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Reminders

* Homework 5: Neural Networks
— Out: Fri, Mar 1
— Due: Fri, Mar 22 at 11:59pm

* Homework 6: Learning Theory /[ Generative
Models

— Out: Fri, Mar 22
— Due: Fri, Mar 29 at 11:59pm (1 week)

TIP: Do the readings!

* Today’s In-Class Poll
— http://p17.mlcourse.org




MLE AND MAP



Likelihood Function & ©OneR.v.

« Suppose we have N samples D = {x(", x®) ... xN)l from a
random variable X
In both cases

* The likelihood function: Con(tdlflscgeti /the
— Case 1: Xis discrete with é Iikelill‘louodufe’lls i
L(6) = p(x(|) p(x<2§)e) 2N’le) how likely one
— Case 2: X is continuous with pdf fg x|0) sample is relative
L(0) = f(x(|0) f(x(2)]0) ... f(x(N)|O) to another

* The log-likelihood function:
— Case 1: X is discrete with pmf p(x|0)
40) = log p(xM]B) +... +log p(xN|6)
— Case 2: X is continuous with pdf f(x|6)
40) = log f(x[0) +... + log f(x(N)]|O)



Likelihood Function @ TWoOR.V.s

Suppose we have N samples D = {(x), y), ..., (x(N), y(N))} from a
pair of random variables X, Y

The conditional likelihood function:

— Case 1: Y is discrete with pmf p(y | x, ©)
L(6) = p(y™ | x(, ©) ... p(y™ | x(N), ©)

— Case 2: Y is continuous with pdf f(y Lx, 0)
L(8) = f(y" | x(, B) ... f(y™N) [ x(N), 8)

The joint likelihood function:

— Case 1: Xand Y are discrete with fm Sx,y|9)
1(8) = p(x), y0l6) .. plx, y(/0

— Case 2: Xand Y are continuous with pdf f(x,y|0)
[(6) = f(x, y[6) ... (x(¥), y]e)



Likelihood Function @ TWoOR.V.s

 Suppose we have N samples D = {(x, y), ..., (x(N), y(N))} from a
pair of random variables X, Y

* The joint likelihood function:

Mixed
discrete/
continuous!

— Case 3: Y is discrete with pmf p(y}lﬁ) and @

X is continuous with pdf f(x|y,a)
L(a, B) = (x| y, a) p(y?|B) ... fF(xM]y™), o) p(y™]PB)

— Case 4:Y is continuous with pdf f(y|B) and &
X is discrete with pmf B(X y,0)

L(a, B) = p(x] y, @) f(y®[B) ... p(xM] y™), o) F(y™|B)



MLE
Suppose we have data D = {2V},

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
oM = argmax Hp (4)9)

1—=1
Maximum Likelihood Estimate (MLE)

A

/;\L(e)

>

I
|
eMLE



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability
mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x() ~ p(x|6)
Write log-likelihood

40) =log p(x[0) + ... +log p(x(V)|O)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/06, = ...
Set derivatives to zero and solve for
0((0)/00,,=0forallme{y,..., M}

OMLE -

Compute the second derivative and check that {0) is concave down
at eMLE



MLE

Example: MLE of Exponential Distribution

Goal:
e pdf of Exponential(\): f(z) = de™
e Suppose X; ~ Exponential(\) for1 <i < N.
e Find MLE for dataD = {z(V} 1V,

Steps:

e First write down log-likelihood of sample.

e Compute first derivative, set to zero, solve for .

e Compute second derivative and check that it is
concave down at \ME,



e pdf of Exponential(\): f(z) = Ae™*
M L E e Suppose X; ~ Exponential(\) for1 <i < N.

e Find MLE fordata D = {z(W}N |




e pdf of Exponential(\): f(z) = Ae™*
M L E e Suppose X; ~ Exponential(\) for1 <i < N.

e Find MLE fordata D = {z(W}N |




MLE

In-Class Exercise Steps to answer:
Show that the MLE of | 1. Write log-likelihood
parameter ¢ for N of sample
samples drawn from |5 Compute derivative
Bernoulli(@) is: w.r.t. ¢
3. Set derivative to

_ Number of z; = 1 zero and solve for ¢

PMLE =

N



MLE

Question:

Assume we have N samples x(,
x®), ..., x(N) drawn from a
Bernoulli(@).

What is the log-likelihood of
the data {¢)?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

Answer:

A. (@) =N, log(®) + N, (1-log(¢))
B. I(¢)=N,log(¢)+N,log(1-¢)

C. (@) =log(dp)" + (1- log(@))N°
D. I(®) = log()N' + log(1-p)N°

E. I(¢)=N,log(®) + N, (1-log(¢))
F. I(¢) =N,log(¢) + N, log(1-¢)

G. I(¢) =log(p)N° + (1-log(¢))N"
H. I(@) = log(¢)N° + log(1-@)N"

I.  I(¢) = the most likely answer



MLE

Question:

Assume we have N samples x(,
x®), ..., x(N) drawn from a
Bernoulli(@).

What is the derivative of the
log-likelihood 0¢(0)/06?

Assume N, = # of (x() = 1)
N, = # of (x() = 0)

Answer:

A.  0¢8)/00 = N+ (1- )N

B. 0¢0)/00=¢/N,+(1-¢)/N,

C. 040)08=N,/¢+N,/(1-9)

D. 0¢0)/00 =log(®)/N,+log(1-¢)/N,
E. 040)/00=N,/log(¢) +N,/log(1-¢)



Learning from Data (Frequentist)

Whiteboard
— Optimization for MLE
— Examples: 1D and 2D optimization
— Example: MLE of Bernoulli

— Example: MLE of Categorical
— Aside: Method of Langrange Multipliers



MLE vs. MAP

Suppose we have data D = {z(V} ¥,




MLE vs. MAP

Suppose we have data D = {z(V} ¥,




MLE vs. MAP
Suppose we have data D = {z(V} Y,

Principle of Maximum Likel§
Choose the parameters that
of the data.

OMLE _ argq

Important!

Usually the parameters are
continuous, so the prioris a
probability density function

Maximum Likelihood Estimate (MLE)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior
of the parameters given the data it

oMY = argmapr (x'V|0)p(0)

0

1=1

Maximum a posteriori (MAP) estimate




Learning from Data (Bayesian)

Whiteboard

— maximum a posteriori (MAP) estimation
— Optimization for MAP
— Example: MAP of Bernoulli—Beta



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



Learning Objectives

MLE | MAP

You should be able to...

1.

Recall probability basics, including but not limited to: discrete
and continuous random variables, probability mass functions,
probability density functions, events vs. random variables,
expectation and variance, joint probability distributions,
marginal probabilities, conditional probabilities, independence,
conditional independence

Describe common probability distributions such as the Beta,
Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

State the principle of maximum likelihood estimation and
explain what it tries to accomplish

State the principle of maximum a posteriori estimation and
explain why we use it

Derive the MLE or MAP parameters of a simple model in closed
form



NAIVE BAYES



Naive Bayes Outline

Real-world Dataset
— Economist vs. Onion articles

— Document = bag-of-words = binary
feature vector

Naive Bayes: Model
— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without
NB assumption

Naive Bayes: Learning from Data
— Data likelihood
— MLE for Naive Bayes
— MAP for Naive Bayes

Visualizing Gaussian Naive Bayes



Naive Bayes

Why are we talking about Naive Bayes?

— It’s just another decision function that fits into
our “big picture” recipe from last time

— But it’s our first example of a Bayesian Network
and provides a clearer picture of probabilistic
learning

— Just like the other Bayes Nets we’ll see, it admits
a closed form solution for MLE and MAP

— So learning is extremely efficient (just counting)



Fake News Detector

Today’s Goal: To define a generative model of emails
of two different classes (e.g. real vs. fake news)

CNN The Onion

People are petitioning the White House ‘Take This Grape For It Is The Witch’s Eye,
to move Halloween to Saturdays Take This Spaghetti For It Is The Witch’s
Brain,’ Says Pope Francis During Halloween-

e 1010 € v o 3120 . 009 Themed Communion

UE: HALLOWEEN ~ f ¥V B

VATICAN CITY—Standing before his costumed congregants in St.
Peter's Basilica, Pope Francis declared, “Take this grape for it is the
witch’s eye, take this spaghetti for it is the witch’s brain,” during a
Halloween-themed Communion Wednesday, Vatican sources

confirmed.




Fake News Detector
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We can pretend the natural process generating these vectors is stochastic...

41



Naive Bayes: Model

Whiteboard

— Document = bag-of-words = binary feature
vector

— Generating synthetic "labeled documents”
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
Y Xp X2 X3 Xy

“" o||l1|o0] 1 1 ““

1 o|1]o0 1
1 111 ] 1 1
0 o o0 |1 1
0 110 1 0
1 110 1 0




