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Reminders

* Homework 8: Reinforcement Learning
— Out: Wed, Apr 10
— Due: Wed, Apr 24 at 11:59pm
* Homework 9: Learning Paradigms
— Out: Wed, Apr 24
— Due: Wed, May 1 at 11:59pm

* Today’s In-Class Poll
— http://p26.micourse.org
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Learning Paradigms

Paradigm

Supervised

— Regression

— Classification

< Binary classification
< Structured Prediction
Unsupervised

< Clustering

— Dimensionality Reduction
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

Data

D={x" 3y}, x~p*()andy=c*()
y e R

y@ e {1,...,K}

y@ e {+1,-1}

y' is a vector

D={xW}Y, x~p*()

predict {z(V}V, where z(¥) € {1,..., K}
convert eachx'’) € RM toul" € RX with K << M
D = (x50}, U (xO)

D = {(x(l),y(l)), (x(2), @) (x(3), 43, .. }

D = {xW}¥ | and can query y'*) = ¢*(-) at a cost
D = {(sV,aM), (s@,a®),.. }

D = {(3(1),0(1)#(1)),(3('2)’0,(2)!.,42)),_'_}



DIMENSIONALITY REDUCTION



PCA Outline

* Dimensionality Reduction

— High-dimensional data

— Learning (low dimensional) representations
* Principal Component Analysis (PCA)

— Examples: 2D and 3D

— Data for PCA

— PCA Definition

— Objective functions for PCA

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors /
Eigenvalues

 PCA Examples
— Face Recognition
— Image Compression



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Image from (Wehbe et al., 2014)

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:
— Customer Purchase Data
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Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques
for extracting hidden (potentially lower dimensional) structure

from high dimensional datasets.

Useful for:
e Visualization

* More efficient use of resources
(e.g., time, memory, communication)

* Statistical: fewer dimensions = better generalization

 Noise removal (improving data quality)

* Further processing by machine learning algorithms

Slide from Nina Balcan



L
O
-
O
X
Ll
)
-
U
)
-
O
L
Ve



https://www.youtube.com/watch?v=MlJN9pEfPfE

PRINCIPAL COMPONENT
ANALYSIS (PCA)



PCA Outline

* Dimensionality Reduction
— High-dimensional data
— Learning (low dimensional) representations

* Principal Component Analysis (PCA)

— Examples: 2D and 3D

— Data for PCA

— PCA Definition

— Objective functions for PCA

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors [ Eigenvalues
* PCA Examples

— Face Recognition

— Image Compression



Principal Component Analysis (PCA)

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

|dentifying the axes is known as Principal Components Analysis, and can be

obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset
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15t PCA axis

Slide from Barnabas Poczos
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2"d PCA axis
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Principal Component Analysis (PCA)

Whiteboard
— Data for PCA
— PCA Definition
— Objective functions for PCA



Data for PCA

T (x()T'

D — {xN < (x(2)T
- 1=1

(x0T

We assume the data is centered

e
_ (1) _
= ;_1 x\" =0

Q: What if A: Subtract
your data is off the
not centered? sample mean



Sample Covariance Matrix

The sample covariance matrix is given by:
N

1 i i
Sie =~ 2@ = u) (@ — )
1=1

Since the data matrix is centered, we rewrite as:
——
| (X( ))

_ T <« (CNT
> NXX < (.)

(x0T



Maximizing the Variance

Quiz: Consider the two projections below
1. Which maximizes the variance?
2.  Which minimizes the reconstruction error?

Option A Option B

25



Principal Component Analysis (PCA)

Whiteboard

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors /
Eigenvalues



PCA

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
1x® = (vIxD)v|? = [|xD)? - (vx?)? (1)

since viv = ||v||? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

l\r
* _ - (1) _ (1) )y |2
v dﬁ%fréllll N ZHx Txyy|| (2)
J\r
g S — (1) ]2
argmin lex 17 = (vIx¥)? (3)
LA
= argmax — z(vl x(1))2 (4)
vi||v]|?=1 i=1

(5)
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PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance minimization).

Vi = argmax v! $v (1)
vi||v||*=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

LV,\)=vIZv - Aviv-1) (2)
Taking the derivative of the Lagrangian and setting to zero gives:

d

o (vIEv-Aviv-1)=0 (3)
v—Av=_0 (4)
v =Av (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue A such that:

Av = \v (6)

28



SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:
A =UAVT (1)

where A is a diagonal matrix, and U and V are orthogonal matrices.
Suppose we obtain an SVD of our data matrix X, so that:

X = UAVT (1)

Now consider what happens when we rewrite ¥ = %XTX terms
of this SVD.

1

== XX )
= H(UAVT)T (UAVT) G)
= G(VATUT)(UAVT) (@)
= %VATAVT (5)
= %V(A)2VT (6)

Above we used the fact that U”U = I since U is orthogonal by
definition.

29



Principal Component Analysis (PCA)

Thus, the eigenvalue 4 denotes the amount of variability _
captured along that dimension (aka amount of energy along that
dimension).

Slide from Nina Balcan



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 _ Variance (%) = ratio of variance along
given principal component to total
0 . variance of all principal components
£ 15 |
[}] —
o
&
= 10 A
©
> __
5 4
JH H B H A A mem

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose

much
— Mdimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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PCA EXAMPLES



Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to K components

2. Report percent of variance explained for K components

3. Then project back up to 25x25 image to visualize how much information was preserved

Original Image

95% of Explained Variance
0

90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components 43 components 11 components

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20
784 components 154 components 87 components 43 components 11 components

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

784 components 154 components 87 components 43 components 11 components

0 5 10 15 20 25 10 15 20



Projecting MNIST digits

Task Setting:
1.  Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

I
w
o

34



Projecting MNIST digits

Task Setting:
1.  Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points
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Learning Objectives

Dimensionality Reduction /| PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

|dentify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



