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Reminders

Homework 6: Learning Theory /| Generative
Models

— Out: Fri, Mar 20

— Due: Fri, Mar 27 at 11:59pm
Practice Problems for Exam 2
— Out: Fri, Mar 20

Midterm Exam 2

— Thu, Apr 2 - evening exam, details announced on
Piazza

Today’s In-Class Poll
— http://poll.mlcourse.org




MIDTERM EXAM LOGISTICS



Midterm Exam

 Time /Location
— Time: Evening Exam
Thu, Apr. 2 at 6:00pm - 9:00pm

— Location: We will contact you with additional details about how to join the
appropriate Zoom meeting.

— Seats: There will be assigned Zoom rooms. Please arrive online early.
— Please watch Piazza carefully for announcements.

* Logistics
— Covered material: Lecture 9 — Lecture 18 (95%), Lecture 1 — 8 (5%)

— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices
— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review prior year’s exam and solutions
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something

— Don’t leave any answer blank!
— If you make an assumption, write it down
— If you look at a question and don’t know the
answer:
* we probably haven’t told you the answer

* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it




Topics for Midterm 1

 Foundations e (lassification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization -
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



Topics for Midterm 2

* (lassification * Learning Theory
— Binary Logistic Regression — PAC Learning
— Multinomial Logistic e Generative Models
Regression C :
— Generative vs.
* Important Concepts Discriminative
— Stochastic Gradient — MLE /| MAP
Descent — Naive Bayes

— Regularization
— Feature Engineering
* Feature Learning
— Neural Networks
— Basic NN Architectures
— Backpropagation



SAMPLE QUESTIONS



Sample Questions

3.2 Logistic regression

Given a training set {(x;,v;),7 = 1,...,n} where z; € R? is a feature vector and y; € {0,1}
is a binary label, we want to find the parameters w that maximize the likelihood for the
training set, assuming a parametric model of the form

1
1+ exp(—wTz)

p(y = 1llz;w) =

The conditional log likelihood of the training set is

l(w) = Zyi log p(yi, |75 w) + (1 — i) log(1 — p(yi, |75 w)),

i=1
and the gradient is

n

Vi(w) = Z(yz — p(yilTs; w)) ;.

=1

(b) [5 pts.] What is the form of the classifier output by logistic regression?

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, z € {0,1}¢ C R%
where feature x; is rare and happens to appear in the training set with only label 1.
What is w7 Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of w?



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D™, and tested on a separate
test set D', You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size.
(b) Decrease the training data size.

(c) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

(d) Decrease model complexity.
(e) Train on a combination of D™ and D' and test on D!

(f) Conclude that Machine Learning does not work.



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"*" and tested on a separate
test set D', You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?

Test Ermvee Test Emor

Meoan Error
Vaoa~ Ercor

Train Error Tran Erroe

Mode! Complaxity Model Complexity

(a) (b)



Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or F: It is possible to label 4 points in R? in all possible 2* ways via linear
separators in RZ.

(d) [3 pts.] T or F: The VC dimension of a concept class with infinite size is also infinite.

(f) [3 pts.] T or F: Given a realizable concept class and a set of training instances, a
consistent learner will output a concept that achieves 0 error on the training instances.



Sample Questions




Sample Questions




Sample Questions

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed Xi, ..., X,, ~ Bernoulli(#).
We are going to derive the MLE for 6. Recall that a Bernoulli random variable X takes

values in {0, 1} and has probability mass function given by

P(X;0) =6%(1 —0)" .

(a) [2 pts.] Derive the likelihood, L(6; X1, ..., X,).

~ 1
(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: 6 = — (37" | X,).
n



Sample Questions

1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your

answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.



Sample Questions




HIDDEN MARKOV MODEL (HMM)



HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models
— From Mixture Model to HMM
— History of HMMs

— Higher-order HMMs

Training HMMs
— (Supervised) Likelihood for HMM
— Maximum Likelihood Estimation (MLE) for HMM
— EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm
— Three Inference Problems for HMM
— Great Ideas in ML: Message Passing
— Example: Forward-Backward on 3-word Sentence
— Derivation of Forward Algorithm
— Forward-Backward Algorithm
— Viterbi algorithm



Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0,5,8,0,C,2m,3m, 18m,9m,27m) = (8% 2% . 1% 03%...)
0.8 o|.8
S | .1 S | .1
Cl C | .1

5 | 1min
v | 2min

O].

o
© |\§ |w |8min
5 | lmin
N | 2min
W | 3min n
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states [ travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,8,0,C,2m, 3m, 18m,9m, 27m) = (.8 *.08* 2% .7%.03%...)
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From Mixture Model to HMM
o @ © @ o
“Naive Bayes””: H (X¢|Ye)p

e E 'y

P(Y1) HPXtm Hthml
t=1 t 2




From Mixture Model to HMM

T
“Naive Bayes””: H (Xt Ye)p

. T

T
P(X,Y|Yp) = | | P(Xe|Y2)p(Y:|Yi-1)

t=1




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(0) ~ p(x|0)
Write log-likelihood

40) =log p(x"[0) + ... +log p(x(N]|0)
Compute partial derivatives

0((0)/00, = ...

0((0)/00, = ...

0((0)/00,, = ...
Set derivatives to zero and solve for 6
0((0)/06,, =0 forallme{y,..., M}

OMLE =

Compute the second derivative and check that {0) is concave down
at eMLE



i

MLE of Categorical Distribution

Suppose we have a dataset obtained by repeatedly rolling a
Msided (weighted) die N limes. That is, we have dala

D= {;r"‘}:"i,

where 7' < [1,... M) and x™" ~ Categoricalig),

. Arandern variable is Categlorical written X~ Categorical(ab)

iff
PX=2= po'.r-_: @l = @,

where x = {1,...,. Wland YT | @we = 1. The log-likelihood
of the data becomes:

" L
o) = Z log eby 8.6 Z e = 1
= [ 1 1 S

solving this constrained optmization problem vields the maxi
mum likelihood estimator (MLE):

N q
m""' . No—m - )« -1]‘ =)

" N N
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Hidden Markov Model
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Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y; = j) = A, , Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, i, Vt, k

Assumption: y, = START : 3

Generative Story:

For notational
convenience, we fold the

th o~ MUItinomial(BYt_l ) Vit initial probabilities C into
. . the transition matrix B by
X ~ MultlnomlaI(Ayt) vVt our assumption.

T E



Hidden Markov Model




Supervised Learning for HMMs
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Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models p(x,y)
can maximize the likelihood of the data D = {x(, x(), ..., x(N)}
where we don’t observe any y’s.

This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

We optimize using the Expectation-Maximization algorithm
since we don't observe y, we define the marginz! probability:

pelxl Y palx. ¥l

yiJy

The logdixelihood of the datais thus:

5"
e

Fil) = log n_u‘.w (x'*)

-

l\:
Y o
A -
—

/Y: palx' ¥
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HMMs: History

« Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on |[E from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA
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Slide from William Cohen



Higher-order HMMs

* 15t-order HMM (i.e. bigram HMM)

REERE

« 2" order HMM (i.e. trlgram Hl\/\l\/\)




Higher-order HMMs

* 1t-order HMM (i.e. bigram HMM)

wiﬁ

Hidden HMM (i.e. trlgram HIV\IV\)
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