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Reminders

• Homework 6: Learning Theory / Generative Models
– Out: Fri, Mar 22
– Due: Fri, Mar 29 at 11:59pm (1 week)

• Midterm Exam 2
– Thu, Apr 4 – evening exam, details announced on Piazza

• Homework 7: HMMs
– Out: Fri, Mar 29
– Due: Wed, Apr 10 at 11:59pm

• Today’s In-Class Poll
– http://p20.mlcourse.org
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THE FORWARD-BACKWARD 
ALGORITHM
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Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)



time flies like an arrow

n v p d n<START>

Hidden Markov Model
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.
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X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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X3X2X1
find preferred tags
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Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …
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Forward-Backward Algorithm
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find preferred tags
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
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find preferred tags
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Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

B(START,v)

B(v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)

A(tags,n)
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X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product weight of one path
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n
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find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v
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X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags
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path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals
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b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)·β(n) isn’t enough.

The extra weight is the 
opinion of the emission 

probability at this variable.
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

v

α2(v) A(pref., v) b2(v)

n

v

“belief that Y2 = n”
α2(v) b2(v)

“belief that Y2 = v”

A(pref., v)
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
n 0
a 0.4

v 0.2
n 0
a 0.8

divide 
by Z=0.5 

to get 
marginal 

probs
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70

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Inference for HMMs

Whiteboard
– Derivation of Forward algorithm
– Forward-backward algorithm
– Viterbi algorithm
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Derivation of Forward Algorithm
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Derivation:

Definition:



Forward-Backward Algorithm
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Viterbi Algorithm
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Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!
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Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  
– NLP example: In a sentence segmentation task, each segmental state may depend 

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 

task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 76
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MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)

78

Four



Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

79

h
✓
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y⇠p✓(·|x)[`(ŷ,y)]
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The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

80

`(ŷ,y) = 1� I(ŷ,y)
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The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption

4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal 

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm

8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM

10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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MIDTERM EXAM LOGISTICS
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Midterm Exam
• Time / Location

– Time: Evening Exam
Thu, Apr. 4 at 6:30pm – 8:00pm

– Room: We will contact each student individually with your room 
assignment. The rooms are not based on section. 

– Seats: There will be assigned seats. Please arrive early. 
– Please watch Piazza carefully for announcements regarding room / seat 

assignments.
• Logistics

– Covered material: Lecture 9 – Lecture 18 (95%), Lecture 1 – 8 (5%)
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)

84



Midterm Exam

• How to Prepare
– Attend the midterm review lecture

(right now!)
– Review prior year’s exam and solutions

(we’ll post them)
– Review this year’s homework problems
– Consider whether you have achieved the 

“learning objectives” for each lecture / section
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Midterm Exam
• Advice (for during the exam)
– Solve the easy problems first 

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely 

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the 

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it
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Topics for Midterm 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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Topics for Midterm 2

• Classification
– Binary Logistic 

Regression

– Multinomial Logistic 
Regression

• Important Concepts
– Regularization

– Feature Engineering

• Feature Learning
– Neural Networks

– Basic NN Architectures

– Backpropagation

• Learning Theory
– PAC Learning

• Generative Models
– Generative vs. 

Discriminative

– MLE / MAP

– Naïve Bayes
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SAMPLE QUESTIONS
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Sample Questions
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10-601: Machine Learning Page 9 of 16 2/29/2016

3.2 Logistic regression

Given a training set {(xi, yi), i = 1, . . . , n} where xi 2 Rd is a feature vector and yi 2 {0, 1}
is a binary label, we want to find the parameters ŵ that maximize the likelihood for the
training set, assuming a parametric model of the form

p(y = 1|x;w) = 1

1 + exp(�wTx)
.

The conditional log likelihood of the training set is

`(w) =
nX

i=1

yi log p(yi, |xi;w) + (1� yi) log(1� p(yi, |xi;w)),

and the gradient is

r`(w) =
nX

i=1

(yi � p(yi|xi;w))xi.

(a) [5 pts.] Is it possible to get a closed form for the parameters ŵ that maximize the
conditional log likelihood? How would you compute ŵ in practice?

(b) [5 pts.] What is the form of the classifier output by logistic regression?

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, x 2 {0, 1}d ⇢ Rd,
where feature x1 is rare and happens to appear in the training set with only label 1.
What is ŵ1? Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of ŵ?

10-601: Machine Learning Page 9 of 16 2/29/2016

3.2 Logistic regression

Given a training set {(xi, yi), i = 1, . . . , n} where xi 2 Rd is a feature vector and yi 2 {0, 1}
is a binary label, we want to find the parameters ŵ that maximize the likelihood for the
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10-601B: MACHINE LEARNING Page 5 of ?? 10/10/2016

2 To err is machine-like [20 pts]

2.1 Train and test errors
In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data Dtrain, and tested on a separate
test set Dtest. You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to 0.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size.

(b) Decrease the training data size.

(c) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

(d) Decrease model complexity.

(e) Train on a combination of Dtrain and Dtest and test on Dtest

(f) Conclude that Machine Learning does not work.

2. [5 pts] Explain your choices.

3. [2 pts] What is this scenario called?

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?
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(a) (b)

2.2 True and sample errors
Consider a classification problem with distribution D and target function c⇤ : Rd 7! ±1. For any
sample S drawn from D, answer whether the following statements are true or false, along with a
brief explanation.

1. [4 pts] For a given hypothesis space H , it is possible to define a sufficient size of S such that
the true error is bounded by the sample error by a margin ✏, for all hypotheses h 2 H with a
given probability.

2. [4 pts] The true error of any hypothesis h is an upper bound on its training error on the
sample S.



Sample Questions

93

10-601: Machine Learning Page 12 of 16 2/29/2016

5 Learning Theory [20 pts.]

5.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [3 pts.] T or F: It is possible to label 4 points in R2 in all possible 24 ways via linear
separators in R2.

(b) [3 pts.] T or F: To show that the VC-dimension of a concept class H (containing
functions from X to {0, 1}) is d, it is su�cient to show that there exists a subset of X
with size d that can be labeled by H in all possible 2d ways.

(c) [3 pts.] T or F: The VC dimension of a finite concept class H is upper bounded by
dlog2 |H|e.

(d) [3 pts.] T or F: The VC dimension of a concept class with infinite size is also infinite.

(e) [3 pts.] T or F: For every pair of classes, H1, H2, if H1 ✓ H2 and H1 6= H2, then
VCdim(H1) < VCdim(H2) (note that this is a strict inequality).

(f) [3 pts.] T or F: Given a realizable concept class and a set of training instances, a
consistent learner will output a concept that achieves 0 error on the training instances.
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6 Extra Credit: Neural Networks [6 pts.]

In this problem we will use a neural network to classify the crosses (⇥) from the circles (�) in
the simple dataset shown in Figure 5a. Even though the crosses and circles are not linearly
separable, we can break the examples into three groups, S1, S2, and S3 (shown in Figure 5a)
so that S1 is linearly separable from S2 and S2 is linearly separable from S3. We will exploit
this fact to design weights for the neural network shown in Figure 5b in order to correctly
classify this training set. For all nodes, we will use the threshold activation function

�(z) =

⇢
1 z > 0
0 z  0.

(a) The dataset with groups S1, S2, and S3.

y

h1 h2

x1 x2

w11 w21w12
w22

w31
w32

(b) The neural network architecture

Figure 5

(a) Set S2 and S3 (b) Set S1 and S2 (c) Set S1, S2 and S3

Figure 6: NN classification.
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Figure 6: NN classification.

Can the neural network in Figure (b) correctly classify the dataset given in Figure (a)?

Neural Networks
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Apply the backpropagation algorithm to obtain 
the partial derivative of the mean-squared error 
of y with the true value y* with respect to the 
weight w22 assuming a sigmoid nonlinear 
activation function for the hidden layer.

Neural Networks
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1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed X1, . . . , Xn ⇠ Bernoulli(✓).
We are going to derive the MLE for ✓. Recall that a Bernoulli random variable X takes
values in {0, 1} and has probability mass function given by

P (X; ✓) = ✓X(1� ✓)1�X .

(a) [2 pts.] Derive the likelihood, L(✓;X1, . . . , Xn).

(b) [2 pts.] Derive the following formula for the log likelihood:

`(✓;X1, . . . , Xn) =

 
nX

i=1

Xi

!
log(✓) +

 
n�

nX

i=1

Xi

!
log(1� ✓).

(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: ✓̂ =
1

n
(
Pn

i=1 Xi).
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1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your
answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.

(b) [2 pts.] T or F: Naive Bayes can only be used with MAP estimates, and not MLE
estimates.

1.4 Probability

Assume we have a sample space ⌦. Answer each question with T or F. No justification
is required.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

(b) [1 pts.] T or F: P (A|B) / P (A)P (B|A)
P (A|B)

. (The sign ‘/’ means ‘is proportional to’)

(c) [1 pts.] T or F: P (A [B)  P (A).

(d) [1 pts.] T or F: P (A \B) � P (A).
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1 Naive Bayes, Probability, and MLE [20 pts. + 2 Extra Credit]

1.1 Naive Bayes

You are given a data set of 10,000 students with their sex, height, and hair color. You are
trying to build a classifier to predict the sex of a student, so you randomly split the data
into a training set and a testing set. Here are the specifications of the data set:

• sex 2 {male,female}

• height 2 [0,300] centimeters

• hair 2 {brown, black, blond, red, green}

• 3240 men in the data set

• 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you
might naturally or intuitively make about the dataset) answer each question with T or F
and provide a one sentence explanation of your answer:

(a) [2 pts.] T or F: As height is a continuous valued variable, Naive Bayes is not appropriate
since it cannot handle continuous valued variables.

(b) [2 pts.] T or F: Since there is not a similar number of men and women in the dataset,
Naive Bayes will have high test error.

(c) [2 pts.] T or F: P (height|sex, hair) = P (height|sex).

(d) [2 pts.] T or F: P (height, hair|sex) = P (height|sex)P (hair|sex).
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