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Reminders

Homework 6: Learning Theory [ Generative Models
— Out: Fri, Mar 22

— Due: Fri, Mar 29 at 11:59pm (1 week)
Midterm Exam 2

— Thu, Apr 4 - evening exam, details announced on Piazza
Homework 7: HMMs

— Out: Fri, Mar 29

— Due: Wed, Apr 10 at 11:59pm

Today’s In-Class Poll
— http://p18.mlcourse.org




Q&A

Q: Why would we use Naive Bayes? Isn’t it too
Naive?
A: Naive Bayes has one key advantage over

methods like Perceptron, Logistic
Regression, Neural Nets:

Training is lightning fast!
While other methods require slow iterative
training procedures that might require

hundreds of epochs, Naive Bayes computes
its parameters in closed form by counting.




NAIVE BAYES



Naive Bayes Outline

Real-world Dataset
— Economist vs. Onion articles

— Document = bag-of-words = binary
feature vector

Naive Bayes: Model

— Generating synthetic "labeled documents"
— Definition of model

— Naive Bayes assumption

— Counting # of parameters with [ without
NB assumption

Naive Bayes: Learning from Data

— Data likelihood
— MLE for Naive Bayes
— MAP for Naive Bayes

Visualizing Gaussian Naive Bayes



Naive Bayes

Why are we talking about Naive Bayes?

— It’s just another decision function that fits into
our “big picture” recipe from last time

— But it’s our first example of a Bayesian Network
and provides a clearer picture of probabilistic
learning

— Just like the other Bayes Nets we’ll see, it admits
a closed form solution for MLE and MAP

— So learning is extremely efficient (just counting)



Fake News Detector

Today’s Goal: To define a generative model of emails
of two different classes (e.g. real vs. fake news)

CNN The Onion

People are petitioning the White House “Take This Grape For It Is The Witch’s Eye,
to move Halloween to Saturdays Take This Spaghetti For It Is The Witch’s
. ' Brain,’ Says Pope Francis During Halloween-
MmN ' ) 2009 Themed Communion
MORE: HALLOWEEN ~ f ¥V e

VATICAN CITY—Standing before his costumed congregants in St
Peter’s Basilica, Pope Francis declared, “Take this grape for it is the
witch’s eye, take this spaghetti for it is the witch’s brain,” during a
Halloween-themed Communion Wednesday, Vatican sources

confirmed




Fake News Detector
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We can pretend the natural process generating these vectors is stochastic...



Naive Bayes: Model

Whiteboard

— Document = bag-of-words =2 binary feature
vector

— Generating synthetic "labeled documents”
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
y Xp o Xo X3 e Xy

“" 0 1o 1 [ |1 ““

1 of|1]|o 1
1 101 | 1 1
0 oo |1 1
0 1|10 | 1 0




What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
Security Briefing Asking About Egyptian

— If a document contains the word =
“Donald”, it’s extremely likely to ¢
contain the word “Trump”

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high
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Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



NAIVE BAYES: MODEL DETAILS



Model 1: Bernoulli Naive Bayes

Data: Binary feature vectors, Binary labels

x € {0,1}M y € {0,1}
Generative Story: Model:
y ~ Bernoulli(¢) Pg,0(T,y) = p¢ o(z1,...,2M,Y)

z1 ~ Bernoulli(6, 1)
zo ~ Bernoulli(d, 2)

zpr ~ Bernoulli(6, ar)



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation
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Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE
parameters

N
Cc?unt Nyor = Iy =1)
Variables: i=1
N
Ny—o =) I(y*¥ =0)
1=1
N
1=1
Maximum b = Ny=1
Likelihood N
Estimators: Ny=0,z,,=1
eo,m _ N
y=0
01 Nyzl,xmzl
7m T

Data:

Y X X2 X3 Xpm
0 110 | 1 |...|1
1 O 1|0 |...]1
1 o | 1 1 1
0] 0) ) 1 1
0] 1 ) 1 0)
1 110 | 1 0

Question 1:

What is the MLE of ¢?

(A) 0/6 (B)1/6 (C) 2/6 (D) 3/6
(E) 4/6 (F) 5/6 (G) 6/6 (H) 3.



Model 1: Bernoulli Naive Bayes

Maximum Likelihood Estimation

Training: Find the class-conditional MLE
parameters

N
Cc?unt Nyor = Iy =1)
Variables: i=1
N
Ny—o =) I(y*¥ =0)
1=1
N
1=1
Maximum b = Ny=1
Likelihood N
Estimators: Ny=0,z,,=1
eo,m _ N
y=0
01 Nyzl,xmzl
7m T

Data:

Y X X2 X3 Xpm
0 110 | 1 |...|1
1 O 1|0 |...]1
1 o | 1 1 1
0] 0) ) 1 1
0] 1 ) 1 0)
1 110 | 1 0

Question 2:

What is the MLE of 0, ;?

(A) 0/6 (B)1/6 (C) 2/6 (D) 3/6
(E) 4/6 (F) 5/6 (G) 6/6 (H) 3.



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



A Shortcoming of MLE

For Naive Bayes, suppose we never observe
the word “serious” in an Onion article.
In this case, what is the MLE of p(x, | y)?
SN Iy =0 Azl = 1)
> 1y =0)
Now suppose we observe the word “serious’

at test time. What is the posterior probability
that the article was an Onion article?

o - Pxly)p(y)
p(y|x) ()

Or.0 =

)




Model 1: Bernoulli Naive Bayes
MAP Estimation (Beta Prior)

1. Generative Story:
The parameters are drawn
once for the entire dataset.

forme{l,...,M}:
fory € {0,1}:
0.y ~ Beta(o, B)
fori e {1,...,N}:
() ~ Bernoulli(¢)
forme {l,...,M}:

28 ~ Bernoulli(6,,c) ,,)
N

Ny=1 = Zﬂ(y(i) =1)
i=1

N
Ny=o = > _I(y? =0)
i=1

N
Ny=0,z,,=1 = Z]I(y(i) =0Azld) =1)

1=1

2. Likelihood:
{rmap(9,0)

M N
= log [(p(cbla,ﬂ) I1 p(oo,mla,3)> (H P(X(i),?/(i)|¢=9))]
sl

=l
3. MAP Estimates: (¢MAP gMAPY — aremax (y; 4p (¢, 0)
¢,0
Take derivatives, set to zero and solve...
Ny=1
= N
ym- =
(a_ 1)"’(5_ 1)"']Vy=0
01 . (a - 1) + Ny=1,.’rm=1
ym - ——
(@a—1)+ (8- 1)"'Ny=1
vm e {1,...,M}




Other NB Models

1. Bernoulli Naive Bayes:
— for binary features

2. Multinomial Naive Bayes:
— for integer features

3. Gaussian Naive Bayes:
— for continuous features

4. Multi-class Naive Bayes:

— for classification problems with > 2 classes

— event model could be any of Bernoulli, Gaussian,
Multinomial, depending on features



Model 2: Multinomial Naive Bayes

Support: Option 1: Integer vector (word IDs)

X = |r1,%2,...,Tp ]| Wherex,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y" ~ Bernoulli(¢)
forj e {1,...,M;}:

% ~ Multinomial(8,,», 1)

Model: .
Ps.6(@,y) = ps(y) | | po. (zxly)
k=1

M;
= (¢)?(1— ) [] by.c,
j=1



Model 3: Gaussian Naive Bayes

Support: X € RK

Model: Product of prior and the event model

p(may) :p(xlaﬂwa?y)

Gaussian Naive Bayes assumes that p(z|y) is given by
a Normal distribution.



Model 4: Multiclass Naive Bayes

Model:

The only change is that we permit y to range over C
classes.

p(way) :p(ml,...,ZUK,y)

k
Now, y ~ Multinomial(o,
rate conditional distributio
classes.

) and we have a sepa-
(xr|y) for each of the C

)
SR



Generic Naive Bayes Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y) = P(Y) [] PCXIY)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X;|Y) we condition on the data with the corresponding

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



-\la'l've Bayes Model




VISUALIZING GAUSSIAN NAIVE
BAYES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

37



Slide from William Cohen



Slide from William Cohen



Naive Bayes has a linear decision boundary if
variance (sigma) is constant across classes

LY.

Slide from William Cohen (10-601B, Spring 2016)



Iris Data (2 classes)
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Iris Data (2 classes)

Classification with Naive Bayes

44



Iris Data (2 classes)

Classification with Naive Bayes
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Iris Data (3 classes)
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Iris Data (3 classes)

Classification with Naive Bayes
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Iris Data (3 classes)

Classification with Naive Bayes
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One Pocket
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One Pocket

Classification with Naive Bayes

50



One Pocket

Naive Bayes Distribution

variance learned for each class




Summary

1. Naive Bayes provides a framework for
generative modeling

2. Choose p(x,,|y) appropriate to the data
(e.g. Bernoulli for binary features,
Gaussian for continuous features)

3. Train by MLE or MAP
4. Classitfy by maximizing the posterior



Learning Objectives

Naive Bayes

You should be able to...

1.
2.

v A

© oW o

Write the generative story for Naive Bayes

Create a new Naive Bayes classifier using your favorite probability distribution
as the event model

Apply the principle of maximum likelihood estimation (MLE) to learn the
parameters of Bernoulli Naive Bayes

Motivate the need for MAP estimation through the deficiencies of MLE

Apply the principle of maximum a posteriori (MAP) estimation to learn the
parameters of Bernoulli Naive Bayes

Select a suitable prior for a model parameter
Describe the tradeoffs of generative vs. discriminative models
Implement Bernoulli Naives Bayes

Employ the method of Lagrange multipliers to find the MLE parameters of
Multinomial Naive Bayes

Describe how the variance affects whether a Gaussian Naive Bayes model will
have a linear or nonlinear decision boundary



DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(m, y)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood



Generative vs. Discriminative

Gen. Disc.

MLE | []p(x?,y@0) [[p?x*,6)

MAP | p(0) | [ p(x?,y10) p(6) | [ p(y|x?,6)

56



Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more
efficient learner (requires fewer samples) than Logistic
Regression

58
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Slide courtesy of William Cohen



promoters (discrete)
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Naive Bayes makes stronger assumptions about the data

lymphography (discrete)
0.5
0.4} '
0.3 \
&
0.2
%% 50 100
m

but needs fewer examples to estimate the parameters

150

“On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.

Slide courtesy of William Cohen
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Generative vs. Discriminative

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution — must
use iterative optimization techniques instead



Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities = Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [ one
extremes)



Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.



MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X = (X5, X5 ..., Xp)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X = (X5, X5 ..., Xp)
— Predict a structure: Yy=05Y2» -0 V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:c(n), y<”)}£}f:1
Sample 1: ' ‘ @ ‘ '
Sample 2: ‘ ' ' ‘ ‘
6O 6 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
OO,
Sample 4: ‘ ‘ ‘ ‘ ‘
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Dataset for Supervised
Handwriting Recognition
Data: D = {z™, ¢y

N JOXOROIOXOI JORCOIONNFE

ANSEMEEEEE -
90000000 I
HleEzZAN |-
" 90000000 I~
IIIIE e

Figures from (Chatzis & Demiris, 201



Dataset for Supervised
Phoneme (Speech) Recognition
Data: D = {z\™, ym

Sample 1
0000000000 b
v - I
b -

69
Figures from (Jansen & Niyogi, 2013)



Word Alignment / Phrase Extraction

* Variables (boolean):

— For each (Chinese phrase,
English phrase) pair,
are they linked? o 1 2 3 4

In the past two years

B # 3 E
P

* |Interactions:
— Word fertilities
— Few “jumps”’ (discontinuities)

— Syntactic reorderings

— “ITG contraint” on alignment

— Phrases are disjoint (?)

70



Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions: o

— Words used by ¢
representative and their
vote

— Pairs of representatives
and their local context B

TN S -N\‘

U e o "




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Case Study: Object Recognition

Data consists of images x and labels y.

leopard

/3



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
l[atent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches” e

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg, @
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time




Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
l[atent variables in
mind

z is not observed at
train or test time
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Structured Prediction




Machine Learning
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Machine Learning
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BACKGROUND



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C' if:

P(A, B|C) = P(A|C)P(B|C) (1)
or equivalently:
P(A|B,C) = P(A|C) (2)
We write this as:

ALB‘C’ Later we will also
write: I<4, {C}, B>



