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Reminders

Practice Problems for Exam 2
— Out: Fri, Mar 20

Midterm Exam 2

— Thu, Apr 2 - evening exam, details announced on
Piazza

Homework 7: HMMs
— Out: Thu, Apr 02
— Due: Fri, Apr 10 at 11:59pm

Today’s In-Class Poll
— http://poll.mlcourse.org




HMMs: History

« Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on |[E from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA
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Slide from William Cohen



Higher-order HMMs

* 15t-order HMM (i.e. bigram HMM)

REERE

« 2" order HMM (i.e. trlgram Hl\/\l\/\)




Higher-order HMMs

* 1t-order HMM (i.e. bigram HMM)

wiﬁ

Hidden HMM (i.e. trlgram HIV\IV\)
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BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers
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Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

only sek
my incoming

messages
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Great Ideas in ML: Message Passing
Count the soldiers
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

39



Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

\O -3




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

@




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

I

¢ wouldn't work correctly
- with a 'loopy' (cyclic) graph

‘adapted from MacKay (2003) textbook ’




THE FORWARD-BACKWARD
ALGORITHM



Inference

Question:

True or False: The joint probability of the observations
and the hidden states in an HMM is given by:

T—-1
H Ayt Tt H Yt+1,Yt

t=1

PX=x,Y=Yy)

yl

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = A, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = Bj , Vt, k
Initial probs, C, where P(Y; = k) = Cy, Vk



Inference

Question:

True or False: The probability of the observations
in an HMM is given by:

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = A, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = Bj , Vt, k
Initial probs, C, where P(Y; = k) = Cy, Vk



Inference

Question:

True or False: Suppose each hidden state takes K values. The
marginal probability of a hidden state y, given the
observations x is given by:

K

P(Y; =wlX =x) =) Bj,

J=1

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = A, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = Bj , Vt, k
Initial probs, C, where P(Y; = k) = Cy, Vk



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {.’B(”), y") N
Sample 1: ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
0 6 6 0 ©
Sample 3 ‘ ‘ @ ‘ ‘
© O 6 ©
Sample 4: ‘ ‘ ‘ ‘ ‘
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) — (3 * 8% 2% .5 * )

<START>
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Forward-Backward Algorithm

ANaAwa




Forward-Backward Algorithm

(&) Gy (&

* Let’s show the possible values for each variable
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Forward-Backward Algorithm

* Let’s show the possible values for each variable



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
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Forward-Backward Algorithm

V nn a
v i1|6]|4
n| 8 4 /0.1
. al0.1/8]|o0 v v
N
[ ]
START n n \ n
O e 0
cl 0O
v 3|53
n 4|52
a |0.10.2(0.1

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
58



Viterbi Algorithm: Most Probable Assignment

) A A A
%\%@@ % B !
! A (a,END)
: ‘ A \ Wtajs,n)

A(pref., a)

* Sop(van)=(1/7) * product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

s A A A
2T, KAy s
A (a,END)

A(pref., a)

* Sop(van)=(l/Z) * product weight of one path



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A ©



Forward-Backward Algorithm: Finds Marginals

: AN T\
A Vs :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, =n)
= (1/Z) * total weight of A &



Forward-Backward Algorithm: Finds Marginals

LD
A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
= (1/Z) * total weight of A 63



Forward-Backward Algorithm: Finds Marginals

: AN T\
A Vs :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, =n)
= (1/Z) * total weight of A 64



Forward-Backward Algorithm: Finds Marginals

- = total we}ght of these

path prefixes

(found by dynamic programming: matrix-vector products) ”



Forward-Backward Algorithm: Finds Marginals

Ba(m) = total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) o



Forward-Backward Algorithm: Finds Marginals

- = total We)i‘ght of these - = total weight of these

path prefixes (2 + b+ ¢) path suffixes (x +y +z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
4 Alpref, n)

total weight of o/l paths through A
= o) Apref,m) fy(m)
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Forward-Backward Algorithm: Finds Marginals

A “belief that Y, =v”’
% “belief that ¥, =n"

/
A(pref., v)

total weight of A

= o,(v) A(pref,v) B,(v)
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Forward-Backward Algorithm: Finds Marginals

“belief that Y, =v”’

N “belief that ¥, =n"
B

“belief that ¥, =3a”

sum=272
A(pret., a) (total weight

of all paths)
total weight of A
= o,(a) A(pref,a) B,(a)
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Inference for HMMs

Whiteboard

— Derivation of Forward algorithm
— Forward-backward algorithm
— Viterbi algorithm



Forward-Backward Algorithm

‘D&Ww oét(k) éP(x""V’(tz}’t’k\ Asw y‘,:ST/’rﬂT
Fé () 2 ‘)’(xén) -y X1 \Yt =k\ Y'm = END
© Tuhlae oo(SHD =1 & (k)=0 ¥&+START

B+ (EnD) =1 Br(k) -0 ¥kdEND }
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Derivation of Forward Algorithm

Definition: D(,é(lc) 2 F(x,,,..,xt)ytzk)

Derivation: lexein V57 :: \/rn:.s I
o (en) = p (x, - 7, Y= €nD) ghorthnnd 7Y = END
1 T) (X\) T l_y-":3 P(ZI) N + [77 CL.F «} Jou"v\‘,'

= ‘F(XTIYT)'F(XU w,X‘T.\ I Y‘I’\ r(yr) — b" cond. .‘.‘J_.,f_ '«'F #MM
= P(XTIYT) Y(x'l'“)x‘r_i / }'D == l"7 def. £ Jo:‘n'\'
T ?(XTIYT) %Y("u'“)xni 1 Y11 Yr) "lﬁu of Margias/

-1
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Viterbi Algorithm
U&Q\a: (»Ot(k):é max P(’(u«-yxt:)’uw;)’e-:/Yt‘k)

R
ub‘(_L_(?o(,\m"’-——y bt (k) é ;:?":;ll:,‘ ’P(’h )= Xt, y' ) )le_', yt = k)

Assm Yo = START
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Inference in HMMs

What is the computational complexity of
inference for HMMs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 77



MBR DECODING



Inference for HMMs

o
— Ihfélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he(x)

arg}fnin <1j'ympg(-|a3) [6(@7 y)]
Yy

argmin Y pe(y | )((g,y)
& Y



Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

Define the first order Markov assumption
Draw a Finite State Machine depicting a first order Markov assumption
Derive the MLE parameters of an HMM

Define the three key problems for an HMM: evaluation, decoding, and
marginal computation

Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

Interpret the forward-backward algorithm as a message passing algorithm
Implement supervised learning for an HMM

Implement the forward-backward algorithm for an HMM

Implement the Viterbi algorithm for an HMM

11.  Implement a minimum Bayes risk decoder with Hamming loss for an HMM

VIV

O 007

—
o



