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Reminders

• Homework 6: Learning Theory / Generative Models
– Out: Fri, Mar 22
– Due: Fri, Mar 29 at 11:59pm (1 week)

• Midterm Exam 2
– Thu, Apr 4 – evening exam, details announced on Piazza

• Homework 7: HMMs
– Out: Fri, Mar 29
– Due: Wed, Apr 10 at 11:59pm

• Today’s In-Class Poll
– http://p19.mlcourse.org
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Reminders

• Schedule Change:
– Fri (3/29) - Lecture 20: HMMs (Part II) / Midterm 

Exam Review 
– Mon (4/1) - Recitation 7: HW7
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HIDDEN MARKOV MODEL (HMM)
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HMM Outline
• Motivation

– Time Series Data

• Hidden Markov Model (HMM)
– Example: Squirrel Hill Tunnel Closures 

[courtesy of Roni Rosenfeld]
– Background: Markov Models
– From Mixture Model to HMM
– History of HMMs
– Higher-order HMMs

• Training HMMs
– (Supervised) Likelihood for HMM
– Maximum Likelihood Estimation (MLE) for HMM
– EM for HMM (aka. Baum-Welch algorithm)

• Forward-Backward Algorithm
– Three Inference Problems for HMM
– Great Ideas in ML: Message Passing

– Example: Forward-Backward on 3-word Sentence
– Derivation of Forward Algorithm
– Forward-Backward Algorithm
– Viterbi algorithm
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Markov Models

Whiteboard
– Example: Tunnel Closures 

[courtesy of Roni Rosenfeld]
– First-order Markov assumption
– Conditional independence assumptions
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Mixture Model for Time Series Data
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We could treat each (tunnel state, travel time) pair as independent. This 
corresponds to a Naïve Bayes model with a single feature (travel time).
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Hidden Markov Model
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
tunnel states / travel times with an assumption of dependence between 

adjacent tunnel states.
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HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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SUPERVISED LEARNING FOR 
HMMS
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Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
!l(θ)/!θ1 = …
!l(θ)/!θ2 = …
…
!l(θ)/!θM = …

4. Set derivatives to zero and solve for θ
!l(θ)/!θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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MLE of Categorical Distribution
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HMM Parameters:

Hidden Markov Model
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Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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HMM Parameters:

Assumption:
Generative Story: 

Hidden Markov Model
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Y1 Y2 Y3 Y4 Y5Y0

y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Joint Distribution: 

Hidden Markov Model
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y) 

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)} 
where we don’t observe any y’s. 

• This unsupervised learning setting can be achieved by finding 
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm
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Beyond the scope of 

today’s lecture!



HMMs: History

• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion

• Used in Shannon’s work on information theory (1948)

• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.

• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 

modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum

– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.

– McCallum:  multinomial Naïve Bayes for text

– With McCallum, IE using HMMs on CORA

• …
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Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

34

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Hidden 
States, y

Observa
-tions, x



BACKGROUND: MESSAGE PASSING

35



Great Ideas in ML: Message Passing
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Count the soldiers

36
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 
behind 
you

2 
before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 of 
us

only see
my incoming
messages

2 31

Count the soldiers
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adapted from MacKay (2003) textbook
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Great Ideas in ML: Message Passing

4 
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1 before
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there's
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only see
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Count the soldiers
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Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree

39
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of  tree
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adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of  tree
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adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us

wouldn't work correctly

with a 'loopy' (cyclic) graph
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adapted from MacKay (2003) textbook



THE FORWARD-BACKWARD 
ALGORITHM
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Inference
Question:
True or False: The joint probability of the observations 
and the hidden states in an HMM is given by:
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Recall:



Inference
Question:
True or False: The probability of the observations 
in an HMM is given by:
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Recall:



Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations
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