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Q&A

- How do we define a distance function when
the features are categorical (e.g. weather
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to
numeric features (e.g. binary)

Step 2: Select an appropriate distance function
(e.g. Hamming distance)



Q:

Q&A

We pick the best hyperparameters by learning on the training
data and evaluating error on the validation error. For our final
model, should we then learn from training + validation?

Yes.

Let's assume that {train-original} is the original training data, and {test} is the
provided test dataset.

Split {train-original} into {train-subset} and {validation}.

2. Pick the hyperparameters that when training on {train-subset} give the lowest
error on {validation}. Call these hyperparameters {best-hyper}.

3. Retrain a new model using {best-hyper} on {train-original} = {train-
subset} U {validation}.

4. Report test error by evaluating on {test}.

Alternatively, you could replace Step 1/2 with the following:

Pick the hyperparameters that give the lowest cross-validation error on {train-
original}. Call these hyperparameters {best-hyper}.



Reminders

 Homework 2: Decision Trees
— Out: Wed, Jan 23
— Due: Wed, Feb 6 at 11:59pm

* Homework 3: KNN, Perceptron, Lin.Reg.

— Out: Wed, Feb 6
— Due: Fri, Feb 15 at 11:59pm

* Today’s In-Class Poll
— http://p6.mlcourse.org
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THE PERCEPTRON ALGORITHM



Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt... and the

year is 1957

.
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Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt... and the
yearis 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the 1.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron’s eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.




Linear Models for Classification

Key idea: Try to learn
this hyperplane directly

Looking ahead: == If Directly modeling the

e We’'ll see anumber of ==
commonly used Linear l S hyperplane would use a

Classifiers ~ -~ |decision function:
* These include: et -
— Perceptron . h(X) — Sign(g X)
— Logistic Regression

— Naive Bayes (under
certain conditions) ' for:

— Support Vector
Machines Y {—]., —|—1}




Geometry

In-Class Exercise Answer Here:
Draw a picture of the Zo
region corresponding 4
to:

w11 + woexe +b >0

where w; 22,’11}2 23,b=6

Draw the vector
w=[w, w,]



Visualizing Dot-Products

Chalkboard:

—vectorin 2D

—line in 2D

— adding a bias term

— definition of orthogonality
— vector projection

— hyperplane definition

— half-space definitions



Vector Projection




Linear Models for Classification

Key idea: Try to learn
this hyperplane directly

Looking ahead: == If Directly modeling the

e We’'ll see anumber of ==
commonly used Linear l S hyperplane would use a

Classifiers ~ -~ |decision function:
* These include: et -
— Perceptron . h(X) — Sign(g X)
— Logistic Regression

— Naive Bayes (under
certain conditions) ' for:

— Support Vector
Machines Y {—]., —|—1}




Online vs. Batch Learning

Batch Learning

Learn from all the examples at
once

Online Learning

Gradually learn as each example
is received



Online Learning

Examples

1. Stock market prediction (what will the value
of Alphabet Inc. be tomorrow?)

2. Email classification (distribution of both spam
and regular mail changes over time, but the
target function stays fixed - last year's spam
still looks like spam)

3. Recommendation systems. Examples:
recommending movies; predicting whether a
user will be interested in a new news article

4. Ad placement in a new market

Slide adapted from Nina Balcan



Online Learning

Fori=1,2,3,...:

* Receive an unlabeled instance x(

* Predict y’ = hg(x(®)

* Receive true label y()

» Suffer loss if a mistake was made, y’ # y()
* Update parameters 0

Goal:
* Minimize the number of mistakes



Perceptron

Chalkboard:
— (Online) Perceptron Algorithm
— Why do we need a bias term?
— Inductive Bias of Perceptron
— Limitations of Linear Models



Perceptron Algorithm: Example

Example: (-1,2) - X

(1,0) +

(1L,1) + X e
(=1,0) —
CLln- x
(1,-1) +

Perceptron Algorithm: (without the bias term)

= Set t=1, start with all-zeroes weight vector w;.
= Given example x, predict positive iff w; - x = 0.
= Onamistake, update as follows: W3

wy = (0,0)

wy, =wy —(=1,2) = (1,-2)
w, + (1,1) = (2,—-1)
ws — (—=1,-2) = (3,1)

e Mistake on positive, update w1 « w; + x

S
I

e Mistake on negative, update w1 « wy — x

Slide adapted from Nina Balcan



Background: Hyperplanes

Hyperplane (Definition 1):
H={x:w'x="hb)
Hyperplane (Definition 2):
H={x:0"x=0
and Lo = 1}
0 =[bw,... wyl"

Half-spaces:

HY ={x:0"x>0andzo =1}
H™ ={x:0"x<0andzy = 1}



(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (xW), gy, (x(2), @), ...
wherex € RM andy € {+1, -1}

Prediction: Output determined by hyperplane.
J = he(x) = Sign(HTX) sign(a) — {1’ ifa >0

—1, otherwise
Assume @ = [b,w1,...,wy]’ andzg =1
Learning: Iterative procedure:
* initialize parameters to vector of all zeroes
* while not converged
* receive next example (x(, y()
« predicty’ = h(x®)
* if positive mistake: add x( to parameters
* if negative mistake: subtract x() from parameters



(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs
are discrete. (xW), gy, (x(2), @), ...
wherex ¢ R andy € {+1, -1}

Prediction: Output determi”e‘-l-mp-lemen-tation Trick: same
J = ho(x) = sign(@'x) | behavior as our “add on
positive mistake and
subtract on negative
Learning: mistake” version, because
Algorithm 1 Perceptron Learning Alg y(i) takes care of the sign
procedure PERCEPTRON(D = {(

Assume 0 = [b,wy,...,wp

if § # y*) then > If mistake

1: - -

2: 0 +0 > Initialize parameters
3: forie {1,2,... do > For each example
4: §j « sign(@” x) > Predict
5

6 0 — 0+ yix® > Update parameters
7

return 6




(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)
procedure PERCEPTRON(D = {(x(1), y(1)) ... (x(V) y(V))1)

1:

2 60 > Initialize parameters
3 while not converged do

4 foriec {1,2,...,N} do > For each example
5: § + sign(@'x®) > Predict
6 if § # y(®) then > If mistake
7 0 «— 0+ yHx > Update parameters
8 return 6




(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”

setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.
1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)
2. By applying Stochastic Gradient Descent (SGD) to minimize a

so-called Hinge Loss on a linear separator



Extensions of Perceptron

Voted Perceptron
— generalizes better than (standard) perceptron

— memory intensive (keeps around every weight vector seen during
training, so each one can vote)

Averaged Perceptron
— empirically similar performance to voted perceptron

— can be implemented in a memory efficient way
(running averages are efficient)

Kernel Perceptron
— Choose a kernel K(x’, x)
— Apply the kernel trick to Perceptron
— Resulting algorithm is still very simple
Structured Perceptron

— Basic idea can also be applied when y ranges over an exponentially
large set

— Mistake bound does not depend on the size of that set



Perceptron Exercises

Question:

The parameter vector w learned by the
Perceptron algorithm can be written as
a linear combination of the feature
vectors x(, x) ..., x(N),

True, for all datasets
False, for all datasets
True, but only for certain datasets
False, but only for certain datasets

True, if you replace “linear” with
“polynomial’” above

MmO N w >



ANALYSIS OF PERCEPTRON



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Margin of positive example x4

Margin of negative example x,

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide from Nina Balcan




Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)?% mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan



Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R /~)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

—
- Il

XN N\
Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

T - — — — —-—



Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y(D)} N,

Suppose:
1. Finitesize inputs: ||z(V|| < R
2. Linearly separable data: 40" s.t. ||@7|| = 1 and

Yy (07 - x) > 7, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?




Common

AnalysiS: Percept Misunderstanding:

. The radius is
Perceptron Mistake Boun} . ontared at the

Theorem 0.1 (Block (1962), Novikoff (1 origin, not at the
Given dataset: D = {(x\9) y()} ¥ center of the

1. Finite size inputs: ||zV|| < R
2. Linearly separable data: 40" s.t. ||@7|| = 1 and

Yy (0" - x)) >, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?




Analysis: Perceptron

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak < ||V < BVE

19+ Bk




Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x®), y)I NV

1=

Suppose:
1. Finite size inputs: ||z(V|| < R |'
2. Linearly separable data: 30™ s.t. ||@"|| = 1and |

\

y (0" - xV) >, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?

Algorithm 1 Perceptron Learning Algorithm (Online)

i: procedure PERCEPTRON(D = {(x(M), y(1)), (x(2) 42)) ... })

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y() (%) . x() < 0 then > If mistake
5 OFFL) gk 4 4 (Hx(®) > Update parameters
6 k< k+1
7 return 0




Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak < [|[0FF)]]
o(k+t1)  g* — (g(k) 4 y(’i)X(i))g*
by Perceptron algorithm update
— 9k . g* & y (g% - x)
> 0% . 9* + 5
by assumption
= 9+ . g* > by
by induction on k since 8V = 0
= |0 V|| > ky

since ||[w|| x ||u]| > w-uand||6*|| =1

Cauchy-Schwartz inequality



Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 2: for some B, ||| < BVE
16V = |8 + yOx @2
by Perceptron algorithm update
= 10%]2 + (5212 + 259 (0% x)
< 16™* + (y)?[[x@||?
since kth mistake = y(i)(e(k) x) <0
~ /6% + 2
since (y)?||xW |2 = ||x¥||?> = R? by assumption and (y¥)2 = 1
— |8%+D|12 < kR?
by induction on k since (0(V)% = 0

= ||o"*V] < VER



Analysis: Perceptron

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

By < /0% V|| < VER
=k < (R/v)°

The total number of mistakes
must be less than this



Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire ﬁ999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

Theorem?2. Let((X1, y1), ..., Xm, Ym)) beasequence of labeled examples with ||X;|| < R.
Let u be any vector with ||u|| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = /Y ., d?. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20y




Perceptron Exercises

Question:

Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False



Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is
made, add [ subtract the features

Perceptron will converge if the data are linearly
separable, it will not converge if the data are

linearly inseparable

For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

Extensions support nonlinear separators and
structured prediction



Perceptron Learning Objectives

You should be able to...

Explain the difference between online learning and
batch learning

Implement the perceptron algorithm for binary
classification [CIML]

Determine whether the perceptron algorithm will
converge based on properties of the dataset, and
the limitations of the convergence guarantees

Describe the inductive bias of perceptron and the
imitations of linear models

Draw the decision boundary of a linear model
dentify whether a dataset is linearly separable or not
Defend the use of a bias term in perceptron




