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Reminders

* Homework 8: Reinforcement Learning
— Out: Fri, Apr 10
— Due: Wed, Apr 22 at 11:59pm

* Homework 9: Learning Paradigms

— Out: Wed, Apr. 22
— Due: Wed, Apr. 29 at 11:59pm

— Can only be submitted up to 3 days late,
so we can return grades before final exam

* Today’s In-Class Poll
— http://poll.mlcourse.org




DEEP RL EXAMPLES
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Playing Atari with Deep RL
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Figures from David Silver (Intro RL lecture)




Playing Atari with Deep RL
9 o |
Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

Videos:
— Atari Breakout:

— Space Invaders:

Figures from Mnih et al. (2013)


https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=ePv0Fs9cGgU

Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with € = 0.05.

Figures from Mnih et al. (2013)



Deep Q-Learning

Key Idea:
1. Use a neural network Q(s,a; 6) to approximate Q*(s,a)

2. Learn the parameters O via SGD with training
examples < s, a;, I, S¢,q >




Deep Q-Learning

Whiteboard

— Strawman loss function (i.e. what we cannot
compute)

— Approximating the Q function with a neural
network

— Approximating the Q function with a linear model
— Deep Q-Learning

— function approximators
(<state, action,> = g-value
Vs.
state = all action g-values)



Experience Replay

* Problems with online updates for Deep Q-learning:
— noti.i.d. as SGD would assume
— quickly forget rare experiences that might later be useful to
learn from
 Uniform Experience Replay (Lin, 1992):
— Keep areplay memory D ={e, e,, ... , ey} of N most recent
experiences e, = <Sy, ay, Iy S¢.1>
— Alternate two steps:

1. Repeat T times: randomly sample e; from D and apply a Q-
Learning update to e;

2. Agent selects an action using epsilon greedy policy to receive
new experience that is added to D
 Prioritized Experience Replay (Schaul et al, 2016)

— similar to Uniform ER, but sample so as to prioritize
experiences with high error



Alpha Go

165

Fan Hui (Black), AlphaGo (White)

AlphaGo wins by 2.5 points

Game 1

Game of Go (El##)

* 19x19 board
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Figure from Silver et al. (2016)



Alpha Go

Rollout policy SL policy network RL policy network Value network Policy network Value network
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Figure from Silver et al. (2016)
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Professional Amateur Beginner
dan (d) kyu (k)

GnuGo
Fuego

Pachi

Zen

Crazy Stone

Fan Hui

AlphaGo

AlphaGo
distributed
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Alpha Go

Figure from Silver et al. (2016)



Learning Objectives

Reinforcement Learning: Q-Learning
You should be able to...
1. Apply Q-Learning to a real-world environment
2. Implement Q-learning

3. ldentify the conditions under which the Q-
earning algorithm will converge to the true
value function

4. Adapt Q-learning to Deep Q-learning by
employing a neural network approximation to
the Q function

5. Describe the connection between Deep Q-
Learning and regression




Q-Learning

Question: Answer:

For the R(s,a) values shown on

the arrows below, which are the 7 0
corresponding Q*(s,a) values? —Iz /D

Assume discount factor = 0.5.




ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?

. supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction
. ensemble learning

. distant supervision

) hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

U 00O

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification o :E
categorical Multiclass Classification *é_B
ordinal Ordinal Classification 2 - §.~
real Regression Y N S 0
ordering Ranking i %’D {::E
multiple discrete  Structured Prediction _g é T 06.2
multiple continuous (e.g. dynamical systems) § = %f{:}
both discrete & (e.g. mixed graphical models) | ‘& ; nC 5
cont. TL=z2Y9
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2.  Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

inductive bias
generalization / overfitting
bias-variance decomposition
generative vs. discriminative
deep nets, graphical models
PAC learning

distant rewards



Learning Paradigms

Paradigm Data

Supervised D = {x(,y}N x ~p*(-)andy = ¢*(")
< Regression y'eR

< Classification yi e {1,...,K}

< Binary classification (¥ € {+1, -1}

< Structured Prediction y'*) is a vector

Unsupervised D={x"}N = x~p*()

Semi-supervised D = {x(® y®}M y {:ac(j)};v:*1

Online D = {(xV), ), (x(2),y2)), (x>, y3),...}
Active Learning D = {xV}¥ | and can query y'") = ¢*(-) at a cost
Imitation Learning D = {(s'V,aV), (52),a?)),...}

Reinforcement Learning D = {(s'V),aV), +(1)) (52 a@ 20 .} )



K-Means Outline

Clustering: Motivation /| Applications
Optimization Background

— Coordinate Descent

— Block Coordinate Descent
Clustering

— Inputs and Outputs

— Obijective-based Clustering
K-Means

— K-Means Objective

— Computational Complexity

— K-Means Algorithm [ Lloyd’s Method
K-Means Initialization

— Random

— Farthest Point

— K-Means++



CLUSTERING



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

datapoints.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

e Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

* Cluster news articles or web pages or search results by topic.

e (luster protein sequences by function or genes according to expression
profile. ' -
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o C(Cluster users of social networks by interest (community detection).
Facebook network —_— Twitter Network

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

* Cluster customers according to purchase history.
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e And many many more applications....

Slide courtesy of Nina Balcan



Optimization Background

Whiteboard:

— Coordinate Descent
— Block Coordinate Descent



Clustering

Question: Which of these partitions is “better’?

O
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K-MEANS



K-Means Algorithm

unlabeled feature vectors
D = {x(, x®) .., x(N}

cluster centers ¢ = {c(",..., ¢}
and cluster assignments z = {z(), z),... | z(N)}

until convergence:
—forjin{1,...,K}
cl) = mean of all points assigned to cluster j
—foriin{1,..., N}
z() = index j of cluster center nearest to x(



Example: Real-World Dataset




K-Means

Whiteboard:
— Clustering: Inputs and Outputs
— Objective-based Clustering
— K-Means Objective
— Computational Complexity
— K-Means Algorithm [ Lloyd’s Method



K-Means Algorithm

unlabeled feature vectors
D = {x(, x®) .., x(N}

cluster centers ¢ = {c(",..., ¢}
and cluster assignments z = {z(), z),... | z(N)}

until convergence:
—forjin{1,...,K}
cl) = mean of all points assigned to cluster j
—foriin{1,..., N}
z() = index j of cluster center nearest to x(



K-Means Initialization

Whiteboard:

— Random
— Furthest Traversal

— K-Means++



K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

Clustering with K-Means (k=3, iter=0)
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Example: K-Means

Clustering with K-Means (k=3, iter=1)
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Example: K-Means

Clustering with K-Means (k=3, iter=2)
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Example: K-Means

Clustering with K-Means (k=3, iter=3)
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Example: K-Means

Clustering with K-Means (k=3, iter=4)
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Example: K-Means

Clustering with K-Means (k=3, iter=5)
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K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

Clustering with K-Means (k=2, iter=0)
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Example: K-Means

Clustering with K-Means (k=2, iter=2)
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Example: K-Means

Clustering with K-Means (k=2, iter=2)
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Example: K-Means

Clustering with K-Means (k=2, iter=3)
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Example: K-Means

Clustering with K-Means (k=2, iter=4)
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Example: K-Means

Clustering with K-Means (k=2, iter=5)

57



Example: K-Means

Clustering with K-Means (k=2, iter=6)




Example: K-Means

Clustering with K-Means (k=2, iter=7)
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Example: K-Means

Clustering with K-Means (k=2, iter=8)




K-MEANS PERFORMANCE



Lloyd’s method: Random Initialization

Example: Given a set of datapoints

O

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Select initial centers at random

O

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Assign each point to its nearest center

™

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering

. /| {\\O

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Assign each point to its nearest center

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering

}
)

N

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Assign each point to its nearest center

)

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering

\

— p—_—

J

Get a good quality solution in this example.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

It always converges, but it may converge at a local optimum that is
different from the global optimum, and in fact could be arbitrarily
worse in terms of its score.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Local optimum: every point is assigned to its nearest center and
every center is the mean value of its points.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance
C—— >0< E—

O——— >0+ —

It is arbitrarily worse than optimum solution....

Slide courtesy of Nina Balcan



Lloyd’s method: Performance
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0Q, L This bad performance, can happen
chgo even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

This bad performance, can
happen even with well
separated Gaussian clusters.

Some Gaussian are
combined..... -

Slide courtesy of Nina Balcan



Learning Objectives

K-Means

You should be able to...

1.

4

Distinguish between coordinate descent and block
coordinate descent

Define an objective function that gives rise to a "good"
clustering

Apply block coordinate descent to an objective function

preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

Implement the K-Means algorithm

Connect the nonconvexity of the K-Means objective
function with the (possibly) poor performance of
random initialization



