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Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Feb 6 
– Due: Fri, Feb 15 at 11:59pm

• Today’s In-Class Poll
– http://p8.mlcourse.org
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Convexity
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Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 8



Convexity
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Each local 
minimum of a 

convex function is 
also a global 

minimum.

A strictly convex 
function has a 
unique global 

minimum.



Convexity
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The Mean Squared Error function, 
which we minimize for learning 

the parameters of Linear 
Regression, is convex!



Regression Loss Functions

In-Class Exercise:

Which of the following 
could be used as loss 
functions for training 
a linear regression 
model? 

Select all that apply.
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Answer:

Solving Linear Regression
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Question:



OPTIMIZATION FOR ML
The Big Picture

15



16



Function Approximation

Chalkboard
– The Big Picture
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GRADIENT DESCENT
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Computational Complexity of OLS:

Motivation: Gradient Descent
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To solve the Ordinary Least Squares 
problem we compute:

The resulting shape of the matrices:

Linear in # of examples, N
Polynomial in # of features, M



Motivation: Gradient Descent

Cases to consider gradient descent:
1. What if we can not find a closed-form 

solution?
2. What if we can, but it’s inefficient to 

compute?
3. What if we can, but it’s numerically 

unstable to compute?
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Topographical Maps
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Topographical Maps



Gradients
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Gradients
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These are the gradients that 

Gradient Ascent would follow.



(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.



(Negative) Gradient Paths

26

Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.



Pros and cons of gradient descent
• Simple and often quite effective on ML tasks
• Often very scalable 
• Only applies to smooth functions (differentiable)
• Might find a local minimum, rather than a global one
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Slide courtesy of William Cohen



Gradient Descent

Chalkboard
– Gradient Descent Algorithm
– Details: starting point, stopping criterion, line 

search
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



GRADIENT DESCENT FOR
LINEAR REGRESSION
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Optimization for Linear Regression

Chalkboard
– Computing the gradient for Linear Regression
– Gradient Descent for Linear Regression
– 2D Example in Three Parts:

1. Line over time
2. Parameters space over time
3. Train / test error over time
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STOCHASTIC GRADIENT DESCENT
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

M



Stochastic Gradient Descent (SGD)
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We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.
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Stochastic Gradient Descent (SGD)
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We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

In practice, it is common 
to implement SGD using 

sampling without
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).



Convergence Curves

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization
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Gradient Descent
SGD

Closed-form 
(normal eq.s)

Figure adapted from Eric P. Xing

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 
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Expectations of Gradients
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Convergence of Optimizers
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Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to 

optimize a function
• Apply knowledge of zero derivatives to identify 

a closed-form solution (if one exists) to an 
optimization problem

• Distinguish between convex, concave, and 
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice) 
differentiable function
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Linear Regression Objectives
You should be able to…
• Design k-NN Regression and Decision Tree 

Regression
• Implement learning for Linear Regression using three 

optimization techniques: (1) closed form, (2) gradient 
descent, (3) stochastic gradient descent

• Choose a Linear Regression optimization technique 
that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed

• Distinguish the three sources of error identified by 
the bias-variance decomposition: bias, variance, and 
irreducible error.
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