

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Linear Regression / Optimization for ML

Matt Gormley Lecture 7 Feb. 6, 2019

Q&A

Reminders

- Homework 2: Decision Trees
 - Out: Wed, Jan 23
 - Due: Wed, Feb 6 at 11:59pm
- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Wed, Feb 6
 - Due: Fri, Feb 15 at 11:59pm
- Today's In-Class Poll
 - http://p7.mlcourse.org

ANALYSIS OF PERCEPTRON

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.

Slide from Nina Balcan

Linear Separability

Def: For a **binary classification** problem, a set of examples *S* is **linearly separable** if there exists a linear decision boundary that can separate the points

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has **converged** if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will converge in a finite # of steps.

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $D = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

1. Finite size inputs: $||x^{(i)}|| \leq R$

2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron

algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Perceptron Mistake Boun

Theorem 0.1 (Block (1962), Novikoff (1962) Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$ Suppose:

Common
Misunderstanding:
The radius is
centered at the
origin, not at the

center of the

points.

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$|Ak \le ||\boldsymbol{\theta}^{(k+1)}|| \le B\sqrt{k}$$

Covered in Recitation

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \pmb{\theta}^*$ s.t. $||\pmb{\theta}^*|| = 1$ and $y^{(i)}(\pmb{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure PERCEPTRON(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\})
2: \boldsymbol{\theta} \leftarrow \mathbf{0}, k = 1 \Rightarrow Initialize parameters
3: for i \in \{1, 2, \ldots\} do \Rightarrow For each example
4: if y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0 then \Rightarrow If mistake
5: \boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)} \Rightarrow Update parameters
6: k \leftarrow k + 1
7: return \boldsymbol{\theta}
```

Covered in Recitation

Proof of Perceptron Mistake Bound:

Part 1: for some A, $Ak \leq ||\boldsymbol{\theta}^{(k+1)}||$

$$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$$

by Perceptron algorithm update

$$= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)} (\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$$

$$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$$

by assumption

$$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* \ge k\gamma$$

by induction on k since $\theta^{(1)} = \mathbf{0}$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \geq k\gamma$$

since
$$||\mathbf{w}|| \times ||\mathbf{u}|| \ge \mathbf{w} \cdot \mathbf{u}$$
 and $||\theta^*|| = 1$

Cauchy-Schwartz inequality

Covered in Recitation

Proof of Perceptron Mistake Bound:

Part 2: for some B, $||\boldsymbol{\theta}^{(k+1)}|| \leq B\sqrt{k}$

$$||\boldsymbol{\theta}^{(k+1)}||^2 = ||\boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)}||^2$$

by Perceptron algorithm update

$$= ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2||\mathbf{x}^{(i)}||^2 + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$$

$$\leq ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2 ||\mathbf{x}^{(i)}||^2$$

since kth mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$

$$= ||\boldsymbol{\theta}^{(k)}||^2 + R^2$$

since $(y^{(i)})^2 ||\mathbf{x}^{(i)}||^2 = ||\mathbf{x}^{(i)}||^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}||^2 \le kR^2$$

by induction on k since $(\theta^{(1)})^2 = 0$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \leq \sqrt{k}R$$

Covered in Recitation Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{k}R$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

What if the data is not linearly separable?

- 1. Perceptron will **not converge** in this case (it can't!)
- 2. However, Freund & Schapire (1999) show that by projecting the points (hypothetically) into a higher dimensional space, we can achieve a similar bound on the number of mistakes made on **one pass** through the sequence of examples

Theorem 2. Let $\langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \rangle$ be a sequence of labeled examples with $\|\mathbf{x}_i\| \leq R$. Let \mathbf{u} be any vector with $\|\mathbf{u}\| = 1$ and let $\gamma > 0$. Define the deviation of each example as

$$d_i = \max\{0, \gamma - y_i(\mathbf{u} \cdot \mathbf{x}_i)\},\$$

and define $D = \sqrt{\sum_{i=1}^{m} d_i^2}$. Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

$$\left(\frac{R+D}{\gamma}\right)^2$$
.

Perceptron Exercises

Question:

Unlike Decision Trees and K-Nearest Neighbors, the Perceptron algorithm does not suffer from overfitting because it does not have any hyperparameters that could be over-tuned on the training data.

- A. True
- B. False
- C. True and False

Summary: Perceptron

- Perceptron is a linear classifier
- Simple learning algorithm: when a mistake is made, add / subtract the features
- Perceptron will converge if the data are linearly separable, it will not converge if the data are linearly inseparable
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

Perceptron Learning Objectives

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron

LINEAR REGRESSION AS FUNCTION APPROXIMATION

Regression

Example Applications:

- Stock price prediction
- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Dream)
- Predicting the number of tourists on Machu Picchu on a given day

Regression Problems

Chalkboard

- Definition of Regression
- Linear functions
- Residuals
- Notation trick: fold in the intercept

Linear Regression as Function Approximation

Chalkboard

- Objective function: Mean squared error
- Hypothesis space: Linear Functions

OPTIMIZATION IN CLOSED FORM

Optimization for ML

Not quite the same setting as other fields...

- Function we are optimizing might not be the true goal
 - (e.g. likelihood vs generalization error)
- Precision might not matter
 (e.g. data is noisy, so optimal up to 1e-16 might not help)
- Stopping early can help generalization error (i.e. "early stopping" is a technique for regularization – discussed more next time)

Topographical Maps

Calculus and Optimization

In-Class Exercise

Plot three functions:

1.
$$f(x) = x^3 - x$$

2.
$$f'(x) = \frac{\partial y}{\partial x}$$

3.
$$f''(x) = \frac{\partial^2 y}{\partial x^2}$$

Optimization for ML

Chalkboard

- Unconstrained optimization
- Convex, concave, nonconvex
- Derivatives
- Zero derivatives
- Gradient and Hessian

Optimization: Closed form solutions

Chalkboard

- Example: 1-D function
- Example: higher dimensions

Convexity

Function $f: \mathbb{R}^M \to \mathbb{R}$ is **convex** if $\forall \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$:

$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

There is only one local optimum if the function is *convex*

Convexity

Function $f: \mathbb{R}^M \to \mathbb{R}$ is **convex** if $\forall \ \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \leq t \leq 1$:

$$f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$$

There is only one local optimum if the function is *convex*

The Mean Squared Error function, which we will minimize for learning the parameters of Linear Regression, is convex!

CLOSED FORM SOLUTION FOR LINEAR REGRESSION

Optimization for Linear Regression

Chalkboard

- Closed-form (Normal Equations)
- Computational complexity of Closed-form
 Solution
- Stability of Closed-form Solution

Function Approximation

Chalkboard

The Big Picture