

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Optimization for ML

Logistic Regression

Matt Gormley Lecture 8 Feb. 11, 2019

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Optimization for ML

Logistic RegressionProbabilistic Learning

Matt Gormley Lecture 8 Feb. 11, 2019

Q&A

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Wed, Feb 6
 - Due: Fri, Feb 15 at 11:59pm
- Today's In-Class Poll
 - http://p8.mlcourse.org

CONVEXITY

Function $f: \mathbb{R}^M \to \mathbb{R}$ is **convex** if $\forall \ \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$:

$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

Suppose we have a function $f(x): \mathcal{X} \to \mathcal{Y}$.

- The value x^* is a **global minimum** of f iff $f(x^*) \leq f(x), \forall x \in \mathcal{X}$.
- The value x^* is a **local minimum** of f iff $\exists \epsilon$ s.t. $f(x^*) \leq f(x), \forall x \in [x^* \epsilon, x^* + \epsilon]$.

Convex Function

Each local minimum is a global minimum

Nonconvex Function

- A nonconvex function is not convex
- Each local minimum is not necessarily a global minimum

Function $f: \mathbb{R}^M \to \mathbb{R}$ is **convex** if $\forall \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$:

$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

Each local
minimum of a
convex function is
also a global
minimum.

Function $f: \mathbb{R}^M \to \mathbb{R}$ is **strictly convex** if $\forall \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \le t \le 1$:

$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) < tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

A strictly convex function has a unique global minimum.

The Mean Squared Error function, which we minimize for learning the parameters of Linear Regression, is convex!

Regression Loss Functions

In-Class Exercise:

Which of the following could be used as loss functions for training a linear regression model?

Select all that apply.

A.
$$\ell(\hat{y}, y) = ||\hat{y} - y||_2$$

B.
$$\ell(\hat{y}, y) = |\hat{y} - y|$$

C.
$$\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$$

D.
$$\ell(\hat{y}, y) = \frac{1}{4}(\hat{y} - y)^4$$

$$\text{E. } \ell(\hat{y},y) = \begin{cases} \frac{1}{2}(\hat{y}-y)^2 & \text{if } |\hat{y}-y| \leq \delta \\ \delta|\hat{y}-y| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$$

F.
$$\ell(\hat{y}, y) = \log(\cosh(\hat{y} - y))$$

Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h(\mathbf{x}^{(i)}))^2$) has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - h(\mathbf{x}^{(i)})|$) must also have a unique minimizer.

Answer:

The Big Picture

OPTIMIZATION FOR ML

Function Approximation

Chalkboard

The Big Picture

GRADIENT DESCENT

Motivation: Gradient Descent

To solve the Ordinary Least Squares problem we compute:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

The resulting shape of the matrices:

$$(\mathbf{X}^{T} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{Y})$$

$$M \times N N \times M$$

$$M \times N N \times 1$$

$$M \times M$$

$$M \times 1$$

Background: Matrix Multiplication Given matrices ${f A}$ and ${f B}$

- If **A** is $q \times r$ and **B** is $r \times s$, computing **AB** takes O(qrs)
- If **A** and **B** are $q \times q$, computing **AB** takes $O(q^{2.373})$
- If **A** is $q \times q$, computing A^{-1} takes $O(q^{2.373})$.

Computational Complexity of OLS:

$$\mathbf{X}^T\mathbf{X}$$
 $O(M^2N)$ $O(M^{2.373})$ $O(M^{2.373})$ $O(MN)$ $O(M^2)$ total $O(M^2N + M^{2.373})$

Linear in # of examples, N
Polynomial in # of features, M

Motivation: Gradient Descent

Cases to consider gradient descent:

- 1. What if we can not find a closed-form solution?
- 2. What if we can, but it's inefficient to compute?
- 3. What if we **can**, but it's numerically unstable to compute?

Topographical Maps

Gradients

Gradients

These are the **gradients** that Gradient **Ascent** would follow.

(Negative) Gradients

These are the **negative** gradients that Gradient **Descent** would follow.

(Negative) Gradient Paths

Shown are the **paths** that Gradient Descent would follow if it were making **infinitesimally small steps**.

Pros and cons of gradient descent

- Simple and often quite effective on ML tasks
- Often very scalable
- Only applies to smooth functions (differentiable)
- Might find a local minimum, rather than a global one

Chalkboard

- Gradient Descent Algorithm
- Details: starting point, stopping criterion, line search

Algorithm 1 Gradient Descent

1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

3: **while** not converged **do**

4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ

In order to apply GD to Linear Regression all we need is the **gradient** of the objective function (i.e. vector of partial derivatives).

$$abla_{m{ heta}} J(m{ heta}) = egin{bmatrix} rac{d heta_1}{d heta_2} J(m{ heta}) \ dots \ rac{d}{d heta_2} J(m{ heta}) \end{bmatrix}$$

Algorithm 1 Gradient Descent

1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$$

3: **while** not converged **do**

4:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

5: return θ

There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

$$||\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})||_2 \le \epsilon$$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

GRADIENT DESCENT FOR LINEAR REGRESSION

Optimization for Linear Regression

Chalkboard

- Computing the gradient for Linear Regression
- Gradient Descent for Linear Regression
- 2D Example in Three Parts:
 - 1. Line over time
 - 2. Parameters space over time
 - 3. Train / test error over time

STOCHASTIC GRADIENT DESCENT

Algorithm 1 Gradient Descent

```
1: procedure GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
```

2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$

3: **while** not converged **do**

4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: \operatorname{procedure} \operatorname{SGD}(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: \operatorname{while} \operatorname{not} \operatorname{converged} \operatorname{do}
4: \operatorname{for} i \sim \operatorname{Uniform}(\{1, 2, \dots, N\}) \operatorname{do}
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: \operatorname{return} \boldsymbol{\theta}
```

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: \operatorname{procedure} \operatorname{SGD}(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: \operatorname{while} \operatorname{not} \operatorname{converged} \operatorname{do}
4: \operatorname{for} i \sim \operatorname{Uniform}(\{1, 2, \dots, N\}) \operatorname{do}
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: \operatorname{return} \boldsymbol{\theta}
```

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: \operatorname{procedure} \operatorname{SGD}(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: \operatorname{while} not converged \operatorname{do}
4: \operatorname{for} i \in \operatorname{shuffle}(\{1, 2, \dots, N\}) \operatorname{do}
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: \operatorname{return} \boldsymbol{\theta}
```

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

In practice, it is common to implement SGD using sampling without replacement (i.e. shuffle({1,2,...N}), even though most of the theory is for sampling with replacement (i.e. Uniform({1,2,...N}).

Convergence Curves

- Def: an epoch is a single pass through the training data
- For GD, only one update per epoch
- For SGD, N updates
 per epoch
 N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

Expectations of Gradients

$$\frac{JJ(\vec{\Theta})}{J(\vec{\Theta})} = \frac{J}{J(\vec{\Theta})} = \frac{J}$$

Recall: for any discrete r.v.
$$X$$

$$E_{X}[f(x)] \triangleq \sum_{x} P(x=x) f(x)$$

Q:What is the expectal value of a randomly chosen
$$\nabla J_i(\Theta)$$
?

Let $I \sim U_{ni} S_{orm}(\{1,...,U\})$
 $\Rightarrow P(I=i) = \frac{1}{N} \text{ if } ie\{1...N}$

$$E_{I}[\nabla J_{I}(\vec{\Theta})] = \sum_{i=1}^{N} P(I=i) \nabla J_{i}(\vec{\Theta})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla J_{i}(\vec{\Theta})$$

$$= \nabla J(\vec{\Theta})$$

Convergence of Optimizers

Co	somersence Analysis		the volemen union
	Det: Co	regence is when JO)-J@*) < €
LO VACE	Methods	Steps to Converge	Compotetre per iteration
0	Newlor's Method	O(la la /e) () () () () () () () () () () () () ()	VJ(0) VJ(0) - O(NM2)
	SED SED	O(lu 1/6)	
		0(1/6)	$\nabla J_{\tilde{c}}(\Theta) \leftarrow O(M)$
	l'a	most sure" lots of coverts	Lory less Capella
		Com I conditions	July Company
	\ aheanny?	but 2 of Col	lower asymptotic converce.
		DUT IS OUTER JEST	s in preame.

Optimization Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Distinguish the three sources of error identified by the bias-variance decomposition: bias, variance, and irreducible error.