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Reminders

* Homework 7: HMMs
— Out: Fri, Mar 29
— Due: Wed, Apr 10 at 11:59pm

* Today’s In-Class Poll
— http://[p22.mlcourse.org







GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

. This follows f ;
is follows from P(Xl.“Xn)=Hp(XiIparents(Xl-))
=1

-l [P X, x)
i=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Proof of
conditional
independence

Whiteboard

(The other two
cases can be
shown just as
easily.)
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The “Burglar Alarm” example

*  Your house has a twitchy burglar
: y & Burglar Earthquake
alarm that is also sometimes
triggered by earthquakes.

* Earth arguably doesn’t care %

whether your house is currently

being burgled Phone Call

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the @

node’s parents, children, and @ @
co-parents. @

Thm: a node is conditionally @ @ @ @

independent of every other
node in the graph given its
Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node Example: The Markov
are the parents of its children Blanket of X, is

X3 Xy Xs, X Xoy X
Def: the Markov Blanket of a X5 Xy X5 Xy Xo, Xio}
node is the set containing the @
node’s parents, children, and
comparents. © @

Theorem: a node is @ @ @ @

conditionally independent of

every other node in the graph
given its Markov blanket @ @ @



Markov Blanket

Example: The Markov
Blanket of Xj is
X, Xy X5, Xg Xo, X0}

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov blanket

X]Z

”

Parents

8 o ®

Co-parents

Children @



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from Xto Z is “blocked”.

A pathis “blocked” whenever:
1.  3dYonpaths.t. YEEandYisa “common parent”

O -O-@O -0

2. 3AYonpaths.t.YEEandYisina *“cascade”

o'oY Youo

3. 3AYon paths.t. {Y, descendants(Y)} € Eand Yisina “v-structure”

O OO -0
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D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodes in E

Example Query: A 1L B|{D, E}

Original: Moral: Undirected:

T O T O T 0T O e
= not d-separated
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SUPERVISED LEARNING FOR
BAYES NETS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE
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Learning Fully Observed BNs

@ @ p(X17X27X37X47X5) —
= p(X5|X3)p(X4| X2, X3)

) () p(X3)p(Xa2| X1)p(X7)



Learning Fully Observed BNs

- S p(X1, Xo, X3, X4, X5) =
= p(X5|X3)p(X4| X2, X3)

%)  (x) p(X3)p(X2| X1 )p(X1)



Learning Fully Observed BNs

- S p(X1, Xo, X3, X4, X5) =
= p(X5|X3)p(X4| X2, X3)
%)  (x) p(X3)p(X2| X1 )p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(Xla X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small / simple) independent P(X3)p(X2| X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net? 0" = argmax log p(X1 , XQ, Xg, X4, X5)
0

@ — argznaxlogp(X5]X3,t95) + log p(X4| X2, X3, 0,4)
+ log p(X3|03) + log p(X2| X1, 02)
@ @ + log p(X1104)

67 = argmaxlog p(X1|01)

01
@ @ 65 = argmax log p( X5 | X1, 05)

02

05 = argmax log p(X3|03)
03

0, = argmaxlog p(X4[Xo, X3, 04)
04

9; — argmax lng(X5 Xg, (95)

95 28



Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.  How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2.  How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
5. How do we compute conditional marginal probabilities? P

PH|C=0)=... <:|



Gibbs Sampling




Gibbs Sampling

L (t+1)




Gibbs Sampling




Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
Yoo Yo eeen Yo~ p(yn Yo eees Yy | Ky Xy eeey X )

Approximate) Solution:
— Initialize y,(©), y,(), ..., y (®) to arbitrary values
— Fort=1,2,...:
© YD~y | Y29, e, v, X X, )
© Y~y |y, v,y X X, e X))
¢ yB(t+1) ~ p(y3 I Y1(t+1); yz(t+1)7 y4(t)7 ooy YJ(t)r ASTRSTRYTER )

‘ yJ(tH) ~ p(yJ | y1(t+1)r yz(t+1)) sy yJ—1(t+1)7 X1y Xy ooy X} )

Properties:
— This will eventually yield samples from
p(yv Yoreeer Yy I Kiy Xy eeey X} )

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods

40



Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




Learning Objectives

Bayesian Networks

You should be able to...

1.

W

U1

11.

|dentify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendenciesin a
Bayesian network

Employ a Markov blanket to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



LEARNING PARADIGMS



Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

< Binary classification

— Structured Prediction

D = {x, yN
y e R

y e {1,...,K}
y € {+1,-1}

y'¥ is a vector

x~p*(-)andy = c*(-)

60



Learning Paradigms

Paradigm

Data

Supervised

= Regression

< Classification

— Binary classification
— Structured Prediction

Unsupervised

D = {xV,yW}X,
y) eR

y e {1,...,K}
y e {+1,-1}
y'¥ is a vector

D = {X(i)}i\;l

x~p*(-)andy = c*(-)

x ~p*(-)

61



Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

< Binary classification
< Structured Prediction
Unsupervised

Semi-supervised

D={x"yW}Y,  x~p*()andy=c()
y(‘) e R

yW e {+1,-1}

y'" is a vector

D={x"}N, x~p*()
D = {x@,y®O}1 U {x}72
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

— Classification

— Binary classification
< Structured Prediction
Unsupervised
Semi-supervised

Online

D={xDy Y, x~p*()andy=c*()
y eR

ye{l,..., K}

y e {+1,-1}

y'#) is a vector

D={x"}L, x~p*()

D = {x@,y®O}1, U {x}7

D = {(x1),yM), (x?,y@), (x*),y@),...}

63



Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

D={xWy"} Y, x~p*()andy=c*(-)
y) eR

ye{l,...,K}

yW e {+1,-1}

y'") is a vector

D={x"}N,  x~p*()

D = {x®, 5O} U {xD}2,

D = {(xV,yW), (x2),y2)), (x®),y3),.. .}

D = {xV}¥  and can query y'*) = ¢*(-) at a cost
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

— Binary classification
«— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning

Imitation Learning

D={x"yW}, x~p*()andy=c'()
yeR

ye{1,...,K}

y e {+1,-1}

y') is a vector

D={x"}Y, x~p()

D = {x,y O}, U (xD}N2,

D — {(x(l)!y(l)), (x("’),ym), (x(3),y(3)),...}

D = {x"}¥ | and can query y'") = ¢*(-) at a cost
D = {(s'V,aV)), (s2),a?),...}
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D={xDyW}L, x~p*()andy=c()
y e R

ye{l,...,K}

y e {+1,-1}

y') is a vector

D={x}Y, x~p*()

D = {x@,y®O}1 U (xD} ]2,

D= {(x(l),y(l)), (x(2),y(2)), (x(3),y(3)),...}
D = {x"}¥ | and can query y'") = ¢*(-) at a cost
D = {(sV,aV)), (52),a(?),...}

D — {(3(1),0(1)”(1)),(8(2),0(2),,‘(2)),...}
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REINFORCEMENT LEARNING



Examples of Reinforcement Learning

s

* How should a robot behave so as C@!.@;\ljﬁe)
m ®

to optimize its “performance’”? m |
(Robotics) AW |

Y T
e How to automate the motion of - .
a helicopter? (Control Theory) '

* How to make a good chess-playing b -
program? (Artificial Intelligence) =

© Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:


https://www.youtube.com/watch?v=VCdxqn0fcnE

Robotin a room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP '
10% move LEFT

10% move RIGHT

« reward +1 at [4,3], -1 at [4,2]
« reward -0.04 for each step

* what’s the strategy to achieve max reward?
* what if the actions were NOT deterministic?

© Eric Xing @ CMU, 2006-2011
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History of Reinforcement Learning

Roots in the psychology of animal learning
(Thorndike,1911).

Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

© Eric Xing @ CMU, 2006-2011 71



What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed

effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

© Eric Xing @ CMU, 2006-2011
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© Eric Xing @ CMU, 2006-2011



Reward for each step -2
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Rew
ard
for each step
:-0.1
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The Precise Goal

To find a policy that maximizes the Value function.
— transitions and rewards usually not available

There are different approaches to achieve this goal in
various situations.

Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

© Eric Xing @ CMU, 2006-2011

77



MARKOYV DECISION PROCESSES



Markov Decision Process

* For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

x ~p“(-)andy = c"(-)

* For reinforcement learning we assume our
data comes from a Markov decision process
(MDP)



Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy



Exploration vs. Exploitation

Whiteboard

— Explore vs. Exploit Tradeoff
— Ex: k-Armed Bandits
— Ex: Traversing a Maze



