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Reminders

Midterm Exam 2

— Thu, Apr 4 - evening exam, details announced on
Piazza

Homework 7: HMMs

— Out: Fri, Mar 29
— Due: Wed, Apr 10 at 11:59pm

Question 1: Do you

Today’s In-Class Poll , prefer chalkboard or
— http://p21.micourse.org digital whiteboard?

Midterm Exam 1 Survey
— https://piazza.com/class/jgqnuz4ysoig6rm?2cid=1806




Reminders

Congratulations to our top Piazza
Question Answerers for Midterm 1!
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Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

—  Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

—  (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution

—  Gibbs Sampling



THE FORWARD-BACKWARD
ALGORITHM



Forward-Backward Algorithm
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Derivation of Forward Algorithm
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Viterbi Algorithm
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Inference in HMMs

What is the computational complexity of
inference for HMMSs?

* The naive (brute force) computations for

Evaluation, Decoding, and Marginals take
exponential time, O(K')

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 12



MBR DECODING



Inference for HMMs

o
— /hrélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder /(x) returns
the variable assignment with minimum expected loss
under the model’s distribution
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Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

2.  Define the first order Markov assumption

3.  Draw a Finite State Machine depicting a first order Markov assumption

4. Derive the MLE parameters of an HMM

5. Define the three key problems for an HMM: evaluation, decoding, and

marginal computation

6. Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

7.  Interpret the forward-backward algorithm as a message passing algorithm

8. Implement supervised learning for an HMM

9. Implement the forward-backward algorithm for an HMM

10. Implement the Viterbi algorithm for an HMM

11.  Implement a minimum Bayes risk decoder with Hamming loss for an HMM



DIRECTED GRAPHICAL MODELS



Example: Tornado Alarms

1.

Imagine that
you work at the
911 call center
in Dallas

You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off
What do you
conclude?
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Directed Graphical Models

(Bayes Nets)
Whiteboard

— Example: Tornado Alarms

— Writing Joint Distributions
* Idea #1: Giant Table
* |dea #2: Rewrite using chain rule
* Idea #3: Assume full independence
* Idea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network



Bayesian Network
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Bayesian Network

Definition:

()
(X, & P(X,...X )= ﬁP(X,. | parents(X;))

* A Bayesian Network is a directed graphical model
* |t consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)
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Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables

bO

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d]c)

P(a,b,c.d) =

a’bo a’b? a'bo a'b?
cO 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
c? c’
0.3 [0.5
07 |05

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Conditional probability density functions (CPDs)

for continuous random variables
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Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0

0.75

bO

o2 P(a)P(b)P(c[a,b)P(d|c)

at

0.25

b1

P(a,b,c.d) =

0.67

|
o)

C~N(A+B, X.)

D~N(“d+cr Zd)
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Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian

Networks
Question: Answer:

Match the model name to

the corresponding Bayesian (v (7)
Network
1. Logistic Regression (0) (o) = ()| | @D @ - @

Linear Regression

Bernoulli Naive Bayes (x) (x) = (x,) ) & - @
Gaussian Naive Bayes ! 5; /‘
1D Gaussian (7 O

VR W

(1)




