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Q&A

Q: Why do we shuffle the examples in SGD?

A' This is how we do sampling without replacement

* 1.  Theoretically we can show sampling without replacement is not
significantly worse than sampling with replacement (Shamir, 2016)

2.  Practically sampling without replacement tends to work better

Q: What is “bias’?
Ac That ﬂepends. The word “bias” shows up all over machine learning!
e Watch out...

1. The additive termin a linear model (i.e. b in w'x + b)

2. Inductive bias is the principle by which a learning algorithm
generalizes to unseen examples

3. Bias of amodelin a societal sense may refer to racial, socio-
economic, gender biases that exist in the predictions of your
model

4. The difference between the expected predictions of your model
and the ground truth (as in “bias-variance tradeoff”)



Reminders

* Homework 5: Neural Networks
— Out: Fri, Mar 1
— Due: Fri, Mar 22 at 11:59pm

* Today’s In-Class Poll

— http://p16.micourse.org

* Matt’s office hours for Mon, 3/18 are
rescheduled to Tue (3/19) -- see Piazza/GCal




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) +log(3)] la-

i beled examples are sufficient so that with
Finite |H| probability (1—6) all h € H with R(h) =0
have R(h) < e.

Infinite |H|




Example: Conjunctions

Question:

Suppose H = class of
conjunctions over x in {0,1}

Example hypotheses:
h(x) = X, (1-X;) X4
h(x) = x, (1-x,) X4 (1'X5)

If M =10, € = 0.1, d = 0.01, how
many examples suffice
according to Theorem 12

Answer:

10*(2*In(10)+In(100 )) = 92
10*(3*In(10)+In(100)) = 116
10*(10*In(2)+In(100)) = 116
10*(10*In(3)+In(100)) = 156
100*(2*In(10)+In(10 )) = 691
100*(3*In(10)+In(10)) = 922
100*(10*In(2)+In(10)) = 924
100*(10*In(3)+In(10)) = 1329

TOmmounNwe

Thm. 1 N > 2 [log(|H|) + log(3)] la-
beled examples are sufficient so that with
probability (1—4) all A € H with R(h) =0

have R(h) < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with

respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > I[log(|H|)+log(3)] la-| Thm. 2 N > 35 [log(|H|) + log(3)]
Finite |7_t| beled examples are sufficient so that with | labeled examples are sufficient so that
probability (1—4) all h € H with R(h) = 0 | with probability (1 —d) forallh € H we

have R(h) < e. have that |R(h) — R(h)| <e.

Infinite |H|




Bound is inversely linear in
epsilon (e.g. halving the error
requires double the examples)

Finite |H |

Infinite ||

2. Boundis only logarithmic in
|H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
|H| (i.e. same as Realizable
case)

Realizable

% Agnostic

Thm. 1 N > 1 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—4) all h € H with R(h) = 0
have R(h) <.

Thm. 2 N > 55 [log(|H]) + log(%)]
labeled examples are sufficient so that
with probability (1 — 9) forall h € ‘H we
have that |R(h) — R(h)| < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1llog(|H|) +1log(3)] la- | Thm. 2 N > 5% [log(|H|) + log(3)]

Finite |H| beled e.x.amples are suf’ﬁCIent.s We need a new definition of flicient so that
probability (1—4) all . € H with «complexity” for a Hypothesis space forallh € H we

have R(h) < e. for these results (see VC Dimension)

Infinite |H| y y
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to 1).

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite |H|

Infinite |H|

Realizable

Agnostic

Thm. 1
beled examples are sufficient so that with
probability (1— ) all b € H with R(h) = 0
have R(h) < e.

N > 1Llog(|H|) +log(5)] la-

Thm. 2 N > 55 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — d) forall h € H we
have that |R(k) — R(h)| < e.

Thm. 3 N=O(% [VC(#H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with
R(h) = 0 have R(h) < e.

Thm. 4 N = O(Z% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ) forall h € H we
have that |[R(h) — R(h)| < e.

12




VC DIMENSION



E.g., thresholds on the real line |

E.g., intervals on the real line

Slide from Nina Balcan



Shattering, VC-dimension
Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if [H[S]| = 2I51.
A set of points S is shattered by H is there are hypotheses in H

that split S in all of the 2!5! possible ways; i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o

Slide from Nina Balcan



Shattering, VC-dimension

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H|).

Slide from Nina Balcan



Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) = 3 >(

Slide from Nina Balcan



Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive

and outside points as negative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other ®
two as negative.

Fact: VCdim of linear separators in RY is d+1

Slide from Nina Balcan



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Thresholds on the real line - } +
w
VCdim(H) =1 4 _
On O

E.g., H= Intervals on the real line

VCdim(H) = 2 -O

T
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Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
_ H" - Y o - | |
| | | |

VCdim(H) > 2k A sample of size 2k shatters
- (treat each pair of points as a
separate case of infervals)

VCdim(H) < 2k + 1

|
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Slide from Nina Balcan



to 1).

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite |H|

Infinite |H|

Realizable

Agnostic

Thm. 1
beled examples are sufficient so that with
probability (1— ) all b € H with R(h) = 0
have R(h) < e.

N > 1Llog(|H|) +log(5)] la-

Thm. 2 N > 55 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — d) forall h € H we
have that |R(k) — R(h)| < e.

Thm. 3 N=O(% [VC(#H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — §) all h € H with
R(h) = 0 have R(h) < e.

Thm. 4 N = O(Z% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ) forall h € H we
have that |[R(h) — R(h)| < e.
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SLT-style Corollaries

Thm. 1 N > 1[log(|H]|) + log(s)] le-
beled examples are sufficient so that with
probability (1— ) all h € H with R(k) = 0
have R(h) < e.

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

NS

Corollary 1 (Realizable, Finite |#|). For some d > 0, with probabil-

ity at least (1 — d), for any & in H consistent with the training data
(i.e. R(h) = 0),

We can obtain
1 similar corollaries for

R(h) < % [ln(l’Hl) + In (—)] each of the

) theorems...

25



SLT-style Corollaries

Corollary 1 (Realizable, Finite |+|). For some d > 0, with probabil-
ity at least (1 — J), for any & in H consistent with the training data
(i.e. R(h) =0),

R < 3 () +1n (5]

Corollary 2 (Agnostic, Finite |#|). Forsome d > 0, with probability
atleast (1 — 4), for all hypotheses h in H,

R(h) < R(h) + \/% [lrl(|H|) + In (%)]

26



SLT-style Corollaries

Corollary 3 (Realizable, Infinite ||). For some § > 0, with proba-
bility at least (1 — 0), for any hypothesis % in H consistent with the
data (i.e. with R(h) = 0),

R(h) <O (% [VC(H) In (\%) +In (%)D (1)

Corollary 4 (Agnostic, Infinite |H|). Forsome é > 0, with probabil-
ity at least (1 — §), for all hypotheses h in H,

R(h) < R(h) + O (\/ % [vc(u) +1n (%)]) (2)

27




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |#|). For some d > 0, with proba-
bility at least (1 — 0), for any hypothesis A in H consistent with the
data (i.e. with R(h) = 0),

R(h) <O (% [VC(H) In (VC(\H)) +1n (%)D ()

Corollary 4 (Agnostic, Infinite |#|). Forsomed > 0, with probabil-
ity at least (1 — ), for all hypotheses h in H,

R(h) < R(h) + O (\/% [VC(H) + In (%)]) (2)
% Should these corollaries inform
how we do model selection? i,




Generalization and Overfitting

Whiteboard:
— Empirical Risk Minimization
— Structural Risk Minimization
— Motivation for Regularization



1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)

33



Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



CLASSIFICATION AND
REGRESSION



ML Big Picture

Learning Paradigms:

What data is available and

when? What form of prediction?
. supervised learning

. unsupervised learning

. semi-supervised learning

. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction

. ensemble learning

. distant supervision

0 hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

UDO0O0ODO

ML as optimization

Problem Formulation:

What is the structure of our output prediction? )
c
boolean Binary Classification T O
categorical Multiclass Classification 42’_8
ordinal Ordinal Classification - £ =
. Q O wn
real Regression = N UY
ordering Ranking ;<: =S
. . . L. o) - 8 0
multiple discrete  Structured Prediction S g c%
multiple continuous (e.g. dynamical systems) o S 3 =5
both discrete & (e.g. mixed graphical models) = Q. ; 5% S
cont. TLz29
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

* inductive bias

*  generalization [ overfitting

*  bias-variance decomposition
e generative vs. discriminative
* deep nets, graphical models
*  PAClearning

e distant rewards



Classification and Regression:

The Big Picture
Whiteboard
— Decision Rules [ Models
— Objective Functions
— Regularization
— Update Rules
— Nonlinear Features



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
4 = o*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p*(-)
y ~ p (- x1?)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



PROBABILITY



Random Variables: Definitions

Discrete X Random variable whose values come
Random from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(x) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) := P(X = x)

43



Random Variables: Definitions

Continuous X Random variable whose values come
Random from an interval or collection of
Variable intervals (e.g. the real numbers or the
range (3, 5))
Probability f (ZIZ‘) Function the returns a nonnegative
density real indicating the relative likelihood
function that a continuous r.v. X takes value x
(pdf)

* For any continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

Pla< X <b) = /bf(x)daz




Random Variables: Definitions

Cumulative Function that returns the probability
distribution F(CE‘) that a random variable X is less than or
function equal to x:

F(z) = P(X < z)

* For discrete random variables:

Flz)=P(X<z)=)» PX=a)=) p

x/ <x x/ <x

* For continuous random variables:

Fz)=P(X <xz) = /_x f(z")dz'




Notational Shortcuts

A convenient shorthand:

- P(A, B)
= For all values of @ and b:
P(A=a,B =)
p— B p— p—
P(A = a b) P(B = b)



Notational Shortcuts
But then how do we tell P(E) apart from P(X)?
e | A [T |
Instead of writing: P(A|B) = P(A, B)
P(B)
We should write: PA,B(A, B)

... but only probability theory textbooks go to such lengths.



COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

* For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson
 For Continuous Random Variables:
— Exponential
— Gamma
— Beta
— Dirichlet
— Laplace
— Gaussian (1D)
— Multivariate Gaussian



Common Probability Distributions

Beta Distribution

probability density function:
1

0 0.2 0.4 1

f(¢la, B) = N1 — )P
’ B(a, 3)
4
) — a=0.1,6=0.9
~ — a=0.5,6=0.5
% 2 L 1 — a=1.0,8=10
= | — a=5.0,8=5.0
1 — a=10.0,8=5.0
LS\
O /1 ! | ! 1 SN
. 0.6 0.8
¢



Common Probability Distributions

Dirichlet Distribution

probability density function:
1

0 0.2 0.4 1

f(¢la, B) = N1 — )P
’ B(a, 3)
4
) — a=0.1,6=0.9
= — a=0.5,6=0.5
% 2 L 1 — a=1.0,8=10
s | — a=5.0,8=5.0
| — a=10.0,8=5.0
LS\
O /1 ! | ! 1 SN
. 0.6 0.8
¢



Common Probability Distributions

Dirichlet Distribution

probability density function:




EXPECTATION AND VARIANCE



Expectation and Variance

The expected value of X'is E/X]. Also called the mean.

 Discrete random variables:

Suppose X can take any value in the set &.

BIX] =Y ap(a)

reX




Expectation and Variance

"

The variance of Xis Var(X).
Var(X) = E[(X — E[X])?]

 Discrete random variables:

Var(X) = 3" (@ = p)p(a)

reX




Joint probability
Marginal probability
Conditional probability

MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e \We call this a joint ensemble and write
p(x,y) = prob(X =z and Y = y)

z

AN

p(x.y,z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) =) plz,y)
Y

e This is like adding slices of the table together.

y p(x.,y)
e

X

e Another equivalent definition: p(z) = >, p(z|y)p(y).

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = p(z,y)/p(y)

<
P

Z\

p(x.ylz)

Slide from Sam Roweis (MLSS, 2005)



Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(z)p(y)

p(x.y)

p(x)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x,y|z) = p(z|z)plylz)  Vz

Slide from Sam Roweis (MLSS, 2005)



