
Logistic Regression

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 9

Feb. 13, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Q&A

2

Q: In recitation, we only covered the Perceptron mistake
bound for linearly separable data. Isn’t that an
unrealistic setting?

A: Not at all! Even if your data isn’t linearly separable to
begin with, we can often add features to make it so.

x1 x2 y

+1 +1 +

+1 -1 -

-1 +1 -

-1 -1 +

Exercise: Add
another feature to

transform this
nonlinearly separable

data into linearly
separable data.

Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Feb 6
– Due: Fri, Feb 15 at 11:59pm

• Homework 4: Logistic Regression
– Out: Fri, Feb 15
– Due: Fri, Mar 1 at 11:59pm

• Midterm Exam 1
– Thu, Feb 21, 6:30pm – 8:00pm

• Today’s In-Class Poll
– http://p9.mlcourse.org

3

PROBABILISTIC LEARNING

5

Probabilistic Learning

Function Approximation
Previously, we assumed that our
output was generated using a
deterministic target function:

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning
Today, we assume that our
output is sampled from a
conditional probability
distribution:

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)

6

Robotic Farming

7

Deterministic Probabilistic

Classification
(binary output)

Is this a picture of
a wheat kernel?

Is this plant
drought resistant?

Regression
(continuous
output)

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?

Bayes Optimal Classifier

Whiteboard
– Bayes Optimal Classifier
– Reducible / irreducible error
– Ex: Bayes Optimal Classifier for 0/1 Loss

8

Learning from Data (Frequentist)

Whiteboard
– Principle of Maximum Likelihood Estimation

(MLE)
– Strawmen:
• Example: Bernoulli
• Example: Gaussian
• Example: Conditional #1

(Bernoulli conditioned on Gaussian)
• Example: Conditional #2

(Gaussians conditioned on Bernoulli)

10

MOTIVATION:
LOGISTIC REGRESSION

12

Example: Image Classification
• ImageNet LSVRC-2010 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

15

16

17

18

Example: Image Classification

19

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

Example: Image Classification

20

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

This “softmax”
layer is Logistic

Regression!

The rest is just
some fancy

feature extraction
(discussed later in

the course)

LOGISTIC REGRESSION

21

Logistic Regression

22

We are back to
classification.

Despite the name
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Recall…

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

Recall…

Using gradient ascent for linear
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn

parameters
4. Predict the class with highest probability under

the model

25

Using gradient ascent for linear
classifiers

26

Use a differentiable
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1|) =
1

1 + (��T)

This decision function isn’t
differentiable:

sign(x)

h() = sign(�T)

Using gradient ascent for linear
classifiers

27

Use a differentiable
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1|) =
1

1 + (��T)

This decision function isn’t
differentiable:

sign(x)

h() = sign(�T)

Logistic Regression

28

Learning: finds the parameters that minimize some
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ =

y�{0,1}
p�(y|)

Model: Logistic function applied to dot product of
parameters with input vector.

p�(y = 1|) =
1

1 + (��T)

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Logistic Regression

Whiteboard
– Bernoulli interpretation
– Logistic Regression Model
– Decision boundary

29

Learning for Logistic Regression

Whiteboard
– Partial derivative for Logistic Regression
– Gradient for Logistic Regression

30

Logistic Regression

31

Logistic Regression

32

Logistic Regression

33

LEARNING LOGISTIC REGRESSION

34

Maximum Conditional
Likelihood Estimation

35

Learning: finds the parameters that minimize some
objective function.

We minimize the negative log conditional likelihood:

Why?
1. We can’t maximize likelihood (as in Naïve Bayes)

because we don’t have a joint model p(x,y)
2. It worked well for Linear Regression (least squares is

MCLE)

�� = argmin
�

J(�)

J(�) = �
N�

i=1

p�(y(i)| (i))

Maximum Conditional
Likelihood Estimation

36

Learning: Four approaches to solving

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Maximum Conditional
Likelihood Estimation

37

Learning: Four approaches to solving

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Logistic Regression does not
have a closed form solution
for MLE parameters.

SGD for Logistic Regression

38

Question:
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we…
A. (1) compute the gradient of the log-likelihood for all examples (2) update all

the parameters using the gradient
B. (1) ask Matt for a description of SGD for Logistic Regression, (2) write it down,

(3) report that answer
C. (1) compute the gradient of the log-likelihood for all examples (2) randomly

pick an example (3) update only the parameters for that example
D. (1) randomly pick a parameter, (2) compute the partial derivative of the log-

likelihood with respect to that parameter, (3) update that parameter for all
examples

E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood
for that example, (3) update all the parameters using that gradient

F. (1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Gradient Descent

39

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

Recall…

Stochastic Gradient Descent (SGD)

40

Recall…

We need a per-example objective:

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = � p�(yi| i).

—

Mini-Batch SGD

• Gradient Descent:
Compute true gradient exactly from all N
examples

• Mini-Batch SGD:
Approximate true gradient by the average
gradient of K randomly chosen examples

• Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

41

Mini-Batch SGD

42

Three variants of first-order optimization:

Answer:

Logistic Regression vs. Perceptron

43

Question:
True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the
parameters only if the current example is
incorrectly classified.

Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)

53

Logistic Regression Objectives
You should be able to…
• Apply the principle of maximum likelihood estimation (MLE) to

learn the parameters of a probabilistic model
• Given a discriminative probabilistic model, derive the conditional

log-likelihood, its gradient, and the corresponding Bayes
Classifier

• Explain the practical reasons why we work with the log of the
likelihood

• Implement logistic regression for binary or multiclass
classification

• Prove that the decision boundary of binary logistic regression is
linear

• For linear regression, show that the parameters which minimize
squared error are equivalent to those that maximize conditional
likelihood

54

