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Reminders

 Homework 2: Decision Trees
— Out: Wed, Jan 23
— Due: Wed, Feb 6 at 11:59pm

* Homework 3: KNN, Perceptron, Lin.Reg.

— Out: Wed, Feb 6
— Due: Fri, Feb 15 at 11:59pm

* Today’s In-Class Poll
— http://p7.mlcourse.org




ANALYSIS OF PERCEPTRON



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Margin of positive example x4

Margin of negative example x,

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide from Nina Balcan




Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)?% mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)?% mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)
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Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.
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Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y(D)} N,

Suppose:
1. Finitesize inputs: ||z(V|| < R
2. Linearly separable data: 40" s.t. ||@7|| = 1 and

Yy (07 - x) > 7, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?




Common

AnalysiS: Percept Misunderstanding:

. The radius is
Perceptron Mistake Boun} . ontared at the

Theorem 0.1 (Block (1962), Novikoff (1 origin, not at the
Given dataset: D = {(x\9) y()} ¥ center of the

1. Finite size inputs: ||zV|| < R
2. Linearly separable data: 40" s.t. ||@7|| = 1 and

Yy (0" - x)) >, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?




Analysis: Perceptron

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak < ||V < BVE

19+ Bk




Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x®), y)I NV

1=

Suppose:
1. Finite size inputs: ||z(V|| < R |'
2. Linearly separable data: 30™ s.t. ||@"|| = 1and |

\

y (0" - xV) >, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?

Algorithm 1 Perceptron Learning Algorithm (Online)

i: procedure PERCEPTRON(D = {(x(M), y(1)), (x(2) 42)) ... })

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y() (%) . x() < 0 then > If mistake
5 OFFL) gk 4 4 (Hx(®) > Update parameters
6 k< k+1
7 return 0




Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak < [|[0FF)]]
o(k+t1)  g* — (g(k) 4 y(’i)X(i))g*
by Perceptron algorithm update
— 9k . g* & y (g% - x)
> 0% . 9* + 5
by assumption
= 9+ . g* > by
by induction on k since 8V = 0
= |0 V|| > ky

since ||[w|| x ||u]| > w-uand||6*|| =1

Cauchy-Schwartz inequality



Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 2: for some B, ||| < BVE
16V = |8 + yOx @2
by Perceptron algorithm update
= 10%]2 + (5212 + 259 (0% x)
< 16™* + (y)?[[x@||?
since kth mistake = y(i)(e(k) x) <0
~ /6% + 2
since (y)?||xW |2 = ||x¥||?> = R? by assumption and (y¥)2 = 1
— |8%+D|12 < kR?
by induction on k since (0(V)% = 0

= ||o"*V] < VER



Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

By < /0% V|| < VER
=k < (R/v)°

The total number of mistakes
must be less than this



Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire ﬁ999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

Theorem?2. Let((X1, y1), ..., Xm, Ym)) beasequence of labeled examples with ||X;|| < R.
Let u be any vector with ||u|| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = /Y ., d?. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20y




Perceptron Exercises

Question:

Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False



Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is
made, add [ subtract the features

Perceptron will converge if the data are linearly
separable, it will not converge if the data are

linearly inseparable

For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

Extensions support nonlinear separators and
structured prediction



Perceptron Learning Objectives

You should be able to...

Explain the difference between online learning and
batch learning

Implement the perceptron algorithm for binary
classification [CIML]

Determine whether the perceptron algorithm will
converge based on properties of the dataset, and
the limitations of the convergence guarantees

Describe the inductive bias of perceptron and the
imitations of linear models

Draw the decision boundary of a linear model
dentify whether a dataset is linearly separable or not
Defend the use of a bias term in perceptron




LINEAR REGRESSION AS
FUNCTION APPROXIMATION



Example Applications:

RegreSSion \ o National wiLI Forecast

Stock price prediction

Forecasting epidemics

Speech synthesis WWM”M"‘

Generation of images
(e.g. Deep Dream)

Predicting the number
of tourists on Machu
Picchu on a given day

29



Regression Problems

Chalkboard

— Definition of Regression

— Linear functions

— Residuals

— Notation trick: fold in the intercept



Linear Regression as Function

Approximation
Chalkboard

— Objective function: Mean squared error
— Hypothesis space: Linear Functions



OPTIMIZATION IN CLOSED FORM



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the
true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization — discussed more next time)

33
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Calculus and Optimization

In-Class Exercise Answer Here:

Plot three functions: 3

A




Optimization for ML
Chalkboard

— Unconstrained optimization
— Convex, concave, nonconvex
— Derivatives

— Zero derivatives

— Gradient and Hessian



Optimization: Closed form solutions

Chalkboard

— Example: 1-D function
— Example: higher dimensions



Convexity

Function f : RM — Ris convex
ifVx e RM xo e RM 0<t<1:

fltx1+ (1 —t)xg) < tf(x1) + (1 — 1) f(x2)
There is only one local optimum if the function is convex

Slide adapted from William Cohen

40



Convexity

Function f : RM — R s convex
ifVx; e RM xo e RM 0<t<1:

fltx1 + (1 —t)x2) < tf(x1) + (1 —1)f(x2)
There is only one local optimum if the function is convex

The Mean Squared Error function,
which we will minimize for learning
the parameters of Linear
Regression, is convex!

41



CLOSED FORM SOLUTION FOR
LINEAR REGRESSION



Optimization for Linear Regression

Chalkboard

— Closed-form (Normal Equations)

— Computational complexity of Closed-form
Solution

— Stability of Closed-form Solution






Function Approximation

Chalkboard
— The Big Picture



