

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Bayesian Networks

Matt Gormley Lecture 21 Apr. 3, 2019

Reminders

- Midterm Exam 2
 - Thu, Apr 4 evening exam, details announced on Piazza
- Homework 7: HMMs
 - Out: Fri, Mar 29
 - Due: Wed, Apr 10 at 11:59pm
- Today's In-Class Poll
 - http://p21.mlcourse.org

Question 1: Do you prefer chalkboard or digital whiteboard?

- Midterm Exam 1 Survey
 - https://piazza.com/class/jqnuz4ysoi96rm?cid=1806

Reminders

Congratulations to our top Piazza Question Answerers for Midterm 1!

- 1. ba98959f457ec10d1272
- 2. 1465abbd2641a9a32459
- 3. 7636d8d965fd2e29626e
- 4. a3e3c79fc6310b5e54f6
- 5. 6112f1d4b2ad6ec178ff
- 6. c7b99972d87f77e0288f
- 7. 927e79510079b78549f4
- 8. 40ba2f9595a25edf584c
- 9. 1a2628b684e892154cf4
- 10. 73ab4e60182a6aa0ee40
- 11. 305fc04247ce71f3ba06
- 12. 9094a77492aa4fb6ec94

*Names passed through one-way crytographic hashing function (shake-256 with digest length 10) for FERPA compliance



Q&A

Bayes Nets Outline

Motivation

Structured Prediction

Background

- Conditional Independence
- Chain Rule of Probability

Directed Graphical Models

- Writing Joint Distributions
- Definition: Bayesian Network
- Qualitative Specification
- Quantitative Specification
- Familiar Models as Bayes Nets

Conditional Independence in Bayes Nets

- Three case studies
- D-separation
- Markov blanket

Learning

- Fully Observed Bayes Net
- (Partially Observed Bayes Net)

Inference

- Background: Marginal Probability
- Sampling directly from the joint distribution
- Gibbs Sampling

THE FORWARD-BACKWARD ALGORITHM

Forward-Backward Algorithm

Define:
$$\alpha_{\ell}(k) \triangleq p(x_1, ..., x_{\ell}, y_{\ell} = k)$$
 $\beta_{\ell}(k) \triangleq p(x_{\ell+1}, ..., x_{\ell} | y_{\ell} = k)$
 $\beta_{\ell}(k) \triangleq p(x_{\ell+1}, ..., x_{\ell} | y_{\ell} = k)$
 $\gamma_{\ell+1} = \epsilon_{\ell}$
 $\gamma_{\ell+1} = \epsilon_{$

Derivation of Forward Algorithm

Viterbi Algorithm

Define:
$$\omega_{\xi}(k) \triangleq \max_{y_1, \dots, y_{\xi-1}, y_{\xi-1}, y_{\xi}=k} p(x_1, \dots, x_{\xi}, y_1, \dots, y_{\xi-1}, y_{\xi}=k)$$

"backpains" $\longrightarrow b_{\xi}(k) \triangleq \alpha_{fg} \max_{x_{\xi}} p(x_1, \dots, x_{\xi}, y_1, \dots, y_{\xi-1}, y_{\xi}=k)$

Assume $y_0 = START$

(1) Initialize $\omega_0(START) = 1$ $\omega_0(k) = 0$ $\forall k \neq START$

(2) For $t = 1, \dots, T$:

For $k = 1, \dots, K$:

 $\omega_{\xi}(k) = \sum_{j \in \{1, \dots, K\}} p(x_{\xi} | y_{\xi} = k) \omega_{k-1}(j) p(y_{\xi} = k | y_{\xi-1} = j)$
 $b_{\xi}(k) = \sum_{j \in \{1, \dots, K\}} p(x_{\xi} | y_{\xi} = k) \omega_{k-1}(j) p(y_{\xi} = k | y_{\xi-1} = j)$

(3) Compute Most Probable Assignment

 $\hat{y}_T = b_{T+1}(END)$
For $t = T-1, \dots, 1$
 $\hat{y}_{\xi} = b_{\xi+1}(\hat{y}_{\xi+1})$

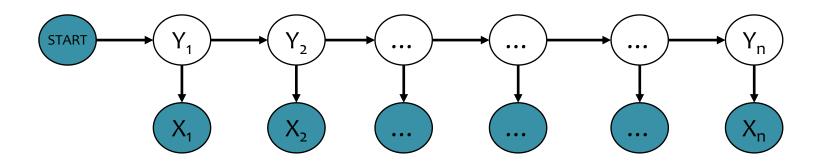
The backpoints"

Inference in HMMs

What is the **computational complexity** of inference for HMMs?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, O(K^T)
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, O(T*K²)
 - Thanks to dynamic programming!

Shortcomings of Hidden Markov Models



- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

MBR DECODING

Inference for HMMs

FOUR

- Three Inference Problems for an HMM
 - Evaluation: Compute the probability of a given sequence of observations
 - 2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
 - 3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations
 - 4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case)

Minimum Bayes Risk Decoding

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$egin{aligned} h_{m{ heta}}(m{x}) &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})] \\ &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y}) \end{aligned}$$

Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} \ p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

Learning Objectives

Hidden Markov Models

You should be able to...

- 1. Show that structured prediction problems yield high-computation inference problems
- 2. Define the first order Markov assumption
- 3. Draw a Finite State Machine depicting a first order Markov assumption
- 4. Derive the MLE parameters of an HMM
- 5. Define the three key problems for an HMM: evaluation, decoding, and marginal computation
- 6. Derive a dynamic programming algorithm for computing the marginal probabilities of an HMM
- 7. Interpret the forward-backward algorithm as a message passing algorithm
- 8. Implement supervised learning for an HMM
- 9. Implement the forward-backward algorithm for an HMM
- 10. Implement the Viterbi algorithm for an HMM
- 11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: Tornado Alarms



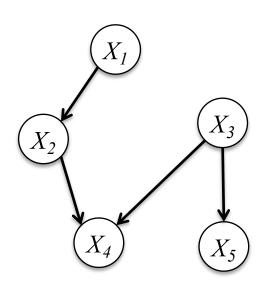
- I. Imagine that you work at the 911 call center in Dallas
- 2. You receive six calls informing you that the Emergency Weather Sirens are going off
- 3. What do you conclude?

Directed Graphical Models (Bayes Nets)

Whiteboard

- Example: Tornado Alarms
- Writing Joint Distributions
 - Idea #1: Giant Table
 - Idea #2: Rewrite using chain rule
 - Idea #3: Assume full independence
 - Idea #4: Drop variables from RHS of conditionals
- Definition: Bayesian Network

Bayesian Network



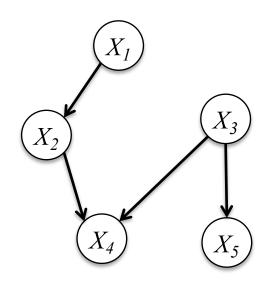
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Bayesian Network

Definition:



$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data (i.e. structure learning)
 - We simply prefer a certain architecture (e.g. a layered graph)

— ...

Quantitative Specification

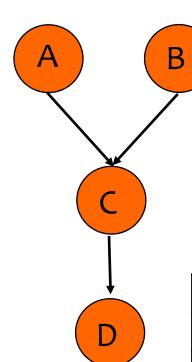
Example: Conditional probability tables (CPTs)

for discrete random variables

a ⁰	0.75
a ¹	0.25

b^0	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)



	a ⁰ b ⁰	a ⁰ b ¹	a ¹ b ⁰	a¹b¹
\mathbf{c}_0	0.45	1	0.9	0.7
c ¹	0.55	0	0.1	0.3

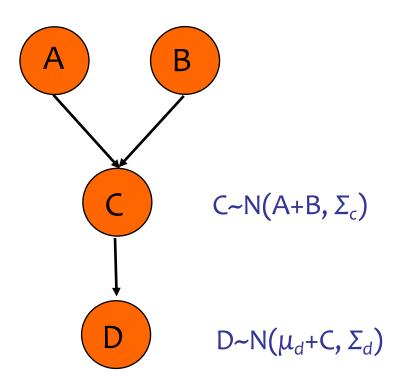
	c ⁰	C ¹
d_0	0.3	0.5
d ¹	07	0.5

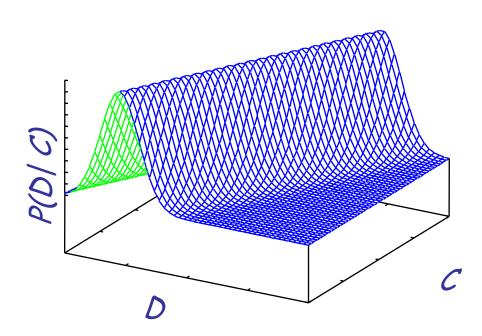
Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables

$$A \sim N(\mu_a, \Sigma_a)$$
 $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)





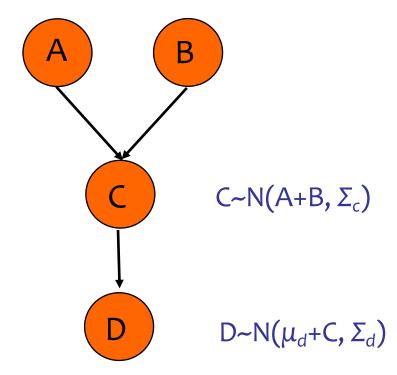
Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

a^0	0.75
a ¹	0.25

b^0	0.33
b ¹	0.67

P(a,b,c.d) =
P(a)P(b)P(c a,b)P(d c)

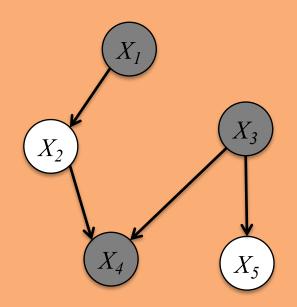


Observed Variables

 In a graphical model, shaded nodes are "observed", i.e. their values are given

Example:

$$P(X_2, X_5 \mid X_1 = 0, X_3 = 1, X_4 = 1)$$



Familiar Models as Bayesian Networks

Question:

Match the model name to the corresponding Bayesian Network

- 1. Logistic Regression
- 2. Linear Regression
- 3. Bernoulli Naïve Bayes
- 4. Gaussian Naïve Bayes
- 5. 1D Gaussian

Answer:

