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Reminders

• Homework 7: HMMs
– Out: Fri, Mar 29
– Due: Mon, Apr 15 at 11:59pm

• Homework 8: Reinforcement Learning
– Out: Wed, Apr 10
– Due: Wed, Apr 24 at 11:59pm

• Today’s In-Class Poll
– http://p23.mlcourse.org
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Q&A
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MARKOV DECISION PROCESSES
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Markov Decision Process

• For supervised learning the PAC learning 
framework provided assumptions about 
where our data came from:

• For reinforcement learning we assume our 
data comes from a Markov decision process 
(MDP)
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Markov Decision Process

Whiteboard
– Components: states, actions, state transition 

probabilities, reward function
– Markovian assumption
– MDP Model
– MDP Goal: Infinite-horizon Discounted Reward
– deterministic vs. nondeterministic MDP
– deterministic vs. stochastic policy
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Exploration vs. Exploitation

Whiteboard
– Explore vs. Exploit Tradeoff
– Ex: k-Armed Bandits
– Ex: Traversing a Maze
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FIXED POINT ITERATION
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Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of 

equations
• It can also be applied to optimization.
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1. Given objective function:
2. Compute derivative, set to 

zero (call this function f ).
3. Rearrange the equation s.t.

one of parameters appears on 
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓) ) ✓i = g(✓)

✓(t+1)
i = g(✓(t))



Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of 

equations
• It can also be applied to optimization.
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3. Rearrange the equation s.t.

one of parameters appears on 
the LHS.
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Fixed Point Iteration for Optimization
We can implement our 
example in a few lines of 
python.
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Fixed Point Iteration for Optimization
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$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001
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VALUE ITERATION
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Definitions for Value Iteration

Whiteboard
– State trajectory
– Value function
– Bellman equations
– Optimal policy
– Optimal value function
– Computing the optimal policy
– Ex: Path Planning
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RL Terminology

Terms:
A. a reward function

B. a transition probability

C. a policy

D. state/action/reward triples

E. a value function

F. transition function

G. an optimal policy

H. Matt’s favorite statement
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Statements:
1. gives the expected future 

discounted reward of a state

2. maps from states to actions

3. quantifies immediate success of 

agent

4. is a deterministic map from 

state/action pairs to states

5. quantifies the likelihood of landing 

a new state, given a state/action 

pair

6. is the desired output of an RL 

algorithm

7. can be influenced by trading off 

between exploitation/exploration

Question: Match each term (on the left) to the 
corresponding statement or definition (on the right)



Value Iteration

Whiteboard
– Value Iteration Algorithm
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Value Iteration
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Value Iteration Convergence
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Provides 
reasonable 

stopping criterion 
for value iteration

Often greedy policy 
converges well 

before the value 
function

Holds for both 
asynchronous and 

sychronous
updates

very abridged


