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Reminders

Homework 6: Learning Theory [ Generative Models
— Out: Fri, Mar 22
— Due: Fri, Mar 29 at 11:59pm (1 week)

Midterm Exam 2

— Thu, Apr 4 - evening exam, details announced on Piazza
Homework 7: HMMs

— Out: Fri, Mar 29

— Due: Wed, Apr 10 at 11:59pm

Today’s In-Class Poll
— http://[p19.mlcourse.org




Reminders

* Schedule Change:

— Fri (3/29) - Lecture 20: HMMs (Part Il) [ Midterm
Exam Review

— Mon (4/1) - Recitation 7: HW7




HIDDEN MARKOV MODEL (HMM)



HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models

— From Mixture Model to HMM

— History of HMMs

— Higher-order HMMs
Training HMMs

— (Supervised) Likelihood for HMM

— Maximum Likelihood Estimation (MLE) for HMM

— EM for HMM (aka. Baum-Welch algorithm)
Forward-Backward Algorithm

— Three Inference Problems for HMM

— Great Ideas in ML: Message Passing

— Example: Forward-Backward on 3-word Sentence

— Derivation of Forward Algorithm

— Forward-Backward Algorithm
— Viterbi algorithm



Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0,5,8,0,C,2m,3m, 18m,9m,27m) =  (.8* 2% 1% 03%*...)
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states / travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,8,0,C,2m,3m, 18m,9m,27m) = (.8 *.08 * 2*.7% .03 %*...)
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From Mixture Model to HMM

P(X,|Y;)p

E'ﬂ

““Naive Bayes”: =




From Mixture Model to HMM

T
“Naive Bayes””: H (X¢[Ye)p

. T

T
P(X,Y[|Yp) = | | P(Xe|¥2)p(Ye|Yi-1)
t=1




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x() ~ p(x|6)
Write log-likelihood

40) =log p(x[0) + ... +log p(x(V)|O)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/06, = ...
Set derivatives to zero and solve for
0((0)/00,,=0forallme{y,..., M}

OMLE -

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M -sided (weighted) die NV times. That is, we have data

D= {x(i)}fil

where z(") € {1,..., M} and z(¥) ~ Categorical(¢).

2. Arandom variable is Categorical written X ~ Categorical(¢)
iff
P(X =z) =p(z;¢) =
wherez € {1,..., M} and Zm  ®m = 1. The log-likelihood
of the data becomes

M

Zlog(bm(t) s.t. Z (bm =1

m=1

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N i
HMLE _ Na=m _ > izt Iz =m)
m N N
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Hidden Markov Model
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Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs

Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, Vt, k

Assumption: yo = START : ﬁ

Generative Story: For notational
. . convenience, we fold the
th ~ Multinomial (BYt_l ) vt initial probabilities C into
. . the transition matrix B by
Xt ~ MU|tIn0mla|(Ayt) vVt our assumption.

M



Hidden Markov Model




Supervised Learning for HMMs
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Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models p(x,y)
can maximize the likelihood of the data D = {x(*), x), ..., x(N}}

where we don’t observe any y’s.

This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

We optimize using the Expectation-Maximization algorithm

Since we don’t observe y, we define the marginal probability:

pe(x) = Z pe(x,y)

yey

The log-likelihood of the data is thus:




HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

* Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA

32
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Higher-order HMMs
* 1t-order HMM (i.e. bigram HMM)

REER R

« 2"d-order HMM (i.e. trlgram HIVHV\)




Higher-order HMMs
* 1t-order HMM (i.e. bigram HMM)

SRR

HMM (i.e. trlgram Hl\/\l\/\)

Hidden
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BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers

36



Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

my incoming

messages
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Great Ideas in ML: Message Passing

Count the soldiers

here's
of me

Belief:
Must be

i i+ 4= 6of
us /
=

e
1
< | <
|
jgonlyseb j:
my incoming
messages




Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

39



Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

O




Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree




Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of tree

/

Q Belief:
Must be
14 of us

\\@ Q
3
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Great Ideas in ML: Message Passing

Each soldier recezves reports from all branches of tree

@ Q O
Must be
’ 14 of us

' wouldn't work correctly )
with a 'loopy' (cyclic) graph

‘adapted from MacKay (2003) textbook ’




THE FORWARD-BACKWARD
ALGORITHM



Inference

Question:

True or False: The joint probability of the observations
and the hidden states in an HMM is given by:

T—-1
H Ayt Tt H Yt+1,Yt

t=1

PX=x,Y=Yy)

?Jl

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Ck,Vk



Inference

Question:

True or False: The probability of the observations
inan HMM is given by:

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Ck,Vk



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



