimization).

v, = argmax v! $v (1)
vi||v|]?=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

Lv,\)=vIZv-Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to zero gives:

div (VTEV —AvTv - 1)) =0 (3)
Yv—-Av=10 (4)
v =Av (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue A such that:

Av = )\v (6)

31



Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

* Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

» Singular Value Decomposition (SVD)
— finds all the principal components at once

— two options:

* Option A: run SVD on X™X

* Option B: run SVD on X
(not obvious why Option B should work...)

 Stochastic Methods (approximate)

— very efficient for high dimensional datasets with lots of
points

32



Background: SVD

Singular Value Decomposition (SVD)

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV’ (1)

where A is a diagonal matrix, and U and V are orthogonal matrices.

33



SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:
A =UAVT (1)

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we obtain an SVD of our data matrix X, so that:
X = UAVT (1)

Now consider what happens when we rewrite ¥ = X7 X terms
of this SVD.

1

Y= 7x”'x (2)
= L(UAV?)T(UAVT) 3)
= (VATUT)(UAVT) (4)
= ;—,VA"'AVT (5)
= lV(A)QvT (6)

Above we used the fact that U7 U = I since U is orthogonal by
definition.

We find that (A)? is a diag-
onal matrix whose entries are
A;; = \? the squares of the
eigenvalues of the SVD of X.
Further, both X and X”7X
share the same eigenvectors
in their SVD.

Thus, we canrun SVD on X
without everinstantiating the
large XX to obtain the nec-
essary principal components
more efficiently.

34



Principal Component Analysis (PCA)

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along that
dimension).

Slide from Nina Balcan




How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 - Variance (%) = ratio of variance along
- given principal component to total
0 variance of all principal components
;\g ___
< 15 -
[/} —
o
<
£ 10
= 10 -
> —
5 4
A B0 A me

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose

much
— M dimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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PCA EXAMPLES



Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to K components

2. Report percent of variance explained for K components

3. Then project back up to 25x25 image to visualize how much information was preserved

Original Image

95% of Explained Variance
0

90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components 43 components 11 components

Original Image

95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20
784 components 154 components 87 components 43 components 11 components

Original Image 95% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0

90% of Explained Variance
0

10
15
20

25

0 5 10 15 20 25 0 5 10 15 20 25

784 components 154 components 87 components 43 components 11 components

0 5 10 15 20 10 15 20 25 0 5 10 15 20



Projecting MNIST digits

Task Setting:

1.
2.

3.

Take 25x25 images of digits and project them down to 2 components
Plot the 2 dimensional points
Here we look at all ten digits 0 -9
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Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to 2 components
2.  Plot the 2 dimensional points

3. Here welook at just four digits o, 1, 2, 3

3.0

2.5

- 2.0

- 1.5

- 1.0

0.5

T T 0.0

I
=
o
=
N
w



Learning Objectives

Dimensionality Reduction / PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

Identify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



