
Perceptron

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 6

Feb. 3, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Q&A

3

Q: How do we define a distance function when
the features are categorical (e.g. weather
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to
numeric features (e.g. binary)
Step 2: Select an appropriate distance function
(e.g. Hamming distance)

Q&A

4

Q: We pick the best hyperparameters by learning on the training
data and evaluating error on the validation error. For our final
model, should we then learn from training + validation?

A: Yes.

Let's assume that {train-original} is the original training data, and {test} is the

provided test dataset.

1. Split {train-original} into {train-subset} and {validation}.

2. Pick the hyperparameters that when training on {train-subset} give the lowest
error on {validation}. Call these hyperparameters {best-hyper}.

3. Retrain a new model using {best-hyper} on {train-original} = {train-
subset} ∪ {validation}.

4. Report test error by evaluating on {test}.

Alternatively, you could replace Step 1/2 with the following:

Pick the hyperparameters that give the lowest cross-validation error on {train-
original}. Call these hyperparameters {best-hyper}.

Reminders

• Homework 2: Decision Trees

– Out: Wed, Jan 23

– Due: Wed, Feb 6 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.

– Out: Wed, Feb 6

– Due: Fri, Feb 15 at 11:59pm

• Today’s In-Class Poll

– http://p6.mlcourse.org

5

Course Staff

6

Course Staff

7

Team A

Course Staff

8

Team B

Course Staff

9

Team C

Course Staff

10

Team D

Course Staff

11

THE PERCEPTRON ALGORITHM

12

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

13

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

14

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Geometry

In-Class Exercise
Draw a picture of the
region corresponding
to:

Draw the vector
w = [w1, w2]

16

Answer Here:

Visualizing Dot-Products

Chalkboard:
– vector in 2D
– line in 2D
– adding a bias term
– definition of orthogonality
– vector projection
– hyperplane definition
– half-space definitions

17

Vector Projection

18

Question:
Which of the following is the projection of a vector a onto a
vector b?

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Online vs. Batch Learning

Batch Learning
Learn from all the examples at
once

Online Learning
Gradually learn as each example
is received

20

Online Learning

Examples
1. Stock market prediction (what will the value

of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam

and regular mail changes over time, but the
target function stays fixed - last year's spam
still looks like spam)

3. Recommendation systems. Examples:
recommending movies; predicting whether a
user will be interested in a new news article

4. Ad placement in a new market

21
Slide adapted from Nina Balcan

Online Learning
For i = 1, 2, 3, …:
• Receive an unlabeled instance x(i)

• Predict y’ = hθ(x(i))
• Receive true label y(i)

• Suffer loss if a mistake was made, y’ ≠ y(i)

• Update parameters θ

Goal:
• Minimize the number of mistakes

22

Perceptron

Chalkboard:
– (Online) Perceptron Algorithm
– Why do we need a bias term?
– Inductive Bias of Perceptron
– Limitations of Linear Models

23

Perceptron Algorithm: Example
Example: −1,2 −

-
+
+

%& = (0,0)
%+ = %& − −1,2 = (1, −2)
%, = %+ + 1,1 = (2, −1)
%. = %, − −1, −2 = (3,1)

+
-
-

Perceptron Algorithm: (without the bias term)
§ Set t=1, start with all-zeroes weight vector %&.
§ Given example 0, predict positive iff %1 ⋅ 0 ≥ 0.
§ On a mistake, update as follows:

• Mistake on positive, update %15& ← %1 + 0
• Mistake on negative, update %15& ← %1 − 0

1,0 +
1,1 +

−1,0 −
−1,−2 −
1,−1 +

X
a
X

a
X

a

Slide adapted from Nina Balcan

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

(Online) Perceptron Algorithm

27

Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

(Online) Perceptron Algorithm

28

Learning:

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

Implementation Trick: same
behavior as our “add on

positive mistake and
subtract on negative

mistake” version, because
y(i) takes care of the sign

(Batch) Perceptron Algorithm

29

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure P (D = {((1), y(1)), . . . , ((N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T (i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i) (i) � Update parameters
8: return �

(Batch) Perceptron Algorithm

30

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a
so-called Hinge Loss on a linear separator

Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially

large set
– Mistake bound does not depend on the size of that set

31

Perceptron Exercises
Question:
The parameter vector w learned by the
Perceptron algorithm can be written as
a linear combination of the feature
vectors x(1), x(2),…, x(N).

A. True, for all datasets
B. False, for all datasets
C. True, but only for certain datasets
D. False, but only for certain datasets
E. True, if you replace “linear” with

“polynomial” above
32

ANALYSIS OF PERCEPTRON

33

Geometric Margin
Definition: The margin of example ! w.r.t. a linear sep." is the
distance from ! to the plane " ⋅ ! = 0 (or the negative if on wrong side)

!&
w

Margin of positive example !&

!'

Margin of negative example !'

Slide from Nina Balcan

Geometric Margin

Definition: The margin !" of a set of examples # wrt a linear
separator $ is the smallest margin over points % ∈ #.

+

+ +
+
+

+

-

-
-

-
-

!"
!"

+

--

-
-

+
w

Definition: The margin of example % w.r.t. a linear sep.$ is the
distance from % to the plane $ ⋅ % = 0 (or the negative if on wrong side)

Slide from Nina Balcan

+ +
+
+-

-
-

-
-

!
!

+

--

-
-

w

Definition: The margin ! of a set of examples " is the maximum !#
over all linear separators $.

Geometric Margin

Definition: The margin !# of a set of examples " wrt a linear
separator $ is the smallest margin over points % ∈ ".

Definition: The margin of example % w.r.t. a linear sep.$ is the
distance from % to the plane $ ⋅ % = 0 (or the negative if on wrong side)

Slide from Nina Balcan

Linear Separability

37

Def: For a binary classification problem, a set of examples !
is linearly separable if there exists a linear decision boundary
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

Analysis: Perceptron

38
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.

++

+
+
+
+

+

-

-
-

-

-

g
g

--
-
-

+

R

��

Analysis: Perceptron

39
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.

++

+
+
+
+

+

-

-
-

-

-

g
g

--
-
-

+

R

��Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

Analysis: Perceptron

40
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {((i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Analysis: Perceptron

41
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {((i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Common
Misunderstanding:

The radius is
centered at the

origin, not at the
center of the

points.

Analysis: Perceptron

42

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Covered in Recitation

Analysis: Perceptron

43

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {((i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure P (D = {((1), y(1)), ((2), y(2)), . . .})
2: � � 0, k = 1 � Initialize parameters
3: for i � {1, 2, . . .} do � For each example
4: if y(i)(�(k) · (i)) � 0 then � If mistake
5: �(k+1) � �(k) + y(i) (i) � Update parameters
6: k � k + 1
7: return �

Covered in Recitation

Analysis: Perceptron

45

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i) (i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · (i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since || || � || || � · and ||��|| = 1

Cauchy-Schwartz inequality

Covered in Recitation

Analysis: Perceptron

46

Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i) (i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2|| (i)||2 + 2y(i)(�(k) · (i))

� ||�(k)||2 + (y(i))2|| (i)||2

since kth mistake � y(i)(�(k) · (i)) � 0

= ||�(k)||2 + R2

since (y(i))2|| (i)||2 = || (i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR

Covered in Recitation

Analysis: Perceptron

47

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes
must be less than this

Covered in Recitation

Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the

points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

48

LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

∥vk+1∥2 = ∥vk∥2 + 2yi (vk · xi) + ∥xi∥2 ≤ ∥vk∥2 + R2.

Therefore, ∥vk+1∥2 ≤ kR2.
Combining, gives

√
kR ≥ ∥vk+1∥ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ)2 proving the theorem. ✷

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let ⟨(x1, y1), . . . , (xm, ym)⟩bea sequenceof labeled exampleswith∥xi∥ ≤ R.
Let u be any vector with ∥u∥ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi)},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi)/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.

Perceptron Exercises

49

Question:
Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False

Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is

made, add / subtract the features
• Perceptron will converge if the data are linearly

separable, it will not converge if the data are
linearly inseparable

• For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

• Extensions support nonlinear separators and
structured prediction

50

Perceptron Learning Objectives
You should be able to…
• Explain the difference between online learning and

batch learning
• Implement the perceptron algorithm for binary

classification [CIML]
• Determine whether the perceptron algorithm will

converge based on properties of the dataset, and
the limitations of the convergence guarantees

• Describe the inductive bias of perceptron and the
limitations of linear models

• Draw the decision boundary of a linear model
• Identify whether a dataset is linearly separable or not
• Defend the use of a bias term in perceptron

51

