10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Linear Regression / Optimization for ML

Matt Gormley
Lecture 7
Feb. 6, 2019
$Q \& A$

Reminders

- Homework 2: Decision Trees
- Out: Wed, Jan 23
- Due: Wed, Feb 6 at 11:59pm
- Homework 3: KNN, Perceptron, Lin.Reg.
- Out: Wed, Feb 6
- Due: Fri, Feb 15 at 11:59pm
- Today's In-Class Poll
- http://p7.mlcourse.org

ANALYSIS OF PERCEPTRON

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$ (or the negative if on wrong side)

Margin of positive example x_{1}

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$ (or the negative if on wrong side)

Definition: The margin γ_{w} of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$ (or the negative if on wrong side)

Definition: The margin γ_{w} of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_{w} over all linear separators w.

$+$

Linear Separability

Def: For a binary classification problem, a set of examples S is linearly separable if there exists a linear decision boundary that can separate the points

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq(R / \gamma)^{2}$ mistakes.
(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq(R / \gamma)^{2}$ mistakes.
(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has converged if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will converge in a finite \# of steps.

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Suppose:

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and

$$
y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i
$$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

Analysis: Percept

Perceptron Mistake Boun

Theorem 0.1 (Block (1962), Novikoff (19 Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$ Suppose: The radius is centered at the origin, not at the center of the points.

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and

$$
y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i
$$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$
A k \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq B \sqrt{k}
$$

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Suppose:

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and $y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i$
Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

Algorithm 1 Perceptron Learning Algorithm (Online)

```
procedure PERCEPTRON(\mathcal{D = {(\mp@subsup{\mathbf{x}}{}{(1)},\mp@subsup{y}{}{(1)}),(\mp@subsup{\mathbf{x}}{}{(2)},\mp@subsup{y}{}{(2)}),\ldots})}\mathbf{}})
    0}\leftarrow\mathbf{0},k=1\quad\triangleright\mathrm{ Initialize parameters
    3: for i\in{1,2,\ldots} do
    4: if }\mp@subsup{y}{}{(i)}(\mp@subsup{\boldsymbol{0}}{}{(k)}\cdot\mp@subsup{\mathbf{x}}{}{(i)})\leq0\mathrm{ then }\quad\triangleright\mathrm{ If mistake
    5: }\quad\mp@subsup{\boldsymbol{0}}{}{(k+1)}\leftarrow\mp@subsup{\boldsymbol{0}}{}{(k)}+\mp@subsup{y}{}{(i)}\mp@subsup{\mathbf{x}}{}{(i)}\quad\triangleright\mathrm{ Update parameters
    6: }\quadk\leftarrowk+
```

 7: \(\quad\) return \(\theta\)

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 1: for some A, $A k \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\|$

$$
\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^{*}=\left(\boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\right) \boldsymbol{\theta}^{*}
$$

by Perceptron algorithm update

$$
\begin{aligned}
& =\boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^{*}+y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \\
& \geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^{*}+\gamma
\end{aligned}
$$

by assumption

$$
\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^{*} \geq k \gamma
$$

$$
\text { by induction on } k \text { since } \theta^{(1)}=\mathbf{0}
$$

$$
\Rightarrow\left\|\boldsymbol{\theta}^{(k+1)}\right\| \geq k \gamma
$$

$$
\text { since }\|\mathbf{w}\| \times\|\mathbf{u}\| \geq \mathbf{w} \cdot \mathbf{u} \text { and }\left\|\theta^{*}\right\|=1
$$

Cauchy-Schwartz inequality

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 2: for some $\mathrm{B},\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq B \sqrt{k}$

$$
\begin{aligned}
\left\|\boldsymbol{\theta}^{(k+1)}\right\|^{2}= & \left\|\boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\right\|^{2} \\
& \text { by Perceptron algorithm update } \\
= & \left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2}+2 y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \\
\leq & \left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2} \\
& \text { since } k \text { th mistake } \Rightarrow y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \leq 0 \\
= & \left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+R^{2} \\
& \text { since }\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2}=\left\|\mathbf{x}^{(i)}\right\|^{2}=R^{2} \text { by assumption and }\left(y^{(i)}\right)^{2}=1 \\
\Rightarrow & \left\|\boldsymbol{\theta}^{(k+1)}\right\|^{2} \leq k R^{2}
\end{aligned}
$$

by induction on k since $\left(\theta^{(1)}\right)^{2}=0$
$\Rightarrow\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq \sqrt{k} R$

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$
\begin{aligned}
& k \gamma \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq \sqrt{k} R \\
\Rightarrow & k \leq(R / \gamma)^{2}
\end{aligned}
$$

The total number of mistakes must be less than this

Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can't!)
2. However, Freund \& Schapire (1999) show that by projecting the points (hypothetically) into a higher dimensional space, we can achieve a similar bound on the number of mistakes made on one pass through the sequence of examples

Theorem 2. Let $\left\langle\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\rangle$ be a sequence oflabeled examples with $\left\|\mathbf{x}_{i}\right\| \leq R$. Let \mathbf{u} be any vector with $\|\mathbf{u}\|=1$ and let $\gamma>0$. Define the deviation of each example as

$$
d_{i}=\max \left\{0, \gamma-y_{i}\left(\mathbf{u} \cdot \mathbf{x}_{i}\right)\right\},
$$

and define $D=\sqrt{\sum_{i=1}^{m} d_{i}^{2}}$. Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

$$
\left(\frac{R+D}{\gamma}\right)^{2}
$$

Perceptron Exercises

Question:

Unlike Decision Trees and KNearest Neighbors, the Perceptron algorithm does not suffer from overfitting because it does not have any hyperparameters that could be over-tuned on the training data.
A. True
B. False
C. True and False

Summary: Perceptron

- Perceptron is a linear classifier
- Simple learning algorithm: when a mistake is made, add / subtract the features
- Perceptron will converge if the data are linearly separable, it will not converge if the data are linearly inseparable
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

Perceptron Learning Objectives

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron

LINEAR REGRESSION AS FUNCTION APPROXIMATION

Regression

Example Applications:

- Stock price prediction

- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Dream)
- Predicting the number of tourists on Machu Picchu on a given day

Regression Problems

Chalkboard

- Definition of Regression
- Linear functions
- Residuals
- Notation trick: fold in the intercept

Linear Regression as Function Approximation

Chalkboard

- Objective function: Mean squared error
- Hypothesis space: Linear Functions

OPTIMIZATION IN CLOSED FORM

Optimization for ML

Not quite the same setting as other fields...

- Function we are optimizing might not be the true goal
(e.g. likelihood vs generalization error)
- Precision might not matter
(e.g. data is noisy, so optimal up to $1 \mathrm{e}-16$ might not help)
- Stopping early can help generalization error (i.e. "early stopping" is a technique for regularization - discussed more next time)

Topographical Maps

Topographical Maps

Calculus and Optimization

In-Class Exercise

 Plot three functions:$$
\text { 1. } f(x)=x^{3}-x
$$

2. $f^{\prime}(x)=\frac{\partial y}{\partial x}$
3. $f^{\prime \prime}(x)=\frac{\partial^{2} y}{\partial x^{2}}$

Answer Here:

Optimization for ML

Chalkboard

- Unconstrained optimization
- Convex, concave, nonconvex
- Derivatives
- Zero derivatives
- Gradient and Hessian

Optimization: Closed form solutions

Chalkboard

- Example: 1-D function
- Example: higher dimensions

Convexity

Function $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is convex
if $\forall \mathbf{x}_{1} \in \mathbb{R}^{M}, \mathbf{x}_{2} \in \mathbb{R}^{M}, 0 \leq t \leq 1$:

$$
f\left(t \mathbf{x}_{1}+(1-t) \mathbf{x}_{2}\right) \leq t f\left(\mathbf{x}_{1}\right)+(1-t) f\left(\mathbf{x}_{2}\right)
$$

There is only one local optimum if the function is convex

Convexity

Function $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is convex
if $\forall \mathbf{x}_{1} \in \mathbb{R}^{M}, \mathbf{x}_{2} \in \mathbb{R}^{M}, 0 \leq t \leq 1$:

$$
f\left(t \mathbf{x}_{1}+(1-t) \mathbf{x}_{2}\right) \leq t f\left(\mathbf{x}_{1}\right)+(1-t) f\left(\mathbf{x}_{2}\right)
$$

There is only one local optimum if the function is convex

> The Mean Squared Error function, which we will minimize for learning the parameters of Linear Regression, is convex!

CLOSED FORM SOLUTION FOR LINEAR REGRESSION

Optimization for Linear Regression

Chalkboard

- Closed-form (Normal Equations)
- Computational complexity of Closed-form Solution
- Stability of Closed-form Solution

Function Approximation

Chalkboard

- The Big Picture

