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Reminders

* Homework 5: Neural Networks
— Out: Fri, Mar 1
— Due: Fri, Mar 22 at 11:59pm

* Today’s In-Class Poll

— http://p15.mlcourse.org







RECURRENT NEURAL NETWORKS



Dataset for Supervised
Part-of-Speech (POS) Tagging
Pata: D = {z!™,yW}L
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Dataset for Supervised
Handwriting Recognition
Data: D = {z'™,y™M}],
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Figures from (Chatzis &



Dataset for Supervised
Phoneme (Speech) Recognition
Data: D = {z™ y" N

Sample 1:
COO QOOQQQQ b
v '
—

Figures from (Jansen & Niyogi, 2013)



Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?
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Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a

prediction task with variable length input/output?
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Time Series Data

Question 2: How could we incorporate context (e.g.
words to the left/right, or tags to the left/right) into our
solution?
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Recurrent Neural Networks (RNNs)

Definition of the RNN:

inputs:

hidden units:

outputs

nonlinearity:

hi = H (Wenxe + Wyphi—1 + bp)
Yt — Whyht + by
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Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs

nonlinearity:

Definition of the RNN:
hi = H Wepxs + Wrrhi—1 + bp)
Yt — Whyht + by
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A Recipe for

Background , ,
Machine Learning

1. Given training data: 3. Define goal:

{@i y: )i S

v Jifi=1 0" = argmein;afe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (213‘7,) (take small steps

opposite the gradient)
— Loss function

l(y,y;) € R 0D = 0 — 0, Vi(fo(x:),y,)






Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs

nonlinearity:

= (x1,%2,...,27),T; € R
= (hi,ha,...,hr),h; € R’
— (y17y27"'7yT)7yi S RK

Definition of the RNN:
hi = H Wepxs + Wrrhi—1 + bp)
Yt = Whyht + by



Recurrent Neural Networks (RNNs)

inputs: z; € RE Definition of the RNN:
hidden units: h = (h1,ho, ..., hr), h; € R’ hy = H (thxt + Whnhi—1 + bh)

X
h

outputs: y = (y1,%2,...,yr), i € R* | Yy = Whyhi + by

nonlinearity: H
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Recurrent neural
network:

BPTT:

1. Unroll the
computation
over time

2. Run
backprop
through the
resulting feed-
forward
network



inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

X = (iL’l,.CUQ,...,xT),ZCi ERI
%
h and h

LY = (y17y27"'7yT>7yi GRK
H

Recursive Definition:

— —

hy=H (Wmﬁxt +Wo2hiq+ bﬁ)
— —

h,=H (Wﬁxt + W 41 + bﬂ

— <
yt:Wﬁyht+W<ﬁyht+by



inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

I Recursive Definition:
x = (1,T2,...,27),T; € R

%
E) and i he =™ (Wfﬂ_)xt FWaR bt by

F
: y:(ylay27'“ayT)7yi€RK ht:H(Wx%xt—FW{E{E t+1+b<ﬁ

x
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inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

I Recursive Definition:
x = (1,T2,...,27),T; € R

%
E) and i he =™ (Wfﬂ_)xt FWaR bt by

F
: y:(ylay27'“ayT)7yi€RK ht:H(Wx%xt—FW{E{E t+1+b<ﬁ

x
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Bidirectional RNN

Recursive Definition:

inputs: x = (x1,2,...,27),2; € R’ _ N
hy=™H (Wwﬁxt + W2 hyq + bﬁ)

%
hidden units: h and i
< <
outputs: y = (y1,y2,...,y7),yi ER" | he=H (Wﬁxt + Wos hir + b%)

nonlinearity:

x

— —
yt:Wﬁyht—i_W(Hyht_Fby
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Deep RNNSs

. Recursive Definition:
inputs: x = (21, 22,...,27),2; € R!

outputs: y = (y1,¥2,.--,yr), ¥ € R" P =H (Whn-ipnhy ™ 4+ Whnpn by + by)

nonlinearity: H N
yr = Wynyhy' + by

< Yt—1 Yt Yt4+1 - -

. 23
Figure from (Graves et al., 2013)



Deep Bidirectional RNNs

inputs: x = (x1,2,...,27),2; € R!

outputs: y = (y1,¥2,.--,yr),y; € R"
nonlinearity: H

Figure from (Graves et al., 2013)
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Long Short-Term Memory (LSTM)

Motivation:

* Standard RNNs have trouble learning long
distance dependencies

e LSTMs combat this issue




Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

* Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

Figure from (Graves, 2012)



Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have a rich internal structure

* The various “gates” determine the propagation of information
and can choose to “remember” or “forget” information

TTTTITTY
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Figure from (Graves, 2012)



Long Short-Term Memory (LSTM)

n



Long Short-Term Memory (LSTM)
\ \

it = 0 (Waixe + Whihi—1 + Weic—1 + by) z,
Ji=o0 (fofl?t + Whrhi—1 + Weper—1 + bf)

ct = fici—1 + i tanh (Weexy + Wiehi—1 + be)

0 = 0 (Waowt + Whohi—1 + Weocr + by)

hy = o¢ tanh(c;)
Figure from (Graves et al., 2013)
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Long Short-Term Memory (LSTM)

n



Deep Bidirectional LSTM (DBLSTM)

Figure from (Graves et al., 2013)



Deep Bidirectional LSTM (DBLSTM)

How important is this
particular architecture?

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.




RNN Summary

* RNNs

— Applicable to tasks such as sequence labeling,
speech recognition, machine translation, etc.

— Able to learn context features for time series
data

— Vanishing gradients are still a problem - but
LSTM units can help

* Other Resources
— Christopher Olah’s blog post on LSTMs


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LEARNING THEORY



PAC-MAN Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-

Over?
A. 110
B. 11-20

C. 2130



ML Big Picture

Learning Paradigms:

What data is available and

when? What form of prediction?
. supervised learning

. unsupervised learning

. semi-supervised learning

. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction

. ensemble learning

. distant supervision

0 hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

UDO0O0ODO

ML as optimization

Problem Formulation:

What is the structure of our output prediction? )
c
boolean Binary Classification T O
categorical Multiclass Classification 42’_8
ordinal Ordinal Classification - £ =
. Q O wn
real Regression = N UY
ordering Ranking ;<: =S
. . . L. o) - 8 0
multiple discrete  Structured Prediction S g c%
multiple continuous (e.g. dynamical systems) o S 3 =5
both discrete & (e.g. mixed graphical models) = Q. ; 5% S
cont. TLz29
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

* inductive bias

*  generalization [ overfitting

*  bias-variance decomposition
e generative vs. discriminative
* deep nets, graphical models
*  PAClearning

e distant rewards



1.

Questions For Today

Given a classifier with zero training error,
what can we say about true error (aka.
eneralization error)?
Sample Complexity, Realizable Case)

. Given a classifier with low training error, what

can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)

37



PAC/SLT models for Supervised Learning

®.
Data ‘*‘ Distribution D on X

A\ ¢

Source &T

Learning (x
Algorithm L)

Expert / Oracle

DIA
Labeled Examples

(X1,€*(X1)), ., (X, € (X))
m«\
h: X =Y

Slide from Nina Balcan



Two Types of Error

1. True Error (aka. expected risk)

R(h) — Px~p* (x) (C* (X) 7& h(X)) Th/S qu

2. Train Error (aka. empirical risk) * “n,
R(h) = Peus(¢*(x) # h(x))

1 N . : . meaSU
= 5 e D) £ h(xD)) [ Onthegreths
i=1 dat nlng
1 Y | |
=~ 2 1Y # h(x"))
1=1
where S = {x(1) ... x(™M)INV s the training data set, and x ~

S denotes that x is sampled from the empirical distribution.



PAC /SLT Model  /amgneisng,

. Generate instances from unknown distribution p*

x' ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function ¢*

y'W =" (x1), Vi (2)

. Learning algorithm chooses hypothesis i € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h
. Goal: Choose an h with low generalization error R(h)

41



Three Hypotheses of Interest

The true function c¢* is the one we are trying to learn and that labeled
the training data:

yM = ¢*(x), Vi (1)

The expected risk minimizer has lowest true error: .
Question:

True or False:
h* and c* are
always equal.

The empirical risk minimizer has lowest training error:

h* = argmin R(h)
heH

h = argmin R(h) (3)
heH

42



PAC LEARNING



Probably Approximately Correct

(PAC) Learning
Whiteboard:
— PAC Criterion
— Meaning of “Probably Approximately Correct”
— Def: PAC Learner
— Sample Complexity
— Consistent Learner



PAC Learning

The PAC criterion is that our learner produces a high accuracy
learner with high probability:

P(|R(h) — R(h)|<e)>1-6 (1)

Suppose we have a learner that produces a hypothesis h € H
given a sample of NV training examples. The algorithm is called con-
sistent if for every € and 9, there exists a positive number of training
examples NV such that for any distribution p*, we have that:

P(|R(h) — R(h)| > €) < 6 (2)

The sample complexity is the minimum value of N for which this
statement holds. If \V is finite for some learning algorithm, then H
is said to be learnable. If N is a polynomial function of % and % for

some learning algorithm, then H is said to be PAC learnable. .



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

We’ll start with the
Four Cases we care about... flnlte case...

Realizable y Agnosti9

Finite |H |

Infinite |H|

47




Generalization and Overfitting

Whiteboard:

— Realizable vs. Agnostic Cases

— Finite vs. Infinite Hypothesis Spaces
— Theorem 1: Realizable Case, Finite [H|
— Proof of Theorem 1



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) +log(3)] la-

i beled examples are sufficient so that with
Finite |H| probability (1—6) all h € H with R(h) =0
have R(h) < e.

Infinite |H|

49




