

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Hidden Markov Models

Midterm Exam 2 Review

Matt Gormley Lecture 19 Mar. 27, 2020

Reminders

- Homework 6: Learning Theory / Generative Models
 - Out: Fri, Mar 20
 - Due: Fri, Mar 27 at 11:59pm
- Practice Problems for Exam 2
 - Out: Fri, Mar 20
- Midterm Exam 2
 - Thu, Apr 2 evening exam, details announced on Piazza
- Today's In-Class Poll
 - http://poll.mlcourse.org

MIDTERM EXAM LOGISTICS

Midterm Exam

Time / Location

- Time: Evening ExamThu, Apr. 2 at 6:00pm 9:00pm
- Location: We will contact you with additional details about how to join the appropriate Zoom meeting.
- Seats: There will be assigned Zoom rooms. Please arrive online early.
- Please watch Piazza carefully for announcements.

Logistics

- Covered material: Lecture 9 Lecture 18 (95%), Lecture 1 8 (5%)
- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - Short answers
 - Interpreting figures
 - Implementing algorithms on paper
- No electronic devices
- You are allowed to bring one 8½ x 11 sheet of notes (front and back)

Midterm Exam

How to Prepare

- Attend the midterm review lecture (right now!)
- Review prior year's exam and solutions (we'll post them)
- Review this year's homework problems
- Consider whether you have achieved the "learning objectives" for each lecture / section

Midterm Exam

Advice (for during the exam)

- Solve the easy problems first
 (e.g. multiple choice before derivations)
 - if a problem seems extremely complicated you're likely missing something
- Don't leave any answer blank!
- If you make an assumption, write it down
- If you look at a question and don't know the answer:
 - we probably haven't told you the answer
 - but we've told you enough to work it out
 - imagine arguing for some answer and see if you like it

Topics for Midterm 1

- Foundations
 - Probability, Linear
 Algebra, Geometry,
 Calculus
 - Optimization
- Important Concepts
 - Overfitting
 - Experimental Design

- Classification
 - Decision Tree
 - KNN
 - Perceptron
- Regression
 - Linear Regression

Topics for Midterm 2

- Classification
 - Binary Logistic Regression
 - Multinomial Logistic Regression
- Important Concepts
 - Stochastic Gradient
 Descent
 - Regularization
 - Feature Engineering
- Feature Learning
 - Neural Networks
 - Basic NN Architectures
 - Backpropagation

- Learning Theory
 - PAC Learning
- Generative Models
 - Generative vs.
 Discriminative
 - MLE / MAP
 - Naïve Bayes

SAMPLE QUESTIONS

3.2 Logistic regression

Given a training set $\{(x_i, y_i), i = 1, ..., n\}$ where $x_i \in \mathbb{R}^d$ is a feature vector and $y_i \in \{0, 1\}$ is a binary label, we want to find the parameters \hat{w} that maximize the likelihood for the training set, assuming a parametric model of the form

$$p(y = 1|x; w) = \frac{1}{1 + \exp(-w^T x)}.$$

The conditional log likelihood of the training set is

$$\ell(w) = \sum_{i=1}^{n} y_i \log p(y_i, | x_i; w) + (1 - y_i) \log(1 - p(y_i, | x_i; w)),$$

and the gradient is

$$\nabla \ell(w) = \sum_{i=1}^{n} (y_i - p(y_i|x_i; w))x_i.$$

- (b) [5 pts.] What is the form of the classifier output by logistic regression?
- (c) [2 pts.] **Extra Credit:** Consider the case with binary features, i.e, $x \in \{0,1\}^d \subset \mathbb{R}^d$, where feature x_1 is rare and happens to appear in the training set with only label 1. What is \hat{w}_1 ? Is the gradient ever zero for any finite w? Why is it important to include a regularization term to control the norm of \hat{w} ?

2.1 Train and test errors

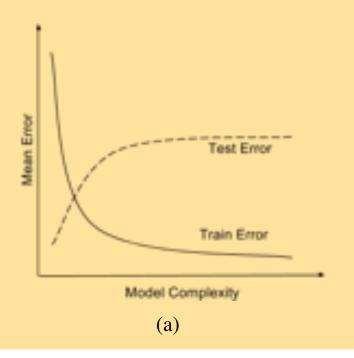
In this problem, we will see how you can debug a classifier by looking at its train and test errors. Consider a classifier trained till convergence on some training data $\mathcal{D}^{\text{train}}$, and tested on a separate test set $\mathcal{D}^{\text{test}}$. You look at the test error, and find that it is very high. You then compute the training error and find that it is close to 0.

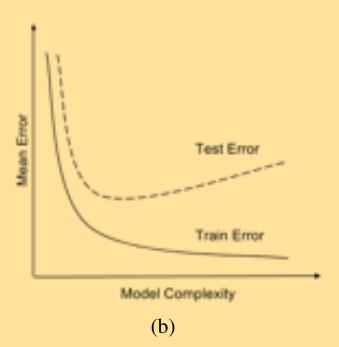
- 1. [4 pts] Which of the following is expected to help? Select all that apply.
 - (a) Increase the training data size.
 - (b) Decrease the training data size.
 - (c) Increase model complexity (For example, if your classifier is an SVM, use a more complex kernel. Or if it is a decision tree, increase the depth).
 - (d) Decrease model complexity.
 - (e) Train on a combination of $\mathcal{D}^{\text{train}}$ and $\mathcal{D}^{\text{test}}$ and test on $\mathcal{D}^{\text{test}}$
 - (f) Conclude that Machine Learning does not work.

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors. Consider a classifier trained till convergence on some training data $\mathcal{D}^{\text{train}}$, and tested on a separate test set $\mathcal{D}^{\text{test}}$. You look at the test error, and find that it is very high. You then compute the training error and find that it is close to 0.

4. **[1 pts]** Say you plot the train and test errors as a function of the model complexity. Which of the following two plots is your plot expected to look like?





5 Learning Theory [20 pts.]

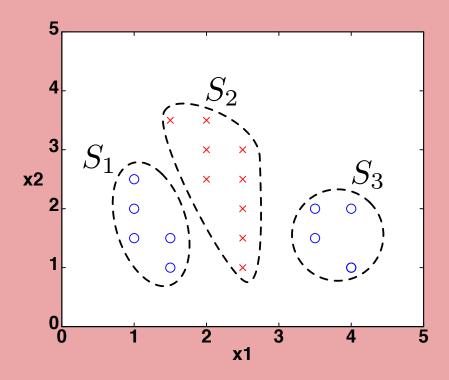
(a) [3 pts.] **T** or **F**: It is possible to label 4 points in \mathbb{R}^2 in all possible 2^4 ways via linear separators in \mathbb{R}^2 .

(d) [3 pts.] **T** or **F**: The VC dimension of a concept class with infinite size is also infinite.

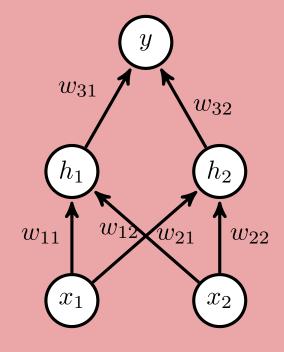
(f) [3 pts.] **T** or **F**: Given a realizable concept class and a set of training instances, a consistent learner will output a concept that achieves 0 error on the training instances.

Neural Networks

Can the neural network in Figure (b) correctly classify the dataset given in Figure (a)?



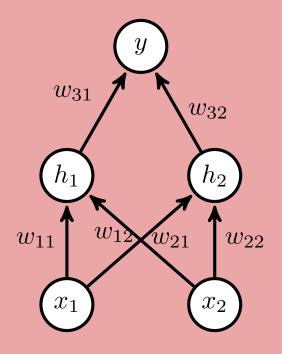
(a) The dataset with groups S_1 , S_2 , and S_3 .



(b) The neural network architecture

Neural Networks

Apply the backpropagation algorithm to obtain the partial derivative of the mean-squared error of y with the true value y^* with respect to the weight w_{22} assuming a sigmoid nonlinear activation function for the hidden layer.



(b) The neural network architecture

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed $X_1, \ldots, X_n \sim \text{Bernoulli}(\theta)$. We are going to derive the MLE for θ . Recall that a Bernoulli random variable X takes values in $\{0,1\}$ and has probability mass function given by

$$P(X;\theta) = \theta^X (1-\theta)^{1-X}.$$

(a) [2 pts.] Derive the likelihood, $L(\theta; X_1, \ldots, X_n)$.

(c) **Extra Credit:** [2 pts.] Derive the following formula for the MLE: $\hat{\theta} = \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right)$.

1.3 MAP vs MLE

Answer each question with **T** or **F** and **provide a one sentence explanation of your answer:**

(a) [2 pts.] **T or F:** In the limit, as n (the number of samples) increases, the MAP and MLE estimates become the same.

1.1 Naive Bayes

You are given a data set of 10,000 students with their sex, height, and hair color. You are trying to build a classifier to predict the sex of a student, so you randomly split the data into a training set and a testing set. Here are the specifications of the data set:

- $sex \in \{male, female\}$
- height $\in [0,300]$ centimeters
- hair \in {brown, black, blond, red, green}
- 3240 men in the data set
- 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you might naturally or intuitively make about the dataset) answer each question with **T** or **F** and **provide a one sentence explanation of your answer**:

(a) [2 pts.] **T or F:** As height is a continuous valued variable, Naive Bayes is not appropriate since it cannot handle continuous valued variables.

(c) [2 pts.] **T** or **F**: P(height|sex,hair) = P(height|sex).

HIDDEN MARKOV MODEL (HMM)

HMM Outline

Motivation

Time Series Data

Hidden Markov Model (HMM)

- Example: Squirrel Hill Tunnel Closures [courtesy of Roni Rosenfeld]
- Background: Markov Models
- From Mixture Model to HMM
- History of HMMs
- Higher-order HMMs

Training HMMs

- (Supervised) Likelihood for HMM
- Maximum Likelihood Estimation (MLE) for HMM
- EM for HMM (aka. Baum-Welch algorithm)

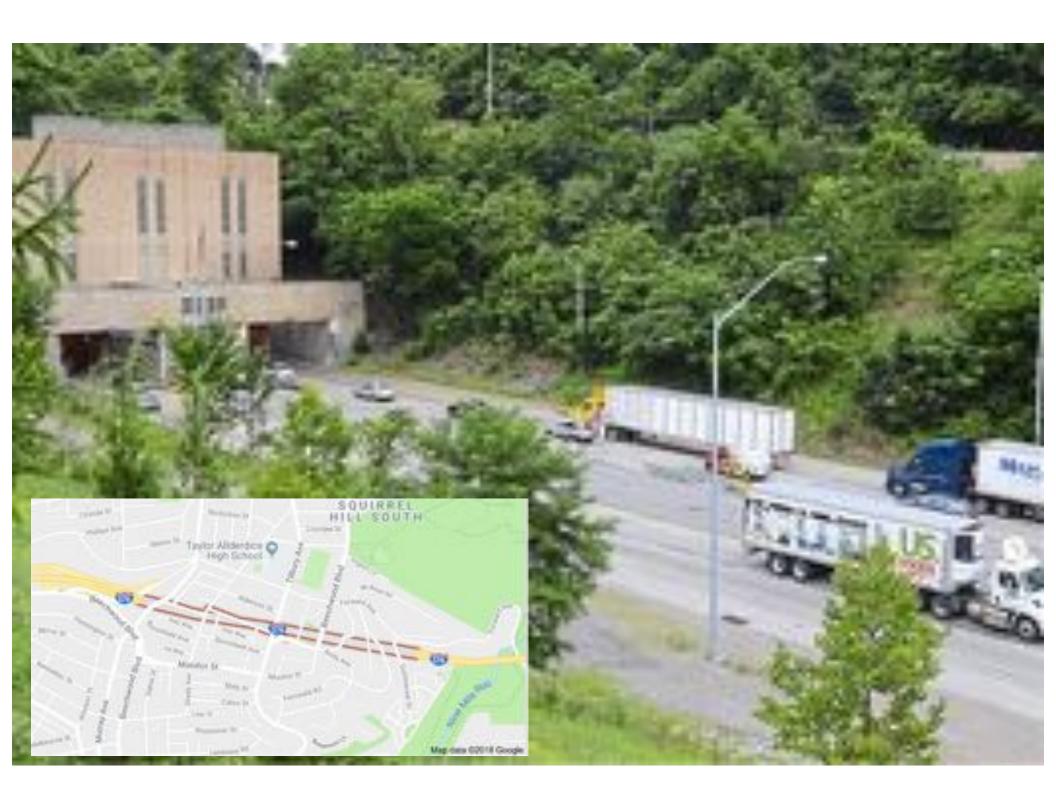
Forward-Backward Algorithm

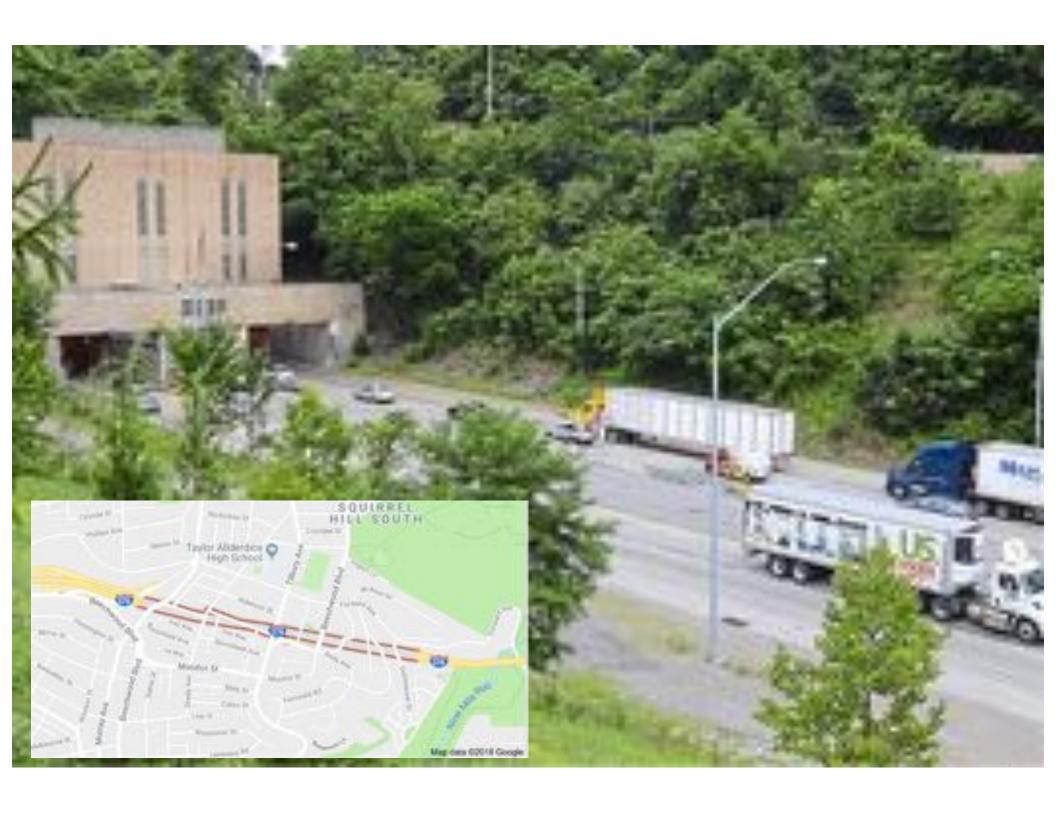
- Three Inference Problems for HMM
- Great Ideas in ML: Message Passing
- Example: Forward-Backward on 3-word Sentence
- Derivation of Forward Algorithm
- Forward-Backward Algorithm
- Viterbi algorithm

Markov Models

Whiteboard

- Example: Tunnel Closures[courtesy of Roni Rosenfeld]
- First-order Markov assumption
- Conditional independence assumptions

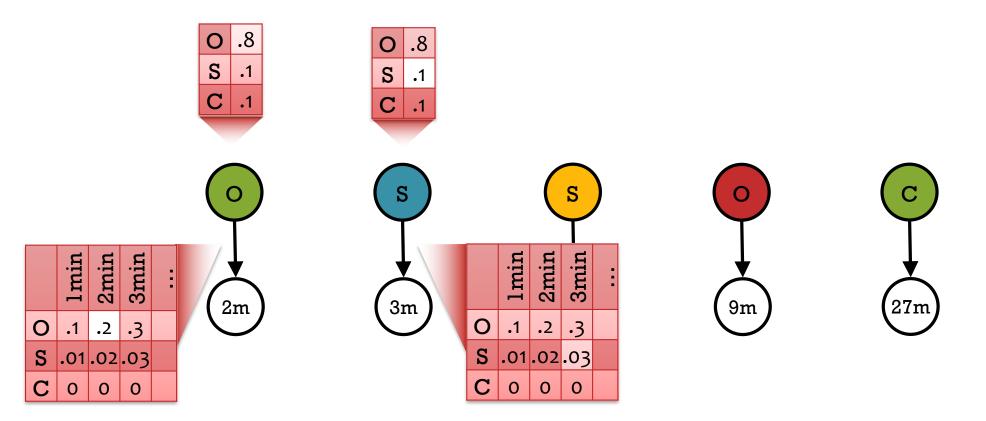




Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This corresponds to a Naïve Bayes model with a single feature (travel time).

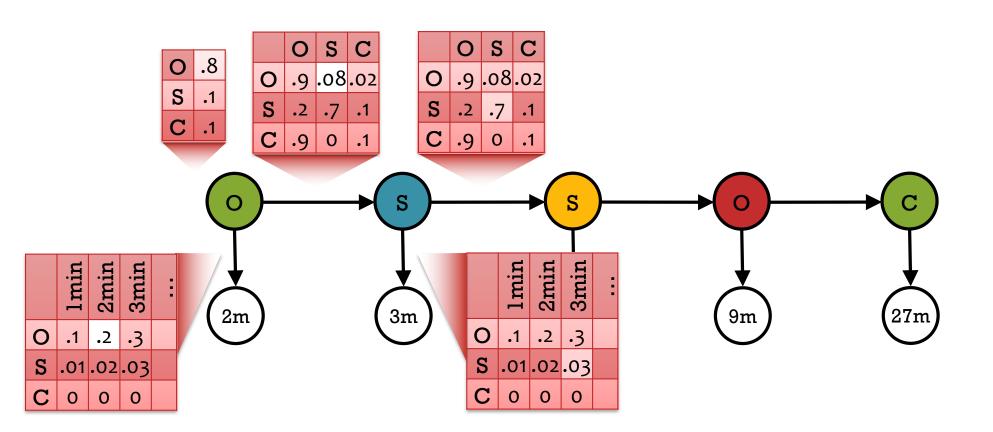
$$p(o, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .1 * .03 * ...)$$



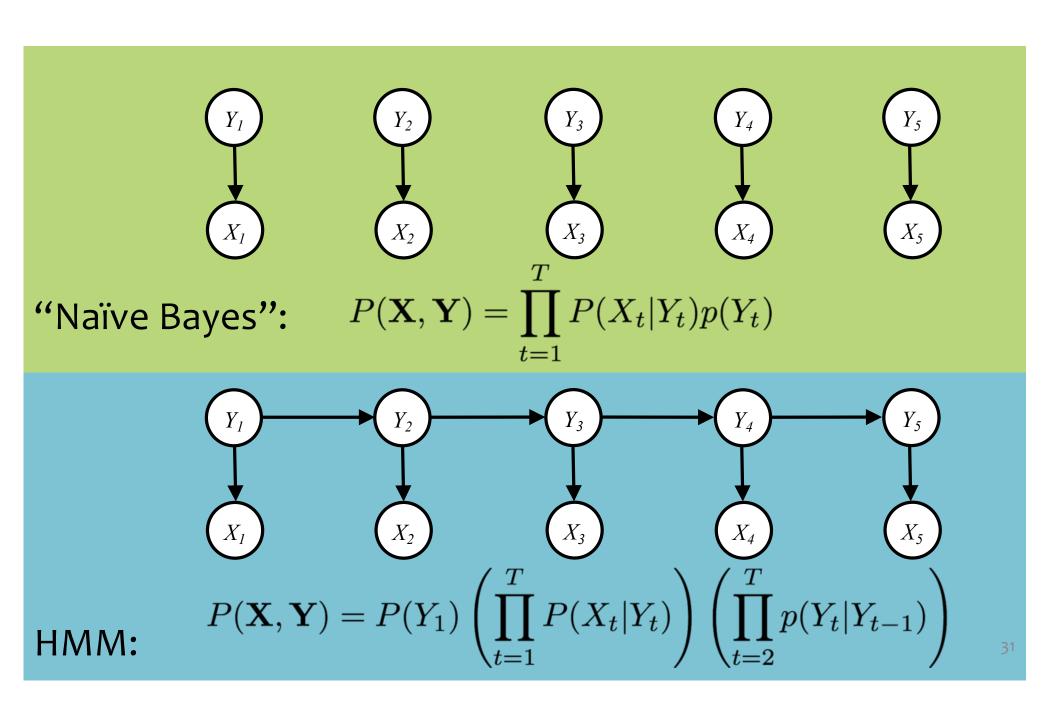
Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

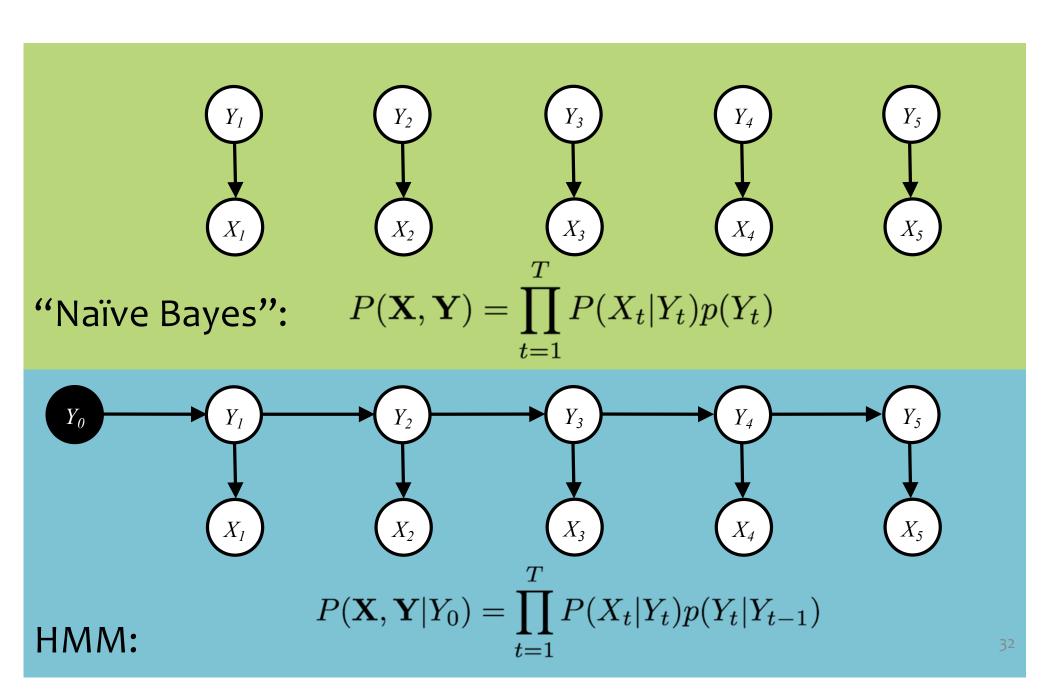
$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * ...)$$



From Mixture Model to HMM



From Mixture Model to HMM



SUPERVISED LEARNING FOR HMMS

Recipe for Closed-form MLE

- 1. Assume data was generated i.i.d. from some model (i.e. write the generative story) $x^{(i)} \sim p(x|\theta)$
- 2. Write log-likelihood

$$\ell(\boldsymbol{\theta}) = \log p(\mathbf{x}^{(1)}|\boldsymbol{\theta}) + \dots + \log p(\mathbf{x}^{(N)}|\boldsymbol{\theta})$$

3. Compute partial derivatives (i.e. gradient)

$$\frac{\partial \ell(\mathbf{\Theta})}{\partial \theta_1} = \dots$$
$$\frac{\partial \ell(\mathbf{\Theta})}{\partial \theta_2} = \dots$$
$$\frac{\partial \ell(\mathbf{\Theta})}{\partial \theta_M} = \dots$$

- 4. Set derivatives to zero and solve for θ
 - $\partial \ell(\theta)/\partial \theta_{\rm m} = 0$ for all $m \in \{1, ..., M\}$

 Θ^{MLE} = solution to system of M equations and M variables

5. Compute the second derivative and check that $\ell(\theta)$ is concave down at θ^{MLE}

MLE of Categorical Distribution

Suppose we have a dataset obtained by repeatedly rolling a
 M-sided (weighted) die N times. That is, we have data

$$\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$$

where $x^{(i)} \in \{1, \dots, M\}$ and $x^{(i)} \sim \mathsf{Categorical}(\phi)$.

A random variable is Categorical written X ~ Categorical(φ).

$$P(X = x) = p(x; \phi) = \phi_x$$

where $x \in \{1, ..., M\}$ and $\sum_{m=1}^{M} \phi_m = 1$. The **log-likelihood** of the data becomes:

$$\ell(\phi) = \sum_{i=1}^N \log \phi_{\pi^{(i)}}$$
 s.t. $\sum_{m=1}^M \phi_m = 1$

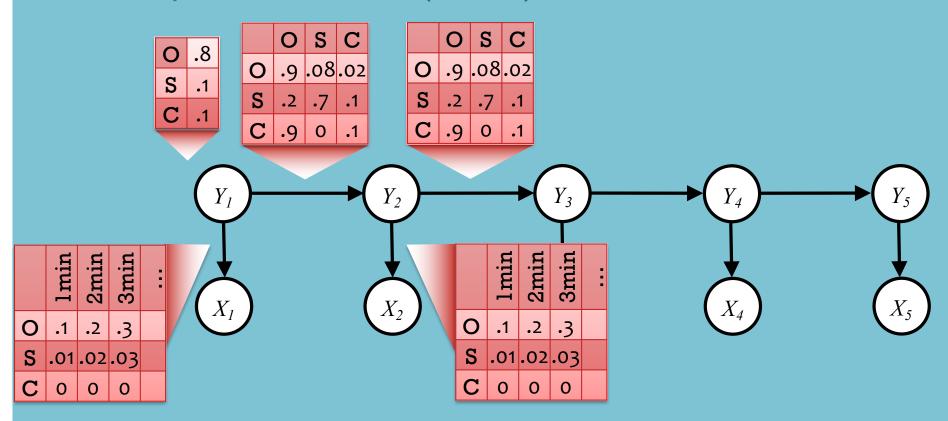
Solving this constrained optimization problem yields the maximum likelihood estimator (MLE):

$$\phi_m^{MLE} = \frac{N_{n-m}}{N} = \frac{\sum_{i=1}^{N} \mathbb{I}(x^{(i)} = m)}{N}$$

Hidden Markov Model

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$



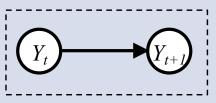
Training HMMs

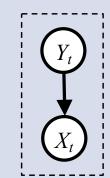
Whiteboard

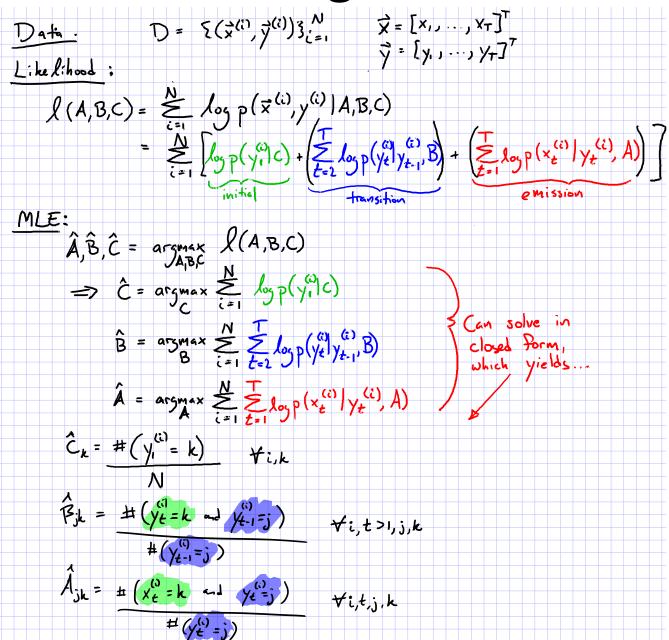
- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM

Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models







Hidden Markov Model

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

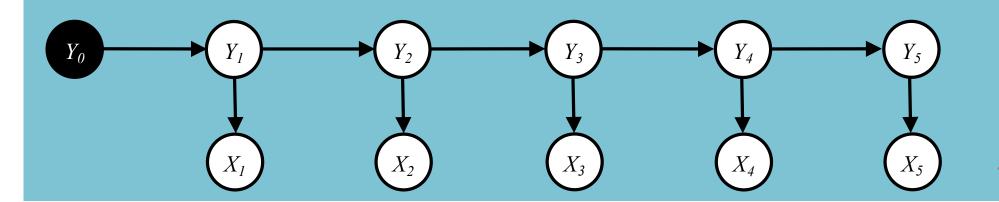
Assumption: $y_0 = START$

Generative Story:

 $Y_t \sim \text{Multinomial}(\mathbf{B}_{Y_{t-1}}) \ \forall t$

 $X_t \sim \mathsf{Multinomial}(\mathbf{A}_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities **C** into the transition matrix **B** by our assumption.

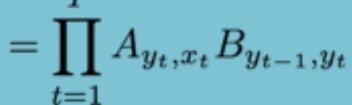


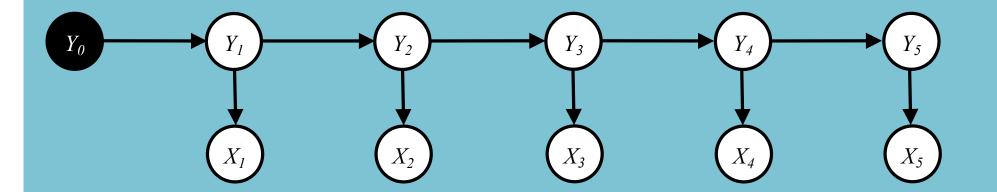
Hidden Markov Model

Joint Distribution:

$$y_0 = \mathsf{START}$$

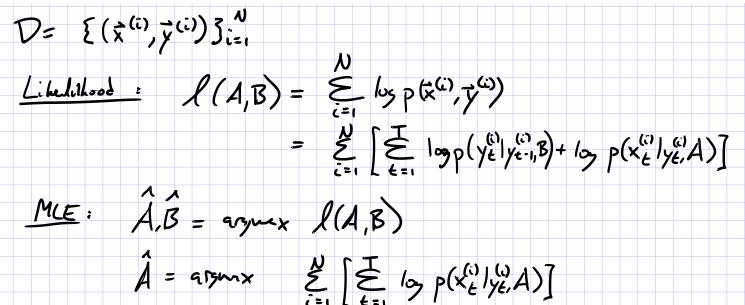
$$p(\mathbf{x}, \mathbf{y}|y_0) = \prod_{t=1}^{T} p(x_t|y_t)p(y_t|y_{t-1})$$

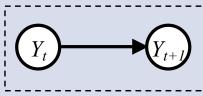


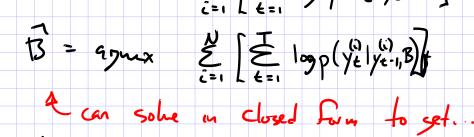


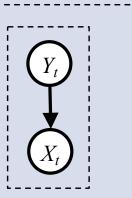
Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models









$$\beta_{jk} = \pm (y_{t} = k) + (y_{t-1} = j)$$

$$\pm (y_{t-1} = j)$$

$$\hat{A}_{jk} = \pm \left(\begin{array}{c} \chi_{t}^{(i)} = k \\ \chi_{t}^{(i)} = j \end{array} \right)$$

$$\pm \left(\begin{array}{c} \chi_{t}^{(i)} = j \\ \chi_{t}^{(i)} = j \end{array} \right)$$

Unsupervised Learning for HMMs

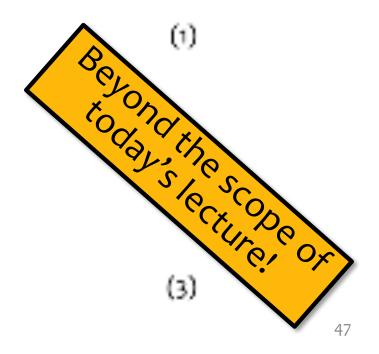
- Unlike **discriminative** models p(y|x), **generative** models p(x,y) can maximize the likelihood of the data $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$ where we don't observe any y's.
- This unsupervised learning setting can be achieved by finding parameters that maximize the marginal likelihood
- We optimize using the Expectation-Maximization algorithm

Since we don't observe y, we define the marginal probability:

$$p_{\boldsymbol{\theta}}(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{y})$$

The log-likelihood of the data is thus:

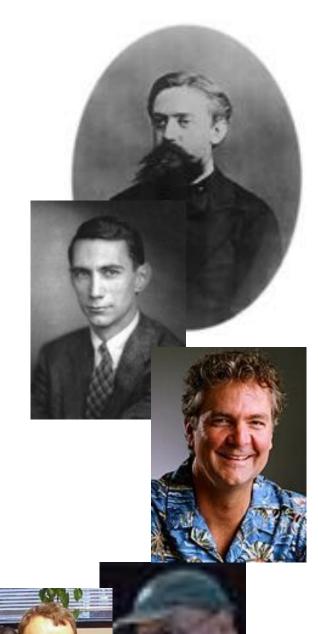
$$\ell(\boldsymbol{\theta}) = \log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})$$
$$= \sum_{i=1}^{N} \log \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{y})$$



HMMs: History

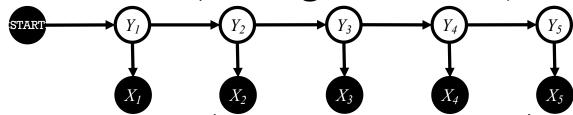
- Markov chains: Andrey Markov (1906)
 - Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
 - Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
 - Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
 - McCallum: multinomial Naïve Bayes for text
 - With McCallum, IE using HMMs on CORA

• ...

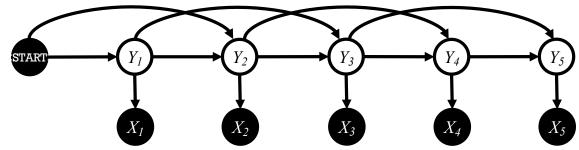


Higher-order HMMs

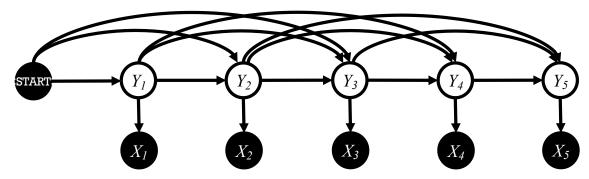
• 1st-order HMM (i.e. bigram HMM)



• 2nd-order HMM (i.e. trigram HMM)



• 3rd-order HMM



Higher-order HMMs

