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Reminders

* Homework 7: HMMs
— Out: Thu, Apr 02
— Due: Fri, Apr 10 at 11:59pm

* Today’s In-Class Poll
— http://poll.mlcourse.org




Q&A

Q: Why not have just one midterm?

A Because students in previous semesters (who had just one
* midterm) wanted earlier and more frequent feedback.

Q: Why not cover all lecture material in slides?

Lost of reasons...
A

* « Agood teacher wouldn’t dare put important material in slides
where students are apt to forget it!
-A good teacher
* Research shows that notetaking enhances “ability to hold

and manipulate propositional knowledge” (Kiewra and
Benton, 1988) and improves exam scores.

 Slides are inflexible. Chalkboards enable learning to be
student lead, which yields better cognitive outcomes.

* Slides disappear too quickly.



Q&A

. Could you give us template code rather than
asking us to code the solutions from scratch?

A We tried that, but students came away without an
* understanding of the big picture.

A key outcome of this course if that you be able to build an end-
to-end working system. That includes understanding how to
process and store data as well as learn from it.

Q: I spend lots of time debugging, what can | do
to improve?

, Debugging is an important skill. An expert programmer is also an expert
A: debugger; the two are tightly coupled. In addition to the suggestions of the
course staff you could consider a short tutorial on the subject:

* ‘“Debugging: The 9 Indispensable Rules...” (Agens, 2006)
*  “Why Programs Fail: A Guide to Systematic Debugging” (Zeller, 2009)



GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

* In order for a Bayesian network to model a probability

distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

+ This follows f -
is follows from P(Xl..-Xn)=HP(Xi | parents(X,))
=1

-l [Pxiix,..x )
i=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Proof of
conditional
independence

Whiteboard

(The other two
cases can be
shown just as
easily.)
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The “Burglar Alarm” example

* Your house. has a twitch}/ burglar Earthquake
alarm that is also sometimes
triggered by earthquakes.

* Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarmis
ringing. Uh oh!

Slide from William Cohen



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the @

node’s parents, children, and @ @ @

co-parents.

Thm: a node is conditionally @ @ @ @

independent of every other

node in the graph given its
Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node Example: The Markov
are the parents of its children Blanket of X is

Xo X, Xe, Xo Xop X
Def: the Markov Blanket of a WX Xy X5 Xg Xy X}

node is the set containing the @

node’s parents, children, and @ @ @

co-parents.

Theorem: a node is @ E @ @

conditionally independent of

every other node in the graph @ @ @

given its Markov blanket



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov blanket

Example: The Markov

Blanket of X is
X3 Xy X5, Xy Xo, X}

XIZ

”

Parents

@ (o

Co-parents

Children @



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from Xto Z is “blocked”.

A pathis “blocked” whenever:
1. 3Yonpaths.t. Y € Eand Y is a “common parent”

o'oY Yoo

2. 3dYonpaths.t.YEEandYisina“cascade”

O -O-@O -0

3. 3Yonpaths.t. {Y, descendants(Y)} € Eand Y isina “v-structure”

® -0 -0
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D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3.  Undirected graph: convert all directed edges to undirected
: delete any nodesin E

Example Query: A Il B|{D, E}
Original: Moral: Undirected:

OB ONOARONOICXOSROJE-+T+
= not d-separated
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SUPERVISED LEARNING FOR
BAYES NETS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(0) ~ p(x|0)
Write log-likelihood

40) =log p(x"[0) + ... +log p(x(N]|0)
Compute partial derivatives

0((0)/00, = ...

0((0)/00, = ...

0((0)/00,, = ...
Set derivatives to zero and solve for 6
0((0)/06,, =0 forallme{y,..., M}

OMLE =

Compute the second derivative and check that {0) is concave down
at eMLE



Machine Learning




Machine Learning

l"‘/’h ZANBERY



Learning Fully Observed BNs

2 0 p(X1, Xo, X3, Xy, X5) =
= p(X5|X3)p(X4]| X2, X3)

x) () p(X3)p(X2| X1)p(X1)



Learning Fully Observed BNs

@ @ p(X17X27X37X47X5) —
= p(X5|X3)p(X4| X2, X3)

x) () p(X3)p(Xa| X1)p(X1)



Learning Fully Observed BNs

@ @ p(X1,X27X37X47X5) —
= p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(Xa| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(X17 X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small / simple) independent p(X3)p(X2|X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net? 0" = argimax 10g p(Xl, XQ, Xg, X4, X5)
0

@ + log p(X3|03) + log p(X2| X1, 0)

@ @ + log p(X1601)

07 = argmaxlog p(X1|601)

= argimax log p(X5| X3, 05) + log p(X4| X2, X3, 04)

01
@ @ 05 = argmax log p(X5| X1, 05)

02

05 = argmax log p(X3|03)
03

0, = argmaxlog p(X4|Xo, X3, 04)
04

0 = argmaxlog p(X5| X3, 05)

05 29



Example: Tornado Alarms

1.

Imagine that
you work at the
911 call center
in Dallas

You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off
What do you
conclude?
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Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. |m38ine that
With Emergency Sirens, Officials Say you wo rk at the
By ELI ROSENBERG and MAYA SALAM  APRIL 8, 2017 911 Ca” Center
—_— | in Dallas

2. You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off

s : 3. What do you

?,“.-':??ffﬁ:“i'lffs'i; Friday, , O A G 100 s e e e e D con CI u d e?

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1. How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=¢)

2. How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:' Can we

4. How do we draw samples from a conditional distribution?

t,h,a ~ P(T, H, A| C=¢) use
samples
5. How do we compute conditional marginal probabilities? 5

PH|C=0)=... <:'




Gibbs Sampling




Gibbs Sampling

2 (t+1)




Gibbs Sampling




Gibbs Sampling

Question:
How do we draw samples from a conditional distribution?
Yi Yo oo Y3 p(yv Yas eeer Y, I A STRASTRITE R, )

(Approximate) Solution:

— Initialize y,(), y,(9), ... y,(®) to arbitrary values
— Fort=1,2,...:
¢ y1(t+1) ~ p(Y1 | yz(t)r ceey yJ(t)f XU X2’ ) XJ )
¢ yz(tH) ~ p(YZ | y1(t+1)7 yB(t)) s YJ(t)r K1y Xyy eeey X )
oy~ p(ys |y, v, y, Oy O,k s, %)

° yJ(t+1) ~ p(yJ I y1(t+1), yz(t+1); e yJ-1(t+1); Xy Xoy +eny Xy )

Properties:

— This will eventually yield samples from
p(yv Yo eeen Yy l Ky Xyy eeey X )

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods
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Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive

rejection sampling




Learning Objectives

Bayesian Networks

You should be able to...

1.

W

U1

|dentify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendenciesin a
Bayesian network

Employ a Markov blanket to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



LEARNING PARADIGMS



Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

< Binary classification

— Structured Prediction

yi) e {41, -1}

y'¥) is a vector

x~p*(-)andy = c*(-)
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Learning Paradigms

Paradigm Data

Supervised D={x"yW}L, x~p'()andy=c"()
< Regression y) e R

3 Classification y e {1,...,K}

< Binary classification ") € {41, -1}
— Structured Prediction y'* isa vector

Unsupervised D={x"}N, x~p()



Learning Paradigms

Paradigm

Data

Supervised

> Regression

— Classification

— Binary classification
< Structured Prediction
Unsupervised

Semi-supervised

D={x"y"}, x~p*()andy=c'()
y eR

y@ e {1,...,K}

y e {+1,-1}

y'" is a vector

D={x}IN,  x~p*()

D = {x®,y®}1 U {xD} 72,
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

— Classification

— Binary classification
< Structured Prediction
Unsupervised
Semi-supervised

Online

D={x"y"W}L, x~p*()andy=c"()

y) e R

yie{l,....,K}

y e {+1,-1}

y'") is a vector

D={xW}L, x~p*()
D = {x®,yO}2 U {xD}2

D = {(xV),yM), (x@,y @), (x®, @), .

)
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

D={xDy}, x~p*()andy=c()
y) eR

y@ e {1,...,K}

yi) e {+1,-1}

y') is a vector

D={x"}, x~p()

D= (xO, O}, U xO)

D = {(x(l),y(l)), (x(2), (@), (x3) 43)), .. )

D = {x'¥}¥  and can query y'") = ¢*(-) at a cost
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

«— Classification

— Binary classification
«— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

Imitation Learning

D = {x(@), yO}N x ~p*(-)andy = ¢*(-)
y) eR

ye{1,...,K}

y e {+1,-1}

y'#) is a vector

D={x"}Y, x~p()

D = (x5O}, U xD,

D — {(x(l),y(l)), (x(2),y(2)), (x(3),y(3)),“_}

D = {xW}¥ | and can query y'") = ¢*(-) at a cost
D = {(sV),aV), (512),a?),...}
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Learning Paradigms

Paradigm Data

Supervised D = {x(,y}N x ~p*(-)andy = ¢*(")
< Regression y'eR

< Classification yi e {1,...,K}

< Binary classification (¥ € {+1, -1}

< Structured Prediction y'*) is a vector

Unsupervised D={x"}N = x~p*()

Semi-supervised D = {x(® y®}M y {:ac(j)};v:*1

Online D = {(xV), ), (x(2),y2)), (x>, y3),...}
Active Learning D = {xV}¥ | and can query y'") = ¢*(-) at a cost
Imitation Learning D = {(s'V,aV), (52),a?)),...}

Reinforcement Learning D = {(s'V),aV), +(1)) (52 a@ 20 .} .



REINFORCEMENT LEARNING



Examples of Reinforcement Learning

e How should a robot behave so as

to optimize its “performance’?
(Robotics)

* How to automate the motion of
a helicopter? (Control Theory)

* How to make a good chess-playing -3
program? (Artificial Intelligence) &=

© Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:


https://www.youtube.com/watch?v=VCdxqn0fcnE

Robotin aroom

UP

80%
10%
10%

« reward +1 at [4,3], -1 at [4,2]
 reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

move UP
move LEFT
move RIGHT

% X

* what’s the strategy to achieve max reward?
* what if the actions were NOT deterministic?

© Eric Xing @ CMU, 2006-2011
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History of Reinforcement Learning

Roots in the psychology of animal learning
(Thorndike,1911).

Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

Idea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

© Eric Xing @ CMU, 2006-2011 74



What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed

effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

© Eric Xing @ CMU, 2006-2011
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Policy

- =

t

t -

-
-
- -

1

Question:

Is this policy optimal: yes
or no? Briefly justify your
answer.

Answer: (Hint: both yes
and no are acceptable
answers, I’m interested in
your justification.)



Reward for each step -2

© Eric Xing @ CMU, 2006-2011



Reward for each step: -0.1
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The Precise Goal

To find a policy that maximizes the Value function.
— transitions and rewards usually not available

There are different approaches to achieve this goal in
various situations.

Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

© Eric Xing @ CMU, 2006-2011
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MARKOYV DECISION PROCESSES



Markov Decision Process

* For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

x ~p*(-)andy = c*(-)

* For reinforcement learning we assume our
data comes from a Markov decision process
(MDP)



Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy



