

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Deep RL + K-Means

Matt Gormley Lecture 25 Apr. 15, 2020

Reminders

- Homework 8: Reinforcement Learning
 - Out: Fri, Apr 10
 - Due: Wed, Apr 22 at 11:59pm
- Homework 9: Learning Paradigms
 - Out: Wed, Apr. 22
 - Due: Wed, Apr. 29 at 11:59pm
 - Can only be submitted up to 3 days late, so we can return grades before final exam

- Today's In-Class Poll
 - http://poll.mlcourse.org

DEEP RL EXAMPLES

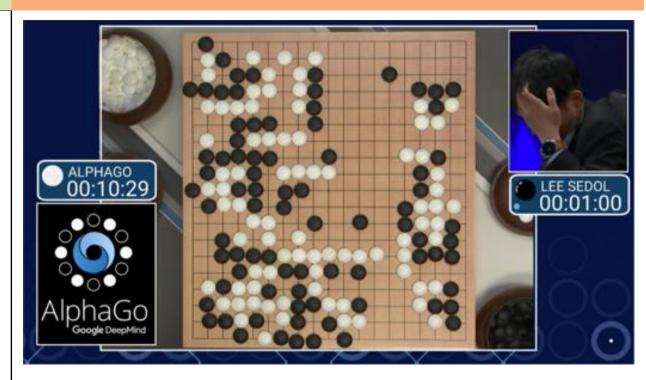
TD Gammon -> Alpha Go

Learning to beat the masters at board games

THEN

"...the world's top computer program for backgammon, TD-GAMMON (Tesauro, 1992, 1995), learned its strategy by playing over one million practice games against itself..."

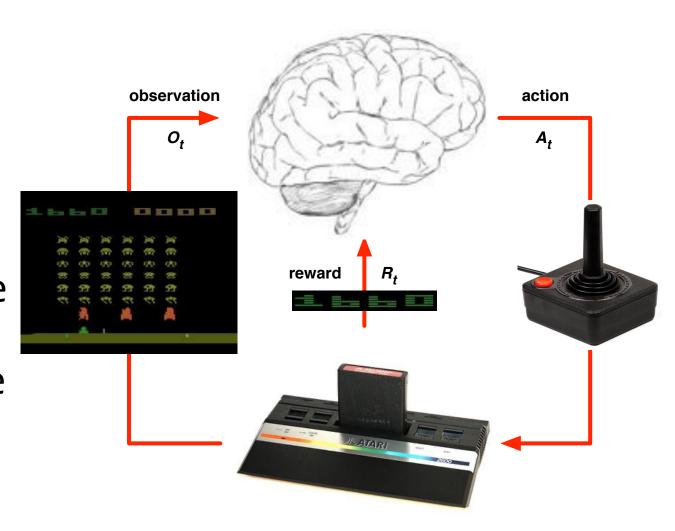
NOW



(Mitchell, 1997)

Playing Atari with Deep RL

- Setup: RL system observes the pixels on the screen
- It receives rewards as the game score
- Actions decide how to move the joystick / buttons



Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (*Left-to-right*) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

Videos:

- Atari Breakout:

https://www.youtube.com/watch?v=V1eYniJoRn
k

– Space Invaders:

https://www.youtube.com/watch?v=ePvoFs9cG
gU

Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (*Left-to-right*) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Table 1: The upper table compares average total reward for various learning methods by running an ϵ -greedy policy with $\epsilon=0.05$ for a fixed number of steps. The lower table reports results of the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that always get the same score while DQN used an ϵ -greedy policy with $\epsilon=0.05$.

Deep Q-Learning

Question: What if our state space S is too large to represent with a table?

Examples:

- $s_t = pixels of a video game$
- s_t = continuous values of a sensors in a manufacturing robot
- s_t = sensor output from a self-driving car

Answer: Use a parametric function to approximate the table entries

Key Idea:

- 1. Use a neural network $Q(s,a;\theta)$ to approximate $Q^*(s,a)$
- 2. Learn the parameters θ via SGD with training examples < s_t , a_t , r_t , s_{t+1} >

Deep Q-Learning

Whiteboard

- Strawman loss function (i.e. what we cannot compute)
- Approximating the Q function with a neural network
- Approximating the Q function with a linear model
- Deep Q-Learning
- function approximators (<state, action_i> → q-value vs. state → all action q-values)

Experience Replay

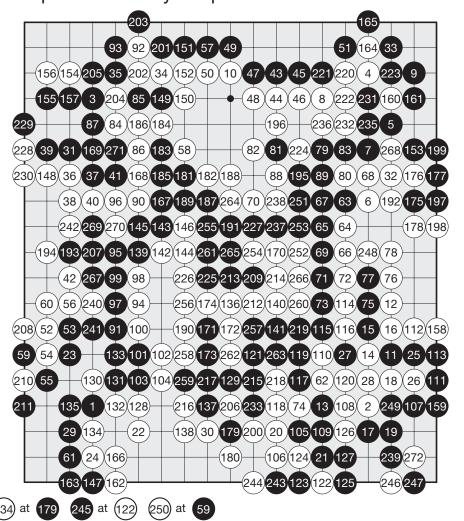
- Problems with online updates for Deep Q-learning:
 - not i.i.d. as SGD would assume
 - quickly forget rare experiences that might later be useful to learn from
- Uniform Experience Replay (Lin, 1992):
 - Keep a replay memory D = $\{e_1, e_2, ..., e_N\}$ of N most recent experiences $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Alternate two steps:
 - Repeat T times: randomly sample e_i from D and apply a Q-Learning update to e_i
 - Agent selects an action using epsilon greedy policy to receive new experience that is added to D
 - Prioritized Experience Replay (Schaul et al, 2016)
 - similar to Uniform ER, but sample so as to prioritize experiences with high error

Alpha Go

Game of Go (圍棋)

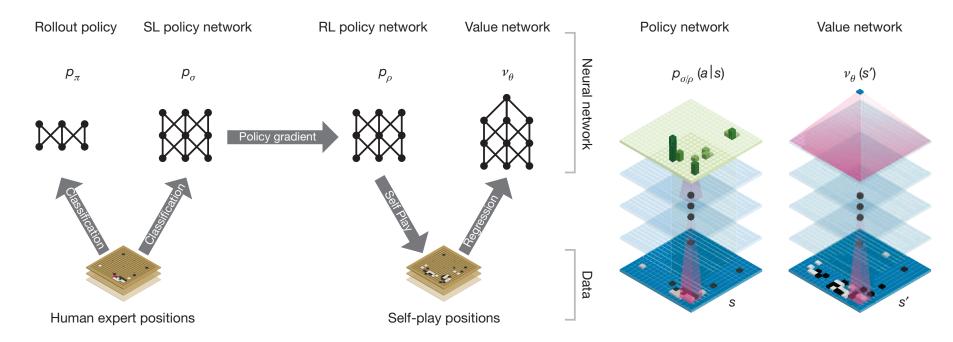
- 19x19 board
- Players alternately play black/white stones
- Goal is to fully encircle the largest region on the board
- Simple rules, but extremely complex game play

Game 1
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points



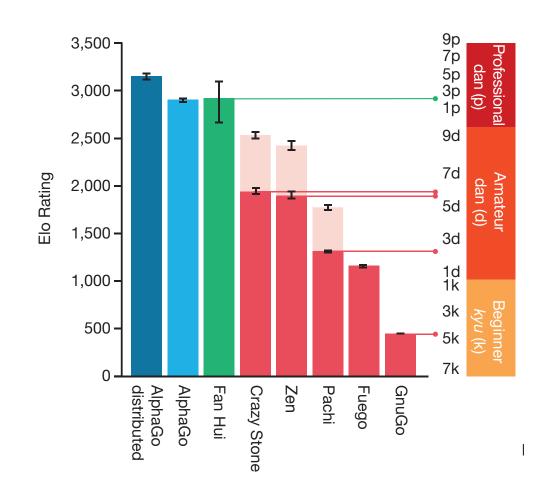
Alpha Go

- State space is too large to represent explicitly since # of sequences of moves is $O(b^d)$
 - Go: b=250 and d=150
 - Chess: b=35 and d=80
- Key idea:
 - Define a neural network to approximate the value function
 - Train by policy gradient



Alpha Go

- Results of a tournament
- From Silver et al. (2016): "a
 230 point gap corresponds to a 79% probability of winning"



Learning Objectives

Reinforcement Learning: Q-Learning

You should be able to...

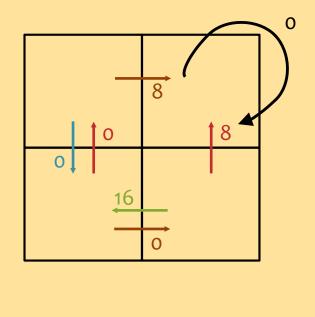
- 1. Apply Q-Learning to a real-world environment
- 2. Implement Q-learning
- 3. Identify the conditions under which the Qlearning algorithm will converge to the true value function
- Adapt Q-learning to Deep Q-learning by employing a neural network approximation to the Q function
- Describe the connection between Deep Q-Learning and regression

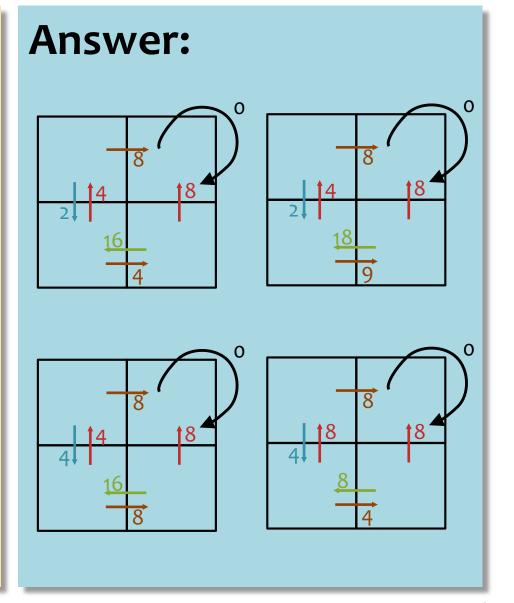
Q-Learning

Question:

For the R(s,a) values shown on the arrows below, which are the corresponding Q*(s,a) values?

Assume discount factor = 0.5.





ML Big Picture

Learning Paradigms:

What data is available and when? What form of prediction?

- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles guide learning?

- probabilistic
- information theoretic
- evolutionary search
- ML as optimization

Problem Formulation:

What is the structure of our output prediction?

boolean Binary Classification

categorical Multiclass Classification

ordinal Ordinal Classification

real Regression

ordering Ranking

multiple discrete Structured Prediction

multiple continuous (e.g. dynamical systems)

both discrete & (e.g. mixed graphical models)

cont.

Application Areas
Key challenges?
NLP, Speech, Compute

Facets of Building ML Systems:

How to build systems that are robust, efficient, adaptive, effective?

- 1. Data prep
- 2. Model selection
- 3. Training (optimization / search)
- 4. Hyperparameter tuning on validation data
- 5. (Blind) Assessment on test

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

Learning Paradigms

Paradigm	Data					
Supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot) \text{ and } y = c^*(\cdot)$					
\hookrightarrow Regression	$y^{(i)} \in \mathbb{R}$					
\hookrightarrow Classification	$y^{(i)} \in \{1, \dots, K\}$					
\hookrightarrow Binary classification	$y^{(i)} \in \{+1, -1\}$					
\hookrightarrow Structured Prediction	$\mathbf{y}^{(i)}$ is a vector					
Unsupervised	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot)$					
Semi-supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}\}_{j=1}^{N_2}$					
Online	$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), (\mathbf{x}^{(3)}, y^{(3)}), \ldots \}$					
Active Learning	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ and can query $y^{(i)} = c^*(\cdot)$ at a cost					
Imitation Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}), (s^{(2)}, a^{(2)}), \ldots\}$					
Reinforcement Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \ldots\}$					

K-Means Outline

- Clustering: Motivation / Applications
- Optimization Background
 - Coordinate Descent
 - Block Coordinate Descent
- Clustering
 - Inputs and Outputs
 - Objective-based Clustering
- K-Means
 - K-Means Objective
 - Computational Complexity
 - K-Means Algorithm / Lloyd's Method

K-Means Initialization

- Random
- Farthest Point
- K-Means++

CLUSTERING

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

Useful for:

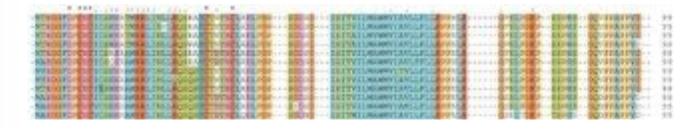
- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).

Applications (Clustering comes up everywhere...)

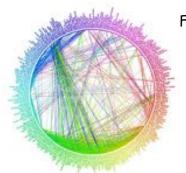
Cluster news articles or web pages or search results by topic.

Cluster protein sequences by function or genes according to expression

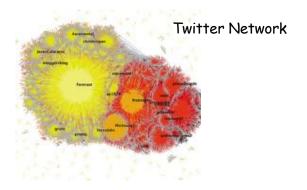
profile.



• Cluster users of social networks by interest (community detection).



Facebook network



Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

And many many more applications....

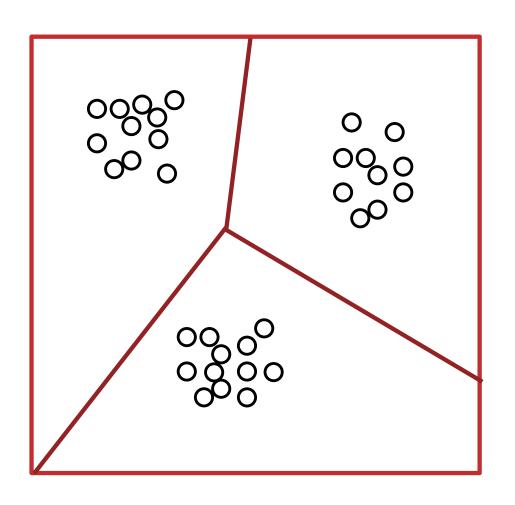
Optimization Background

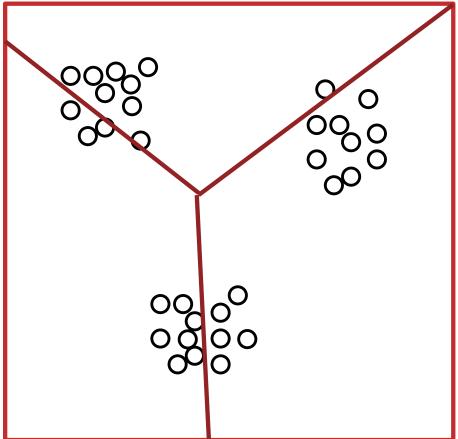
Whiteboard:

- Coordinate Descent
- Block Coordinate Descent

Clustering

Question: Which of these partitions is "better"?





K-MEANS

K-Means Algorithm

Given unlabeled feature vectors

$$D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$$

- Initialize cluster centers $c = \{c^{(1)}, ..., c^{(K)}\}$ and cluster assignments $z = \{z^{(1)}, z^{(2)}, ..., z^{(N)}\}$
- Repeat until convergence:
 - for j in {1,...,K}
 c^(j) = mean of all points assigned to cluster j
 for i in {1,..., N}
 z⁽ⁱ⁾ = index j of cluster center nearest to x⁽ⁱ⁾

Example: Real-World Dataset

K-Means

Whiteboard:

- Clustering: Inputs and Outputs
- Objective-based Clustering
- K-Means Objective
- Computational Complexity
- K-Means Algorithm / Lloyd's Method

K-Means Algorithm

Given unlabeled feature vectors

$$D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$$

- Initialize cluster centers $c = \{c^{(1)}, ..., c^{(K)}\}$ and cluster assignments $z = \{z^{(1)}, z^{(2)}, ..., z^{(N)}\}$
- Repeat until convergence:
 - for j in $\{1,...,K\}$ $\mathbf{c}^{(j)} = \mathbf{mean}$ of all points assigned to cluster j - for i in $\{1,...,N\}$ $\mathbf{z}^{(i)} = \mathbf{index}$ j of cluster center **nearest** to $\mathbf{x}^{(i)}$

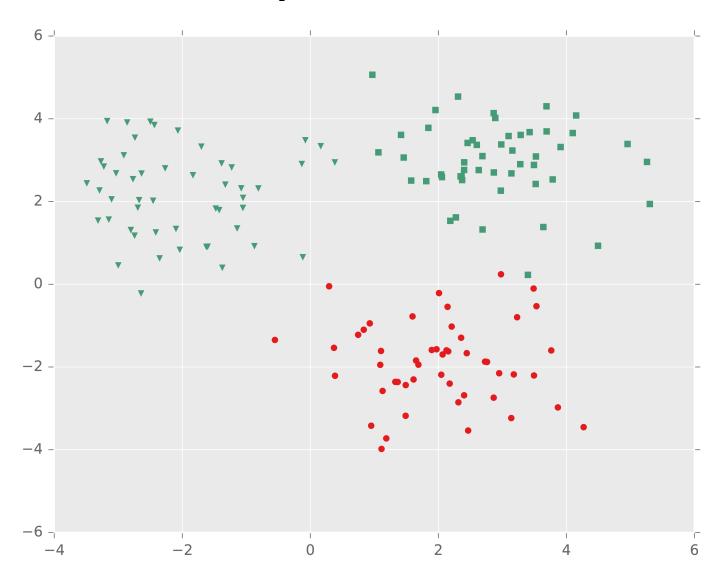
K-Means Initialization

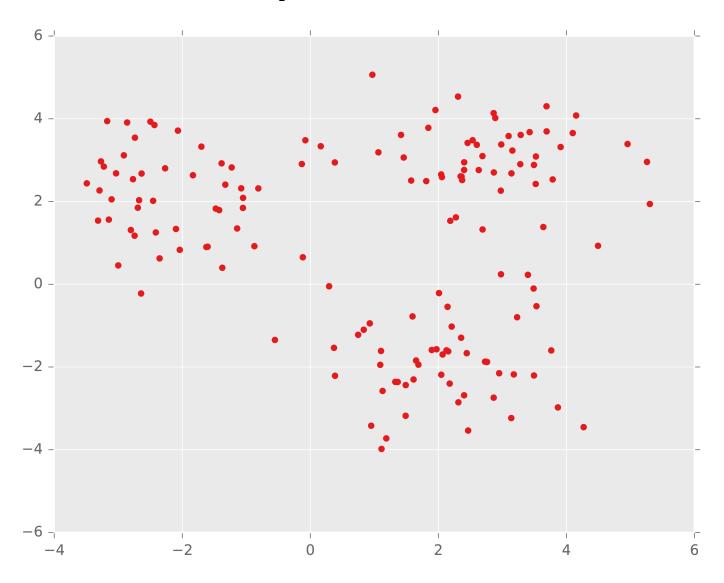
Whiteboard:

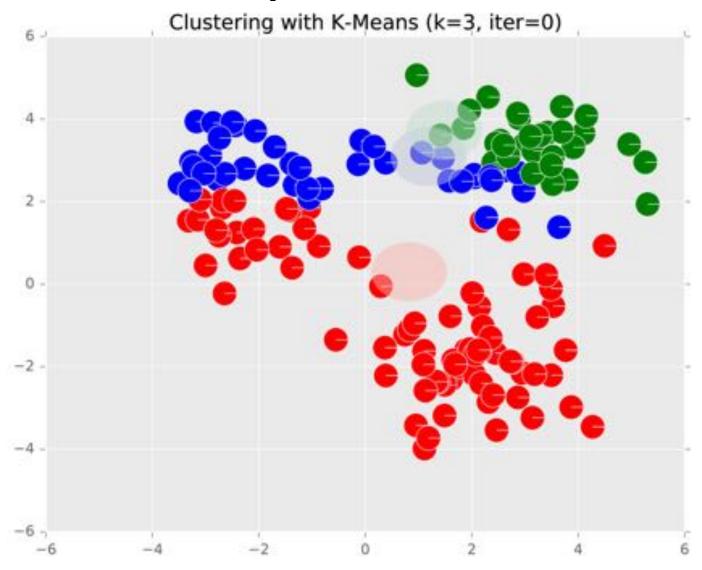
- Random
- Furthest Traversal
- K-Means++

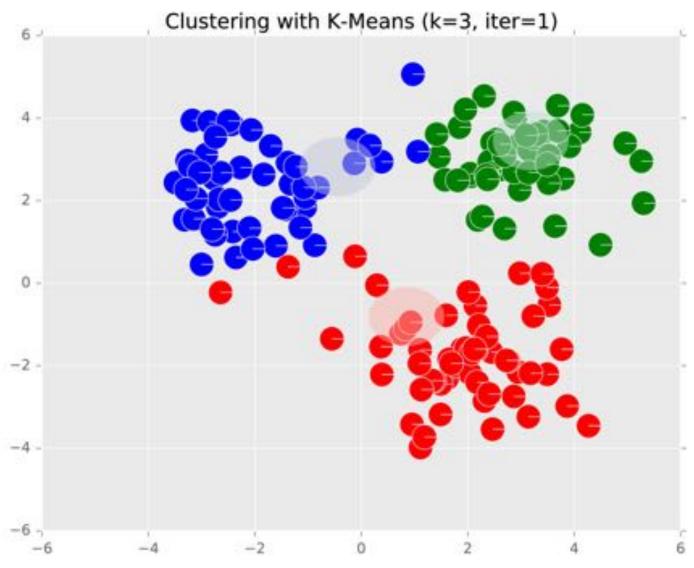
K=3 cluster centers

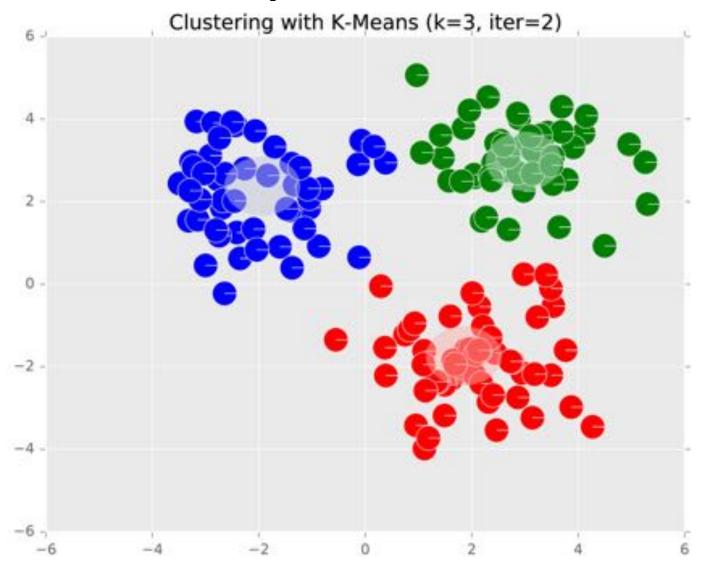
K-MEANS EXAMPLE

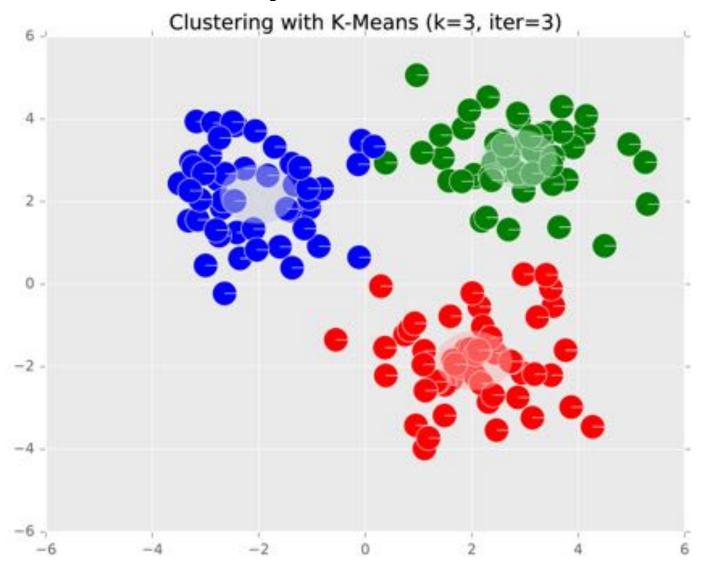


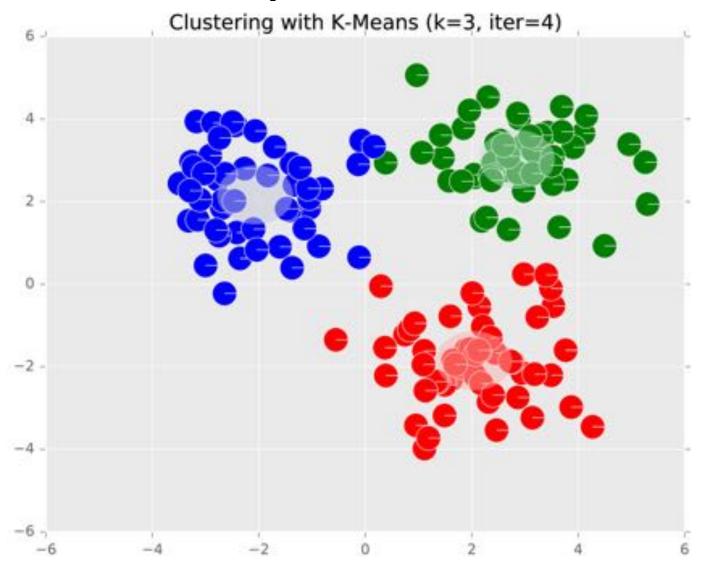


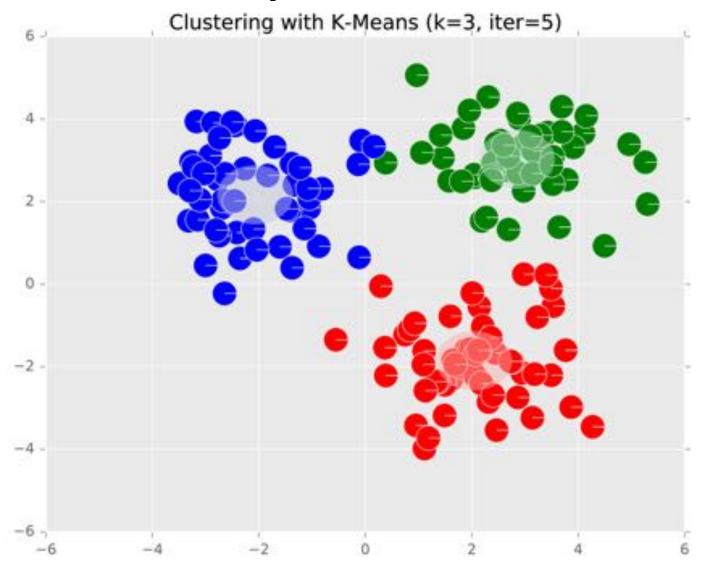






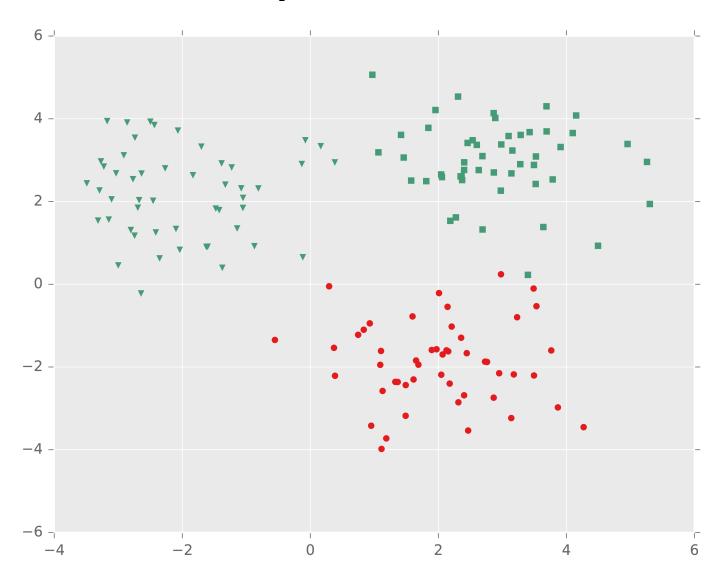


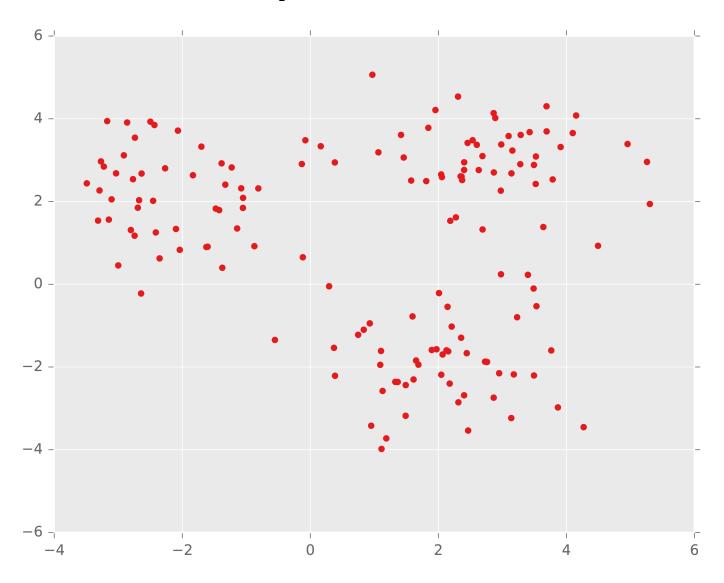


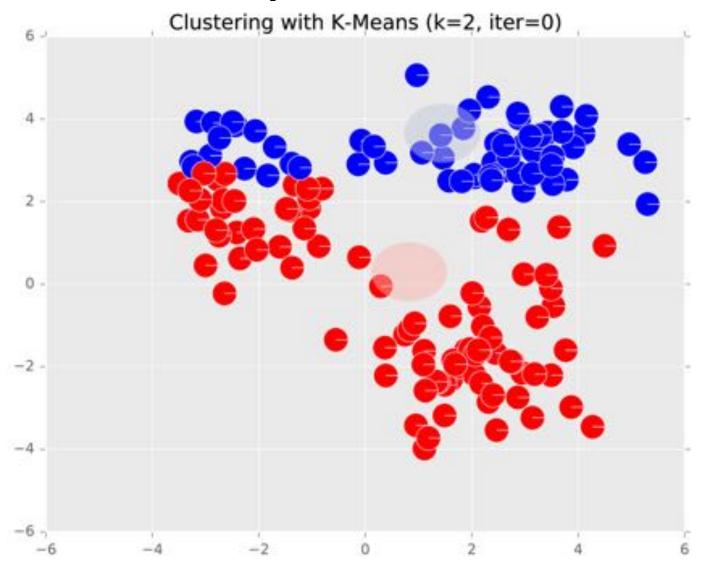


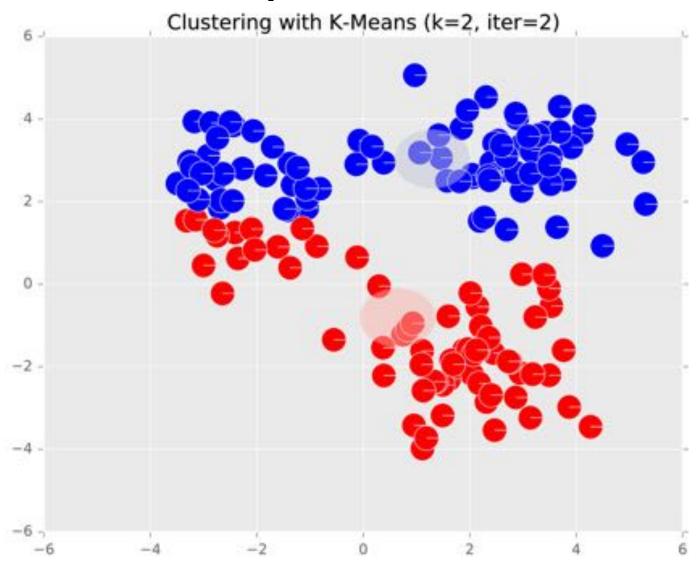
K=2 cluster centers

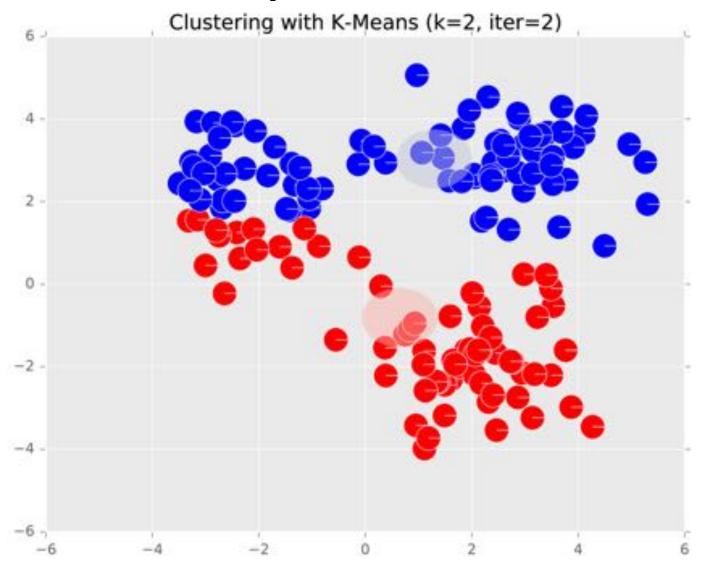
K-MEANS EXAMPLE

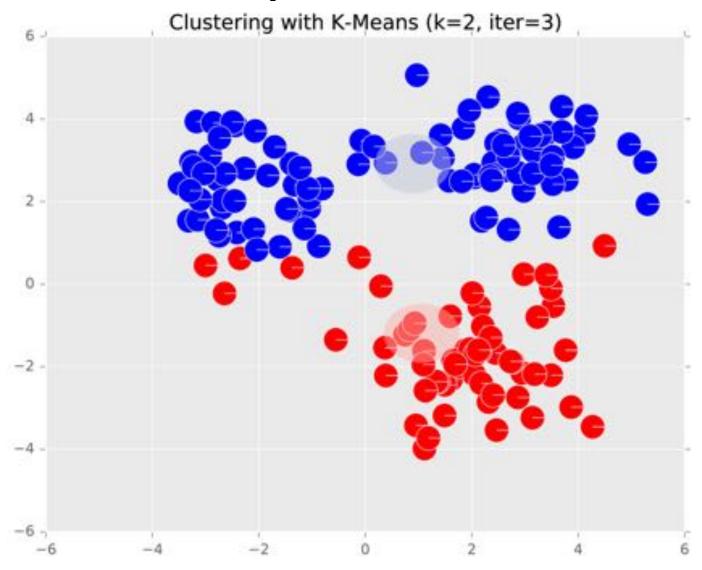


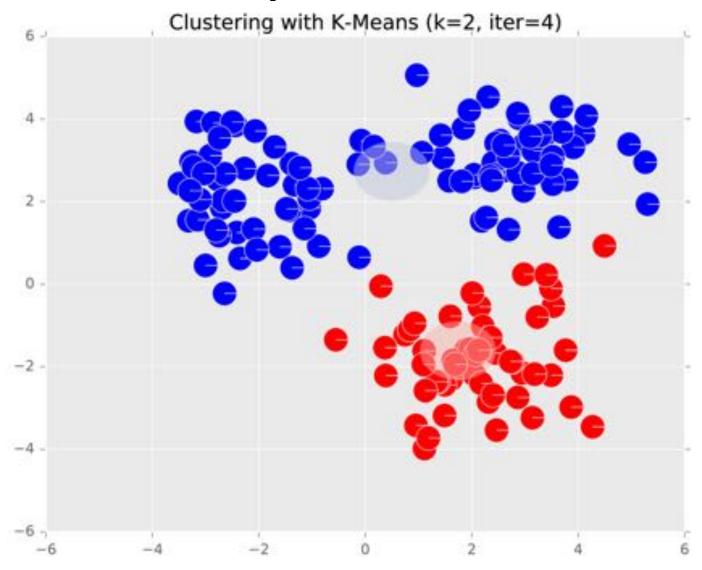


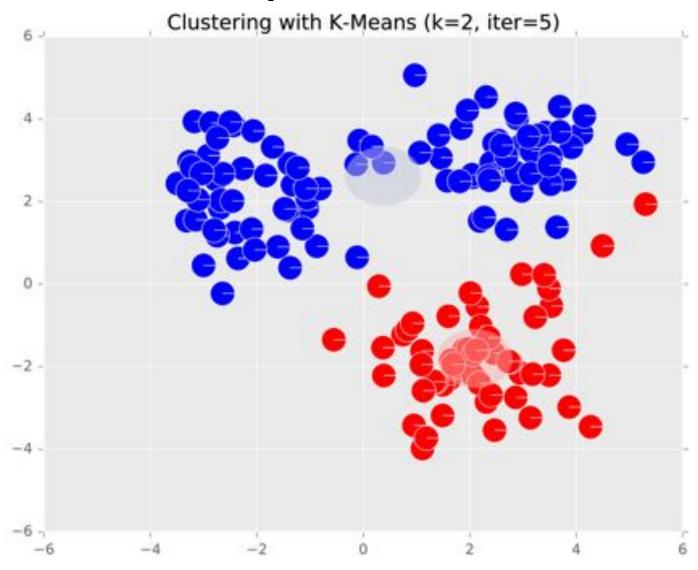


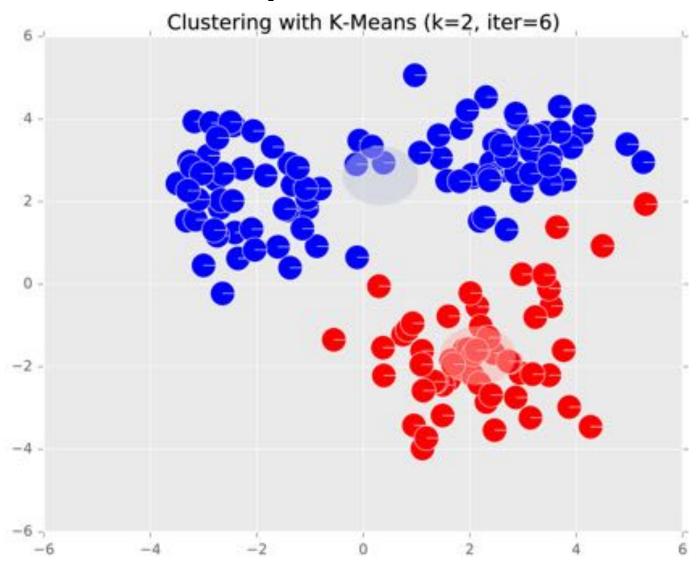


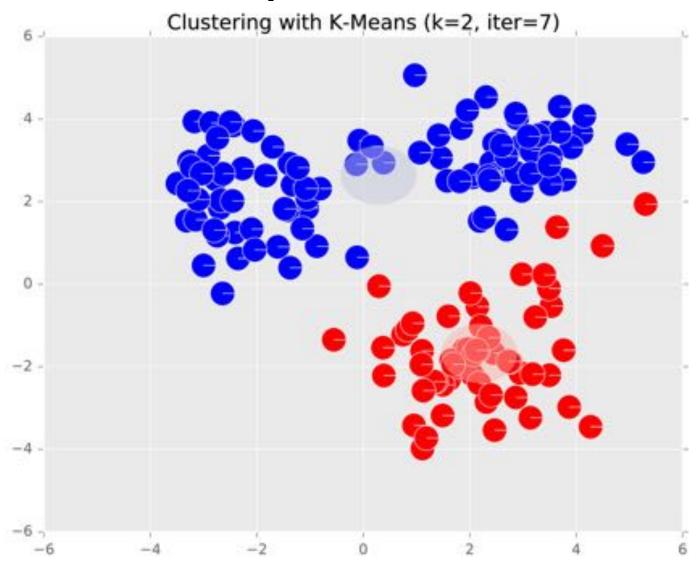


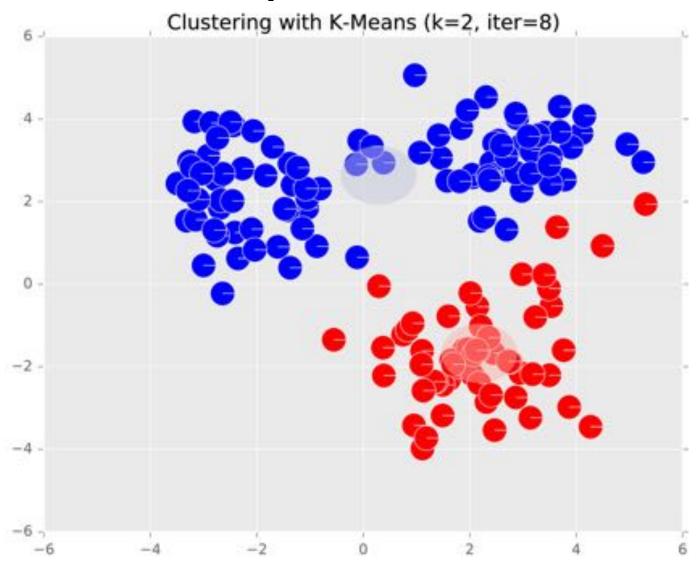






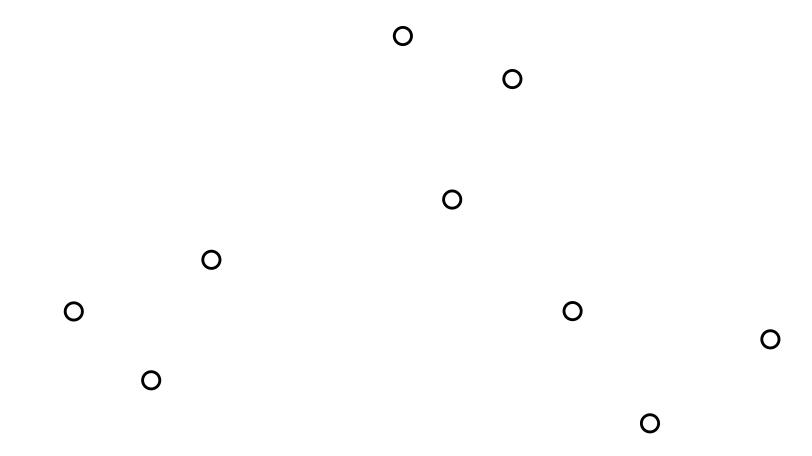




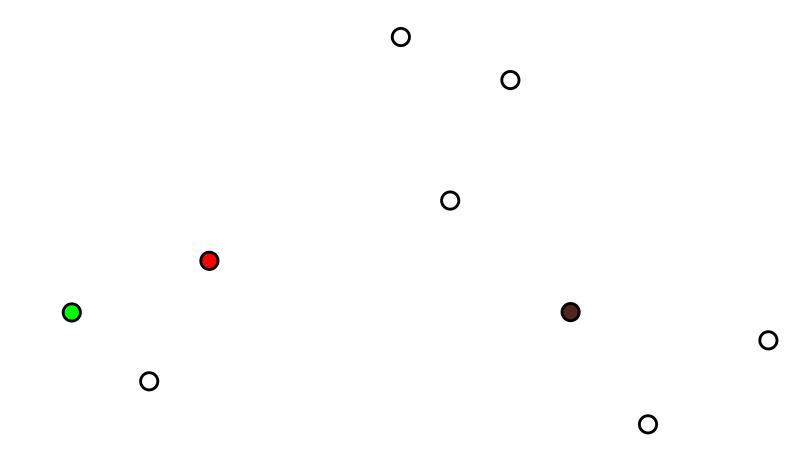


K-MEANS PERFORMANCE

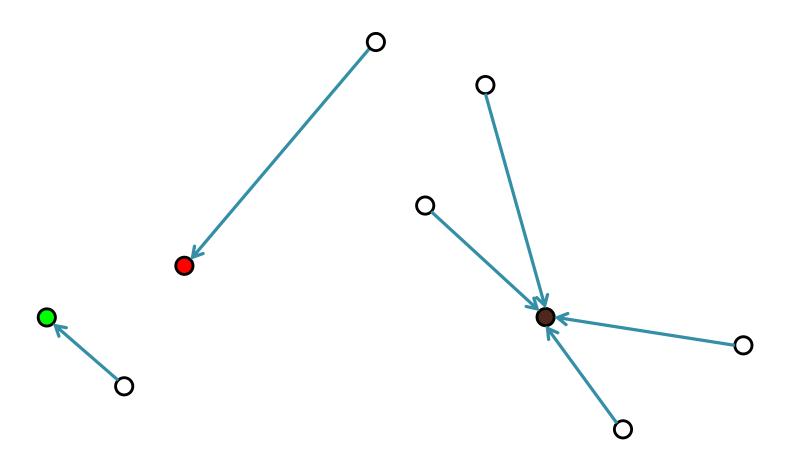
Example: Given a set of datapoints



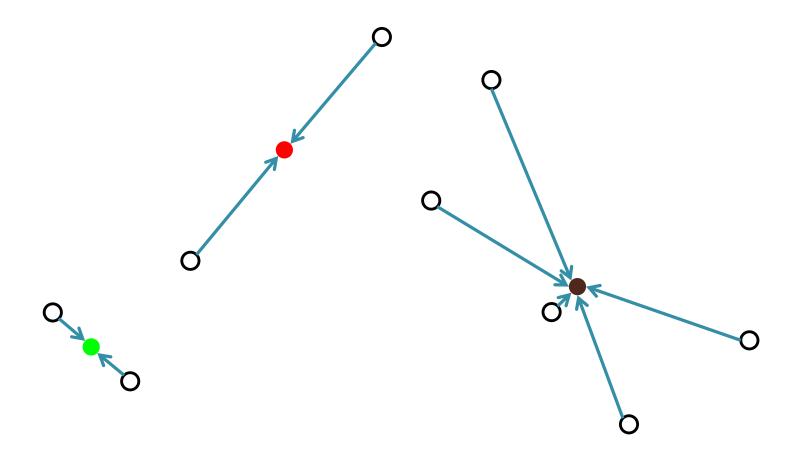
Select initial centers at random



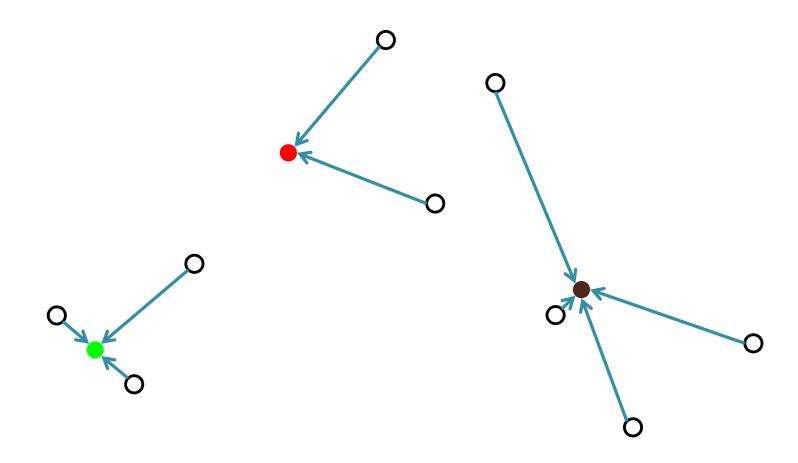
Assign each point to its nearest center



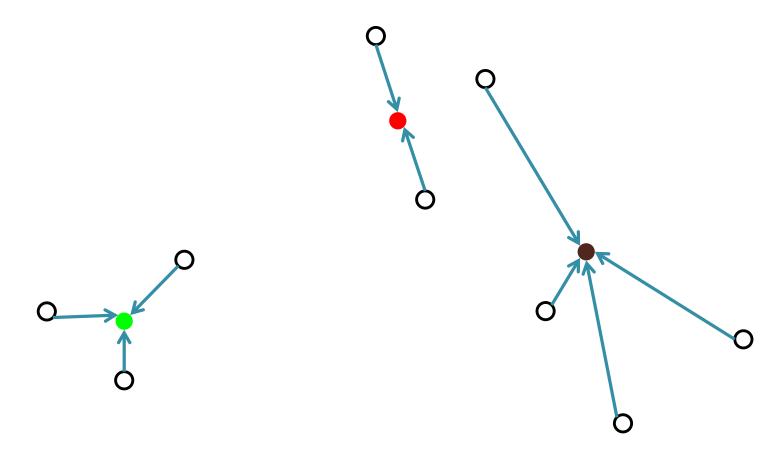
Recompute optimal centers given a fixed clustering



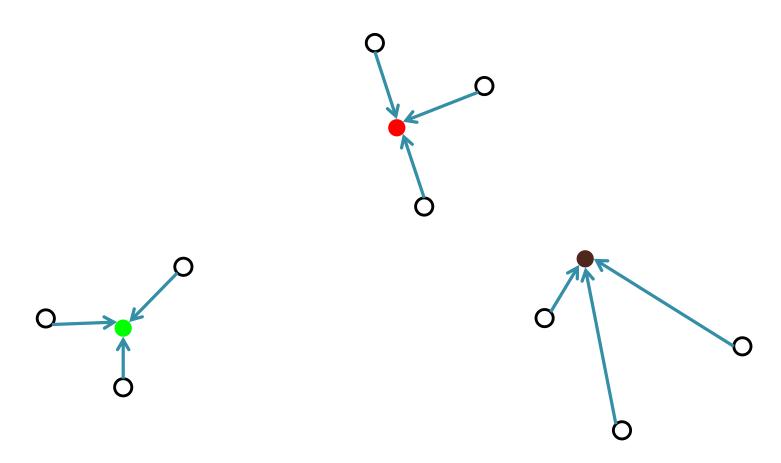
Assign each point to its nearest center



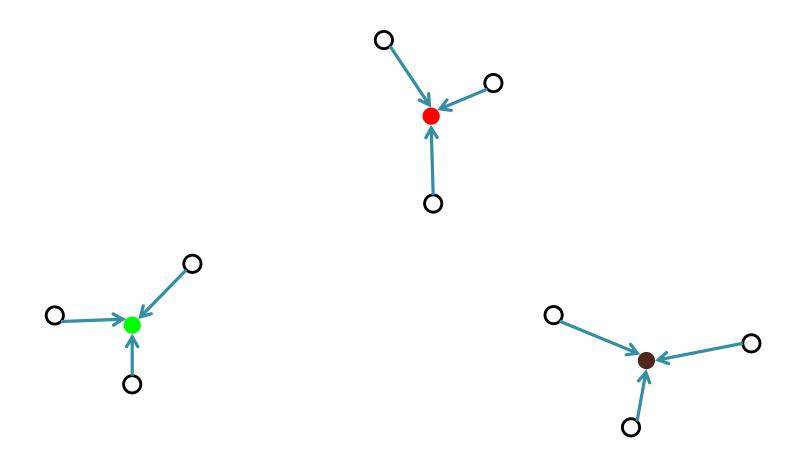
Recompute optimal centers given a fixed clustering



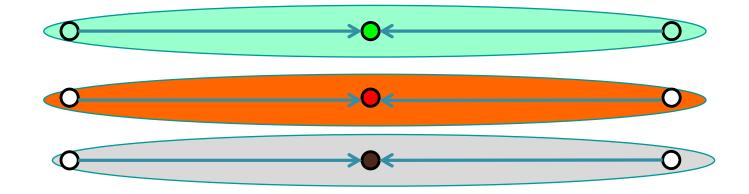
Assign each point to its nearest center



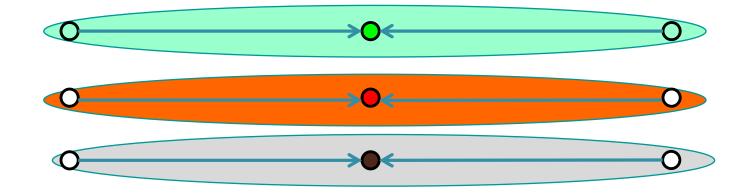
Recompute optimal centers given a fixed clustering



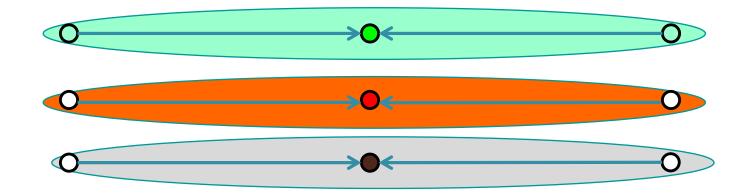
Get a good quality solution in this example.



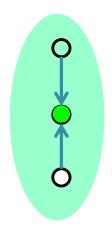
It always converges, but it may converge at a local optimum that is different from the global optimum, and in fact could be arbitrarily worse in terms of its score.

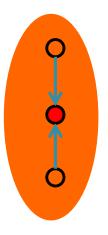


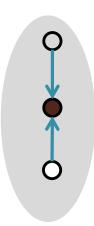
Local optimum: every point is assigned to its nearest center and every center is the mean value of its points.

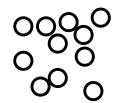


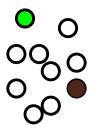
.It is arbitrarily worse than optimum solution....

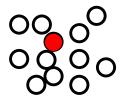




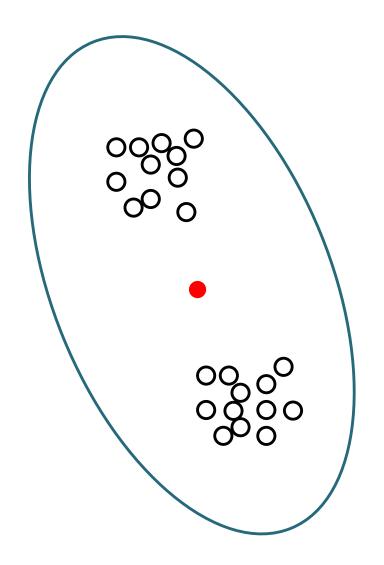


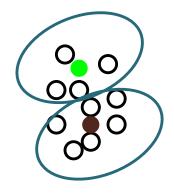






This bad performance, can happen even with well separated Gaussian clusters.





This bad performance, can happen even with well separated Gaussian clusters.

Some Gaussian are combined.....

Learning Objectives

K-Means

You should be able to...

- Distinguish between coordinate descent and block coordinate descent
- Define an objective function that gives rise to a "good" clustering
- 3. Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- 4. Implement the K-Means algorithm
- Connect the nonconvexity of the K-Means objective function with the (possibly) poor performance of random initialization