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Reminders

• Homework 6: Learning Theory / Generative

Models

– Out: Fri, Mar 20

– Due: Fri, Mar 27 at 11:59pm

• Practice Problems for Exam 2

– Out: Fri, Mar 20

• Midterm Exam 2

– Thu, Apr 2 – evening exam, details announced on

Piazza

• Today’s In-Class Poll

– http://poll.mlcourse.org
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MIDTERM EXAM LOGISTICS
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Midterm Exam
• Time / Location

– Time: Evening Exam
Thu, Apr. 2 at 6:00pm – 9:00pm

– Location: We will contact you with additional details about how to join the 
appropriate Zoom meeting.

– Seats: There will be assigned Zoom rooms. Please arrive online early. 
– Please watch Piazza carefully for announcements.

• Logistics
– Covered material: Lecture 9 – Lecture 18 (95%), Lecture 1 – 8 (5%)
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)
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Midterm Exam

• How to Prepare
– Attend the midterm review lecture

(right now!)
– Review prior year’s exam and solutions

(we’ll post them)
– Review this year’s homework problems
– Consider whether you have achieved the 

“learning objectives” for each lecture / section
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Midterm Exam
• Advice (for during the exam)
– Solve the easy problems first 

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely 

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the 

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it
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Topics for Midterm 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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Topics for Midterm 2

• Classification

– Binary Logistic Regression

– Multinomial Logistic 

Regression

• Important Concepts

– Stochastic Gradient 

Descent

– Regularization

– Feature Engineering

• Feature Learning

– Neural Networks

– Basic NN Architectures

– Backpropagation

• Learning Theory

– PAC Learning

• Generative Models

– Generative vs. 

Discriminative

– MLE / MAP

– Naïve Bayes
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SAMPLE QUESTIONS
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Sample Questions

10

10-601: Machine Learning Page 9 of 16 2/29/2016

3.2 Logistic regression

Given a training set {(xi, yi), i = 1, . . . , n} where xi 2 Rd is a feature vector and yi 2 {0, 1}
is a binary label, we want to find the parameters ŵ that maximize the likelihood for the
training set, assuming a parametric model of the form

p(y = 1|x;w) = 1

1 + exp(�wTx)
.

The conditional log likelihood of the training set is

`(w) =
nX

i=1

yi log p(yi, |xi;w) + (1� yi) log(1� p(yi, |xi;w)),

and the gradient is

r`(w) =
nX

i=1

(yi � p(yi|xi;w))xi.

(a) [5 pts.] Is it possible to get a closed form for the parameters ŵ that maximize the
conditional log likelihood? How would you compute ŵ in practice?

(b) [5 pts.] What is the form of the classifier output by logistic regression?

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, x 2 {0, 1}d ⇢ Rd,
where feature x1 is rare and happens to appear in the training set with only label 1.
What is ŵ1? Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of ŵ?
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2 To err is machine-like [20 pts]

2.1 Train and test errors
In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data Dtrain, and tested on a separate
test set Dtest. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to 0.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size.

(b) Decrease the training data size.

(c) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

(d) Decrease model complexity.

(e) Train on a combination of Dtrain and Dtest and test on Dtest

(f) Conclude that Machine Learning does not work.

2. [5 pts] Explain your choices.

3. [2 pts] What is this scenario called?

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?
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(a) (b)

2.2 True and sample errors
Consider a classification problem with distribution D and target function c⇤ : Rd 7! ±1. For any
sample S drawn from D, answer whether the following statements are true or false, along with a
brief explanation.

1. [4 pts] For a given hypothesis space H , it is possible to define a sufficient size of S such that
the true error is bounded by the sample error by a margin ✏, for all hypotheses h 2 H with a
given probability.

2. [4 pts] The true error of any hypothesis h is an upper bound on its training error on the
sample S.
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5 Learning Theory [20 pts.]

5.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [3 pts.] T or F: It is possible to label 4 points in R2 in all possible 24 ways via linear
separators in R2.

(b) [3 pts.] T or F: To show that the VC-dimension of a concept class H (containing
functions from X to {0, 1}) is d, it is su�cient to show that there exists a subset of X
with size d that can be labeled by H in all possible 2d ways.

(c) [3 pts.] T or F: The VC dimension of a finite concept class H is upper bounded by
dlog2 |H|e.

(d) [3 pts.] T or F: The VC dimension of a concept class with infinite size is also infinite.

(e) [3 pts.] T or F: For every pair of classes, H1, H2, if H1 ✓ H2 and H1 6= H2, then
VCdim(H1) < VCdim(H2) (note that this is a strict inequality).

(f) [3 pts.] T or F: Given a realizable concept class and a set of training instances, a
consistent learner will output a concept that achieves 0 error on the training instances.
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6 Extra Credit: Neural Networks [6 pts.]

In this problem we will use a neural network to classify the crosses (⇥) from the circles (�) in
the simple dataset shown in Figure 5a. Even though the crosses and circles are not linearly
separable, we can break the examples into three groups, S1, S2, and S3 (shown in Figure 5a)
so that S1 is linearly separable from S2 and S2 is linearly separable from S3. We will exploit
this fact to design weights for the neural network shown in Figure 5b in order to correctly
classify this training set. For all nodes, we will use the threshold activation function

�(z) =

⇢
1 z > 0
0 z  0.

(a) The dataset with groups S1, S2, and S3.

y

h1 h2

x1 x2

w11 w21w12
w22

w31
w32

(b) The neural network architecture

Figure 5

(a) Set S2 and S3 (b) Set S1 and S2 (c) Set S1, S2 and S3

Figure 6: NN classification.
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Can the neural network in Figure (b) correctly classify the dataset given in Figure (a)?

Neural Networks



Sample Questions

15

10-601: Machine Learning Page 14 of 16 2/29/2016

6 Extra Credit: Neural Networks [6 pts.]

In this problem we will use a neural network to classify the crosses (⇥) from the circles (�) in
the simple dataset shown in Figure 5a. Even though the crosses and circles are not linearly
separable, we can break the examples into three groups, S1, S2, and S3 (shown in Figure 5a)
so that S1 is linearly separable from S2 and S2 is linearly separable from S3. We will exploit
this fact to design weights for the neural network shown in Figure 5b in order to correctly
classify this training set. For all nodes, we will use the threshold activation function

�(z) =

⇢
1 z > 0
0 z  0.

(a) The dataset with groups S1, S2, and S3.

y

h1 h2

x1 x2

w11 w21w12
w22

w31
w32

(b) The neural network architecture

Figure 5

(a) Set S2 and S3 (b) Set S1 and S2 (c) Set S1, S2 and S3

Figure 6: NN classification.

Apply the backpropagation algorithm to obtain 
the partial derivative of the mean-squared error 
of y with the true value y* with respect to the 
weight w22 assuming a sigmoid nonlinear 
activation function for the hidden layer.

Neural Networks
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1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed X1, . . . , Xn ⇠ Bernoulli(✓).
We are going to derive the MLE for ✓. Recall that a Bernoulli random variable X takes
values in {0, 1} and has probability mass function given by

P (X; ✓) = ✓X(1� ✓)1�X .

(a) [2 pts.] Derive the likelihood, L(✓;X1, . . . , Xn).

(b) [2 pts.] Derive the following formula for the log likelihood:

`(✓;X1, . . . , Xn) =

 
nX

i=1

Xi

!
log(✓) +

 
n�

nX

i=1

Xi

!
log(1� ✓).

(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: ✓̂ =
1

n
(
Pn

i=1 Xi).
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1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your
answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.

(b) [2 pts.] T or F: Naive Bayes can only be used with MAP estimates, and not MLE
estimates.

1.4 Probability

Assume we have a sample space ⌦. Answer each question with T or F. No justification
is required.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

(b) [1 pts.] T or F: P (A|B) / P (A)P (B|A)
P (A|B)

. (The sign ‘/’ means ‘is proportional to’)

(c) [1 pts.] T or F: P (A [ B)  P (A).

(d) [1 pts.] T or F: P (A \ B) � P (A).
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1 Naive Bayes, Probability, and MLE [20 pts. + 2 Extra Credit]

1.1 Naive Bayes

You are given a data set of 10,000 students with their sex, height, and hair color. You are
trying to build a classifier to predict the sex of a student, so you randomly split the data
into a training set and a testing set. Here are the specifications of the data set:

• sex 2 {male,female}

• height 2 [0,300] centimeters

• hair 2 {brown, black, blond, red, green}

• 3240 men in the data set

• 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you
might naturally or intuitively make about the dataset) answer each question with T or F
and provide a one sentence explanation of your answer:

(a) [2 pts.] T or F: As height is a continuous valued variable, Naive Bayes is not appropriate
since it cannot handle continuous valued variables.

(b) [2 pts.] T or F: Since there is not a similar number of men and women in the dataset,
Naive Bayes will have high test error.

(c) [2 pts.] T or F: P (height|sex, hair) = P (height|sex).

(d) [2 pts.] T or F: P (height, hair|sex) = P (height|sex)P (hair|sex).
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into a training set and a testing set. Here are the specifications of the data set:

• sex 2 {male,female}

• height 2 [0,300] centimeters

• hair 2 {brown, black, blond, red, green}

• 3240 men in the data set

• 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you
might naturally or intuitively make about the dataset) answer each question with T or F
and provide a one sentence explanation of your answer:

(a) [2 pts.] T or F: As height is a continuous valued variable, Naive Bayes is not appropriate
since it cannot handle continuous valued variables.

(b) [2 pts.] T or F: Since there is not a similar number of men and women in the dataset,
Naive Bayes will have high test error.

(c) [2 pts.] T or F: P (height|sex, hair) = P (height|sex).

(d) [2 pts.] T or F: P (height, hair|sex) = P (height|sex)P (hair|sex).



HIDDEN MARKOV MODEL (HMM)
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HMM Outline
• Motivation

– Time Series Data

• Hidden Markov Model (HMM)
– Example: Squirrel Hill Tunnel Closures 

[courtesy of Roni Rosenfeld]
– Background: Markov Models
– From Mixture Model to HMM
– History of HMMs
– Higher-order HMMs

• Training HMMs
– (Supervised) Likelihood for HMM
– Maximum Likelihood Estimation (MLE) for HMM
– EM for HMM (aka. Baum-Welch algorithm)

• Forward-Backward Algorithm
– Three Inference Problems for HMM
– Great Ideas in ML: Message Passing
– Example: Forward-Backward on 3-word Sentence

– Derivation of Forward Algorithm
– Forward-Backward Algorithm
– Viterbi algorithm
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Markov Models

Whiteboard
– Example: Tunnel Closures 

[courtesy of Roni Rosenfeld]
– First-order Markov assumption
– Conditional independence assumptions
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2m 3m 18m 9m 27m

O S S O C

Mixture Model for Time Series Data

29

We could treat each (tunnel state, travel time) pair as independent. This 
corresponds to a Naïve Bayes model with a single feature (travel time).

O .8
S .1
C .1

p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m)     =       (.8 * .2 * .1 * .03 * …)

O .8
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C .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02 .03
C 0 0 0

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02 .03
C 0 0 0



2m 3m 18m 9m 27m

O S S O C
1m

in
2m

in
3m

in
…

O .1 .2 .3
S .01 .02 .03
C 0 0 0

Hidden Markov Model
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
tunnel states / travel times with an assumption of dependence between 

adjacent tunnel states.

p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m)   = (.8 * .08 * .2 * .7 * .03 * …)

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02 .03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

O .8
S .1
C .1



HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5



HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5



SUPERVISED LEARNING FOR 
HMMS
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Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
!l(θ)/!θ1 = …
!l(θ)/!θ2 = …
…
!l(θ)/!θM = …

4. Set derivatives to zero and solve for θ
!l(θ)/!θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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MLE of Categorical Distribution
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HMM Parameters:

Hidden Markov Model

41

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5
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Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models

43

Yt Yt+1

Xt

Yt



HMM Parameters:

Assumption:
Generative Story: 

Hidden Markov Model

44X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Joint Distribution: 

Hidden Markov Model
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Y1 Y2 Y3 Y4 Y5Y0

y0 = START



Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y) 

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)} 
where we don’t observe any y’s. 

• This unsupervised learning setting can be achieved by finding 
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm

47

Beyond the scope of 

today’s lecture!



HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion

• Used in Shannon’s work on information theory (1948)

• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.

• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 

modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum

– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.

– McCallum:  multinomial Naïve Bayes for text

– With McCallum, IE using HMMs on CORA

• …
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Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>



Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>
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X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Hidden 
States, y

Observa
-tions, x


