
Bayesian Networks

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 21

Apr. 3, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Midterm Exam 2

– Thu, Apr 4 – evening exam, details announced on

Piazza

• Homework 7: HMMs

– Out: Fri, Mar 29

– Due: Wed, Apr 10 at 11:59pm

• Today’s In-Class Poll

– http://p21.mlcourse.org

• Midterm Exam 1 Survey

– https://piazza.com/class/jqnuz4ysoi96rm?cid=1806
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Question 1: Do you 
prefer chalkboard or 
digital whiteboard?



Reminders
Congratulations to our top Piazza 
Question Answerers for Midterm 1!
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*Names passed through one-way
crytographic hashing function
(shake-256 with digest length 10) 
for FERPA compliance

1. ba98959f457ec10d1272
2. 1465abbd2641a9a32459
3. 7636d8d965fd2e29626e
4. a3e3c79fc6310b5e54f6
5. 6112f1d4b2ad6ec178ff
6. c7b99972d87f77e0288f
7. 927e79510079b78549f4
8. 40ba2f9595a25edf584c
9. 1a2628b684e892154cf4
10. 73ab4e60182a6aa0ee40
11. 305fc04247ce71f3ba06
12. 9094a77492aa4fb6ec94



Q&A
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Bayes Nets Outline

• Motivation
– Structured Prediction

• Background
– Conditional Independence

– Chain Rule of Probability

• Directed Graphical Models
– Writing Joint Distributions

– Definition: Bayesian Network

– Qualitative Specification

– Quantitative Specification

– Familiar Models as Bayes Nets

• Conditional Independence in Bayes Nets
– Three case studies

– D-separation

– Markov blanket

• Learning
– Fully Observed Bayes Net

– (Partially Observed Bayes Net)

• Inference
– Background: Marginal Probability

– Sampling directly from the joint distribution

– Gibbs Sampling
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THE FORWARD-BACKWARD 
ALGORITHM
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Forward-Backward Algorithm
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Derivation of Forward Algorithm
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Derivation:

Definition:



Viterbi Algorithm
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Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!
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Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  
– NLP example: In a sentence segmentation task, each segmental state may depend 

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 

task, we need the conditional probability P(Y|X)
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MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

15

h
✓

(x) = argmin
ŷ
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The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:
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The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption

4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal 

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm

8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM

10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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DIRECTED GRAPHICAL MODELS
Bayesian Networks
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Example: Tornado Alarms
1. Imagine that 

you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?
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Directed Graphical Models 
(Bayes Nets)

Whiteboard
– Example: Tornado Alarms
– Writing Joint Distributions
• Idea #1: Giant Table
• Idea #2: Rewrite using chain rule
• Idea #3: Assume full independence
• Idea #4: Drop variables from RHS of conditionals

– Definition: Bayesian Network
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Bayesian Network
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p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P
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X1

X3X2

X4 X5

Definition:

P(X1…Xn ) = P(Xi | parents(Xi ))
i=1

n

∏



Qualitative Specification

• Where does the qualitative specification 

come from?

– Prior knowledge of causal relationships

– Prior knowledge of modular relationships

– Assessment from experts

– Learning from data (i.e. structure learning)

– We simply prefer a certain architecture (e.g. a 

layered graph) 

– …
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification
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Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification
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Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification
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Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are 
“observed”, i.e. their values are given
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X1

X3X2

X4 X5



Familiar Models as Bayesian 
Networks
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Question:
Match the model name to 
the corresponding Bayesian 
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian 

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

µ σ2

X

A B

C D

E F


