

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Hidden Markov Models

Matt Gormley Lecture 19 Mar. 27, 2019

Reminders

- Homework 6: Learning Theory / Generative Models
 - Out: Fri, Mar 22
 - Due: Fri, Mar 29 at 11:59pm (1 week)
- Midterm Exam 2
 - Thu, Apr 4 evening exam, details announced on Piazza
- Homework 7: HMMs
 - Out: Fri, Mar 29
 - Due: Wed, Apr 10 at 11:59pm
- Today's In-Class Poll
 - http://p19.mlcourse.org

Reminders

- Schedule Change:
 - Fri (3/29) Lecture 20: HMMs (Part II) / MidtermExam Review
 - Mon (4/1) Recitation 7: HW7

HIDDEN MARKOV MODEL (HMM)

HMM Outline

Motivation

- Time Series Data
- Hidden Markov Model (HMM)
 - Example: Squirrel Hill Tunnel Closures [courtesy of Roni Rosenfeld]
 - Background: Markov Models
 - From Mixture Model to HMM
 - History of HMMs
 - Higher-order HMMs

Training HMMs

- (Supervised) Likelihood for HMM
- Maximum Likelihood Estimation (MLE) for HMM
- EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm

- Three Inference Problems for HMM
- Great Ideas in ML: Message Passing
- Example: Forward-Backward on 3-word Sentence
- Derivation of Forward Algorithm
- Forward-Backward Algorithm
- Viterbi algorithm

Markov Models

Whiteboard

- Example: Tunnel Closures[courtesy of Roni Rosenfeld]
- First-order Markov assumption
- Conditional independence assumptions

Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This corresponds to a Naïve Bayes model with a single feature (travel time).

$$p(o, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .1 * .03 * ...)$$

Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * ...)$$

From Mixture Model to HMM

From Mixture Model to HMM

SUPERVISED LEARNING FOR HMMS

Recipe for Closed-form MLE

1. Assume data was generated i.i.d. from some model (i.e. write the generative story) $x^{(i)} \sim p(x|\theta)$

2. Write log-likelihood

$$\ell(\boldsymbol{\theta}) = \log p(\mathbf{x}^{(1)}|\boldsymbol{\theta}) + \dots + \log p(\mathbf{x}^{(N)}|\boldsymbol{\theta})$$

3. Compute partial derivatives (i.e. gradient)

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_1} = \dots$$
$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_2} = \dots$$
$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_M} = \dots$$

4. Set derivatives to zero and solve for θ

$$\partial \ell(\theta)/\partial \theta_{m} = o \text{ for all } m \in \{1, ..., M\}$$

 $\theta^{MLE} = \text{solution to system of } M \text{ equations and } M \text{ variables}$

5. Compute the second derivative and check that $\ell(\theta)$ is concave down at θ^{MLE}

MLE of Categorical Distribution

1. Suppose we have a **dataset** obtained by repeatedly rolling a M-sided (weighted) die N times. That is, we have data

$$\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$$

where $x^{(i)} \in \{1, \dots, M\}$ and $x^{(i)} \sim \mathsf{Categorical}(\phi)$.

2. A random variable is Categorical written $X \sim \operatorname{Categorical}(\phi)$ iff

$$P(X=x) = p(x; \phi) = \phi_x$$

where $x \in \{1, \dots, M\}$ and $\sum_{m=1}^{M} \phi_m = 1$. The **log-likelihood** of the data becomes:

$$\ell(\pmb{\phi}) = \sum_{i=1}^N \log \phi_{x^{(i)}} \text{ s.t. } \sum_{m=1}^M \phi_m = 1$$

Solving this constrained optimization problem yields the maximum likelihood estimator (MLE):

$$\phi_m^{MLE} = \frac{N_{x=m}}{N} = \frac{\sum_{i=1}^{N} \mathbb{I}(x^{(i)} = m)}{N}$$

Hidden Markov Model

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$

Training HMMs

Whiteboard

- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM

Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models

Hidden Markov Model

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

Assumption: $y_0 = START$

Generative Story:

 $Y_t \sim \text{Multinomial}(\mathbf{B}_{Y_{t-1}}) \ \forall t$

 $X_t \sim \mathsf{Multinomial}(\mathbf{A}_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities **C** into the transition matrix **B** by our assumption.

Hidden Markov Model

Joint Distribution:

$$y_0 = \mathsf{START}$$

$$p(\mathbf{x}, \mathbf{y}|y_0) = \prod_{t=1}^{T} p(x_t|y_t) p(y_t|y_{t-1})$$

$$= \prod_{t=1}^{I} A_{y_t, x_t} B_{y_{t-1}, y_t}$$

Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models

a can solve in closed form to set.

$$\beta_{jk} = \pm (y_{t-1}^{(i)} = k)$$

$$\pm (y_{t-1}^{(i)} = j)$$

$$\hat{A}_{jk} = \pm \left(\begin{array}{c} \chi_{\ell}^{(j)} = k & \text{and} & y_{\ell}^{(j)} = j \end{array} \right)$$

(y = j)

Unsupervised Learning for HMMs

- Unlike **discriminative** models p(y|x), **generative** models p(x,y) can maximize the likelihood of the data $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$ where we don't observe any y's.
- This unsupervised learning setting can be achieved by finding parameters that maximize the marginal likelihood
- We optimize using the Expectation-Maximization algorithm

Since we don't observe y, we define the marginal probability:

$$p_{\theta}(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}} p_{\theta}(\mathbf{x}, \mathbf{y})$$

The log-likelihood of the data is thus:

$$\ell(\boldsymbol{\theta}) = \log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})$$
$$= \sum_{i=1}^{N} \log \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{y})$$

HMMs: History

- Markov chains: Andrey Markov (1906)
 - Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
 - Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
 - Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
 - McCallum: multinomial Naïve Bayes for text
 - With McCallum, IE using HMMs on CORA

•

Higher-order HMMs

• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

Higher-order HMMs

BACKGROUND: MESSAGE PASSING

Count the soldiers

THE FORWARD-BACKWARD ALGORITHM

Inference

Question:

True or False: The joint probability of the observations and the hidden states in an HMM is given by:

$$P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y}) = C_{y_1} \left[\prod_{t=1}^{T} A_{y_t, x_t} \right] \left[\prod_{t=1}^{T-1} B_{y_{t+1}, y_t} \right]$$

Recall:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$

Inference

Question:

True or False: The probability of the observations in an HMM is given by:

$$P(\mathbf{X} = \mathbf{x}) = \prod_{t=1}^{T} A_{x_t, x_{t-1}}$$

Recall:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$

Inference for HMMs

Whiteboard

- Three Inference Problems for an HMM
 - Evaluation: Compute the probability of a given sequence of observations
 - 2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
 - 3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations