

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Deep Learning

Matt Gormley Lecture 14 Mar. 4, 2019

Reminders

- Homework 5: Neural Networks
 - Out: Fri, Mar 1
 - Due: Fri, Mar 22 at 11:59pm
- Today's In-Class Poll
 - http://p14.mlcourse.org
- Office hours: "HW-X / General"

Q&A

Q: Do I need to know Matrix Calculus to derive the backprop algorithms used in this class?

A: No. We've carefully constructed our assignments so that you do **not** need to know Matrix Calculus.

That said, it's kind of handy.

Numerator

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in \mathbb{R}^{P \times Q}$ be matrices

			/ \	umerator
	Types of Derivatives	scalar	vector	matrix
	scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
	vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
55	matrix	$rac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Denominator

Types of Derivatives	scalar	
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$	

Types of Derivatives	scalar	vector
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \\ \vdots & & & & \\ \frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$

Common Vector Derivatives	
$\angle e + \frac{\partial f(\vec{x})}{\partial \vec{x}} = \nabla_{x} f(\vec{x})$	be the vector derivative of f, BERMXIII
S_{Ca} Ler Dervetive $f(x) \rightarrow \frac{\partial f}{\partial x}$	Vector Denviture $f(x) \rightarrow \frac{\partial f}{\partial x}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccc} & \times^3 & \longrightarrow & 2 \times \\ & \times^2 & \longrightarrow & 2b \times \\ & & & & & & & & \\ & & & & & & & & \\ & & & &$	$x^Tx \longrightarrow 2x$ $x^TBx \longrightarrow 2Bx$
JX ZDX	C symmetre

Question:

Suppose y = g(u) and u = h(x)

Which of the following is the correct definition of the chain rule?

Recall:
$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix} \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \dots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_N}{\partial x_2} \end{bmatrix}$$

Answer:

$$\frac{\partial y}{\partial \mathbf{x}} = \dots$$

A.
$$\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\mathbf{B.} \ \frac{\partial \boldsymbol{y}}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\mathsf{C.} \ \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$$

D.
$$\frac{\partial y}{\partial \mathbf{u}}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T$$

E.
$$(\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}})^T$$

F. None of the above

Algorithm

BACKPROPAGATION

Backpropagation

Chalkboard

Example: Backpropagation for Chain Rule #1

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Backpropagation

Chalkboard

- SGD for Neural Network
- Example: Backpropagation for Neural Network

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.

For variable u_i with inputs v_1, \dots, v_N

- a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation (Version A)

- **Initialize** dy/dy = 1.

Visit each node v_j in **reverse topological order**. Let u_1, \ldots, u_M denote all the nodes with v_j as an input

Assuming that $y = h(\mathbf{u}) = h(u_1, ..., u_M)$ and $\mathbf{u} = g(\mathbf{v})$ or equivalently $u_i = g_i(v_1, ..., v_j, ..., v_N)$ for all i a. We already know dy/du_i for all i

b. Compute dy/dv_i as below (Choice of algorithm ensures computing

$$\frac{(du_i/dv_j) \text{ is easy}}{dv_j} = \sum_{i=1}^{M} \frac{dy}{du_i} \frac{du_i}{dv_j}$$

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.
 - For variable u_i with inputs $v_1, ..., v_N$
 - a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation (Version B)

- Initialize all partial derivatives dy/du_i to 0 and dy/dy = 1.
- Visit each node in reverse topological order.

```
For variable u_i = g_i(v_1, ..., v_N)
```

- a. We already know dy/du_i
- b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j)
 (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Backpropagation

Why is the backpropagation algorithm efficient?

- Reuses computation from the forward pass in the backward pass
- 2. Reuses **partial derivatives** throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)

(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(Training data \mathcal{D}_t, test data \mathcal{D}_t)
                Initialize parameters oldsymbol{lpha},oldsymbol{eta}
               for e \in \{1, 2, ..., E\} do
 3:
                        for (\mathbf{x}, \mathbf{y}) \in \mathcal{D} do
 4:
                                Compute neural network layers:
 5:
                                \mathbf{o} = \mathtt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \mathtt{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})
 6:
                                Compute gradients via backprop:
 7:
                               \left. egin{aligned} \mathbf{g}_{oldsymbol{lpha}} &= 
abla_{oldsymbol{lpha}} J \ \mathbf{g}_{oldsymbol{eta}} &= 
abla_{oldsymbol{eta}} J \end{aligned} 
ight. = 	ext{NNBACKWARD}(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta}, \mathbf{o})
 8:
                                Update parameters:
 9:
                                \alpha \leftarrow \alpha - \gamma \mathbf{g}_{\alpha}
10:
                                \boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \gamma \mathbf{g}_{\boldsymbol{\beta}}
 11:
                        Evaluate training mean cross-entropy J_{\mathcal{D}}(\boldsymbol{\alpha},\boldsymbol{\beta})
12:
                        Evaluate test mean cross-entropy J_{\mathcal{D}_t}(\boldsymbol{\alpha},\boldsymbol{\beta})
13:
                return parameters \alpha, \beta
14:
```

Backpropagation

Simple Example: The goal is to compute $J=\cos(\sin(x^2)+3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward	Backward
J = cos(u)	$\frac{dJ}{du} += -sin(u)$
$u = u_1 + u_2$	$\frac{dJ}{du_1} += \frac{dJ}{du}\frac{du}{du_1}, \frac{du}{du_1} = 1 \qquad \qquad \frac{dJ}{du_2} += \frac{dJ}{du}\frac{du}{du_2}, \frac{du}{du_2} = 1$
$u_1 = \sin(t)$	$\frac{dJ}{dt} += \frac{dJ}{du_1} \frac{du_1}{dt}, \frac{du_1}{dt} = \cos(t)$
$u_2 = 3t$	$\frac{dJ}{dt} += \frac{dJ}{du_2} \frac{du_2}{dt}, \frac{du_2}{dt} = 3$
$t = x^2$	$\frac{dJ}{dx} += \frac{dJ}{dt}\frac{dt}{dx}, \frac{dt}{dx} = 2x$
	47

Backpropagation

Case 1: Logistic Regression

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

$$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$$

$$\frac{dJ}{dx_j} = \frac{dJ}{da}\frac{da}{dx_j}, \, \frac{da}{dx_j} = \theta_j$$

18

Backpropagation

Backpropagation

Backpropagation

Case 2: Neural Network

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y) \qquad \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$
$$y = \frac{1}{1 + \exp(-b)} \qquad \frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{dJ}{dy} \frac{dy}{db}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \ \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db}\frac{db}{dz_j}, \, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$

Derivative of a Sigmoid

First suppose that

$$s = \frac{1}{1 + \exp(-b)} \tag{1}$$

To obtain the simplified form of the derivative of a sigmoid.

$$\frac{ds}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2} \tag{2}$$

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1+1-1)^2}$$
(3)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1)^2}$$
 (4)

$$= \frac{\exp(-b) + 1}{(\exp(-b) + 1)^2} - \frac{1}{(\exp(-b) + 1)^2}$$
 (5)

$$= \frac{1}{(\exp(-b)+1)} - \frac{1}{(\exp(-b)+1)^2} \tag{6}$$

$$= \frac{1}{(\exp(-b)+1)} - \left(\frac{1}{(\exp(-b)+1)} \frac{1}{(\exp(-b)+1)}\right)$$
 (7)

$$= \frac{1}{(\exp(-b)+1)} \left(1 - \frac{1}{(\exp(-b)+1)}\right) \tag{8}$$

$$=s(1-s) \tag{9}$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$ $\frac{dJ}{dx_{i}} = \sum_{j=0}^{D} \frac{dJ}{da_{j}} \frac{da_{j}}{dx_{i}}, \frac{da_{j}}{dx_{i}} = \alpha_{ji}$

24

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = y(1-y)$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = z_j(1 - z_j)$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$

25

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.

For variable u_i with inputs v_1, \dots, v_N

- a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation (Version A)

- **Initialize** dy/dy = 1.

Visit each node v_j in **reverse topological order**. Let u_1, \ldots, u_M denote all the nodes with v_j as an input

Assuming that $y = h(\mathbf{u}) = h(u_1, ..., u_M)$ and $\mathbf{u} = g(\mathbf{v})$ or equivalently $u_i = g_i(v_1, ..., v_j, ..., v_N)$ for all i a. We already know dy/du_i for all i

- b. Compute dy/dv_i as below (Choice of algorithm ensures computing

$$\frac{(du_i/dv_j) \text{ is easy}}{dv_j} = \sum_{i=1}^{M} \frac{dy}{du_i} \frac{du_i}{dv_j}$$

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.
 - For variable u_i with inputs $v_1, ..., v_N$
 - a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation (Version B)

- **Initialize** all partial derivatives dy/du_i to 0 and dy/dy = 1.
- Visit each node in reverse topological order.

```
For variable u_i = g_i(v_1, ..., v_N)
```

- a. We already know dy/dui
- b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j)
 (Choice of algorithm ensures computing (du_i/dv_j) is easy)

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
```

```
1: procedure SGD(Training data \mathcal{D}_t, test data \mathcal{D}_t)
                Initialize parameters oldsymbol{lpha},oldsymbol{eta}
               for e \in \{1, 2, ..., E\} do
 3:
                        for (\mathbf{x}, \mathbf{y}) \in \mathcal{D} do
 4:
                                Compute neural network layers:
 5:
                                \mathbf{o} = \mathtt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \mathtt{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})
 6:
                                Compute gradients via backprop:
 7:
                               \left. egin{aligned} \mathbf{g}_{oldsymbol{lpha}} &= 
abla_{oldsymbol{lpha}} J \ \mathbf{g}_{oldsymbol{eta}} &= 
abla_{oldsymbol{eta}} J \end{aligned} 
ight. = 	ext{NNBACKWARD}(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta}, \mathbf{o})
 8:
                                Update parameters:
 9:
                                \alpha \leftarrow \alpha - \gamma \mathbf{g}_{\alpha}
10:
                                \boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \gamma \mathbf{g}_{\boldsymbol{\beta}}
 11:
                        Evaluate training mean cross-entropy J_{\mathcal{D}}(\boldsymbol{\alpha},\boldsymbol{\beta})
12:
                        Evaluate test mean cross-entropy J_{\mathcal{D}_t}(\boldsymbol{\alpha},\boldsymbol{\beta})
13:
                return parameters \alpha, \beta
14:
```

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of tl
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$m{ heta}^{(t)} - \eta_t
abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$$

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently

DECISION BOUNDARIES OF NEURAL NETWORKS

Example #3: Four Gaussians

Example #2: One Pocket

Example #4: Two Pockets

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

Tuned Neural Network (hidden=4, activation=logistic)

Tuned Neural Network (hidden=10, activation=logistic)

Neural Networks Objectives

You should be able to...

- Explain the biological motivations for a neural network
- Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
- Explain the reasons why a neural network can model nonlinear decision boundaries for classification
- Compare and contrast feature engineering with learning features
- Identify (some of) the options available when designing the architecture of a neural network
- Implement a feed-forward neural network

DEEP LEARNING

Deep Learning Outline

Background: Computer Vision

- Image Classification
- ILSVRC 2010 2016
- Traditional Feature Extraction Methods
- Convolution as Feature Extraction

Convolutional Neural Networks (CNNs)

- Learning Feature Abstractions
- Common CNN Layers:
 - Convolutional Layer
 - Max-Pooling Layer
 - Fully-connected Layer (w/tensor input)
 - Softmax Layer
 - ReLU Layer
- Background: Subgradient
- Architecture: LeNet
- Architecture: AlexNet

Training a CNN

- SGD for CNNs
- Backpropagation for CNNs

Why is everyone talking about Deep Learning?

- Because a lot of money is invested in it…
 - DeepMind: Acquired by Google for \$400
 million

 – DNNResearch: Three person startup (including Geoff Hinton) acquired by Google for unknown price tag

Enlitic, Ersatz, MetaMind, Nervana, Skylab:
 Deep Learning startups commanding millions of VC dollars

 Because it made the front page of the New York Times

Why is everyone talking about Deep Learning?

Deep learning:

- Has won numerous pattern recognition competitions
- Does so with minimal feature engineering

This wasn't always the case!

Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

BACKGROUND: COMPUTER VISION

Example: Image Classification

- ImageNet LSVRC-2011 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

Not logged in. Login I Signup

Bird

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings

2126 pictures 92.85% Popularity Percentile

marine animal, marine creature, sea animal, sea creature (1)			
scavenger (1)	Treemap Visualization	Images of the Synset	Downloads
- biped (0)			E CO
predator, predatory animal (1)		Maria Maria	F 1
larva (49)			
- acrodont (0)			
- feeder (0)	100		9
- stunt (0)			
chordate (3087)			
tunicate, urochordate, urochord (6)			
- cephalochordate (1)			"¶ 📰
vertebrate, craniate (3077)		A	
mammal, mammalian (1169)			
bird (871)			
dickeybird, dickey-bird, dickybird, dicky-bird (0)			
- cock (1)			
hen (0)			
- nester (0)			
i- night bird (1)		10.00	TO A ME
- bird of passage (0)			
- protoavis (0)			
- archaeopteryx, archeopteryx, Archaeopteryx lithographi			
- Sinornis (0)			
- Ibero-mesornis (0)			DAMESTIC CONTRACT
- archaeornis (0)		F - 4	_/*
ratite, ratite bird, flightless bird (10)			
- carinate, carinate bird, flying bird (0)			
passerine, passeriform bird (279)	The second secon		
nonpasserine bird (0)	man and a second	-	The state of the s
bird of prey, raptor, raptorial bird (80)			
gallinaceous bird, gallinacean (114)			7

Not logged in. Login I Signup

German iris, Iris kochii

Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica

469 pictures 49.6% Popularity Percentile

- halophyte (0)
succulent (39)
- cultivar (0)
- cultivated plant (0)
- weed (54)
evergreen, evergreen plant (0)
- deciduous plant (0)
- vine (272)
- creeper (0)
woody plant, ligneous plant (1868)
geophyte (0)
desert plant, xerophyte, xerophytic plant, xerophile, xerophile
- mesophyte, mesophytic plant (0)
aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)
bulbous plant (179)
iridaceous plant (27)
iris, flag, fleur-de-lis, sword lily (19)
- Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)
- German iris, Iris kochii (0)
Dalmatian iris, Iris pallida (0)
beardless iris (4)
- bulbous iris (0)
- dwarf iris, Iris cristata (0)
stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)
yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)
blue flag, Iris versicolor (0)

Not logged in. Login I Signup

Court, courtyard

IM GENET

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court"

165 pictures 92.61% Popularity Percentile

Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

Figures from http://opencv.org

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

CNN for Image Classification

(Krizhevsky, Sutskever & Hinton, 2012) 15.3% error on ImageNet LSVRC-2012 contest

Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax

CNNs for Image Recognition

CONVOLUTION

Basic idea:

- Pick a 3x3 matrix F of weights
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

Key point:

- Different convolutions extract different types of low-level "features" from an image
- All that we need to vary to generate these different features is the weights of F

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Convolution

0	0	0
0	1	1
О	1	0

1	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	0	0	0	0

Input Image

0	0	0	0	0	0	0
О	1	1	1	1	1	О
О	1	0	0	1	0	0
О	1	0	1	0	0	0
О	1	1	0	0	0	О
0	1	0	0	0	0	0
0	0	0	0	0	0	0

0	0	0
0	1	1
0	1	0

Convolved Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

Input Image

Input Image

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

Input Image

Convolved Image

3	2	2	3	

Input Image

Convolved Image

3	2	2	3	1

A **convolution matrix** is used in image processing for tasks such as edge detection, blurring, sharpening, etc.

Input Image

3	2	2	3	1
2				

Input Image

Convolved Image

3	2	2	3	1
2	0			

Input Image

Convolved Image

3	2	2	3	1
2	0	2	1	0
2	2	1	0	0
3	1	0	0	0
1	0	0	0	0

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Identity Convolution

0	0	0
О	1	0
0	0	0

Convolved Image

1	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	0	0	0	0

Input Image

О	0	0	0	0	0	0
O	1	1	1	1	1	0
О	1	0	0	1	0	0
О	1	0	1	0	0	0
0	1	1	0	0	0	0
О	1	0	0	0	0	0
0	0	0	0	0	0	0

Blurring Convolution

.1	.1	.1
.1	.2	.1
.1	.1	.1

Convolved Image

.4	.5	.5	.5	.4
.4	.2	ņ	.6	.3
•5	.4	•4	.2	.1
.5	.6	.2	.1	0
.4	.3	.1	0	0

Basic idea:

- Pick a 3x3 matrix F of weights
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

Key point:

- Different convolutions extract different types of low-level "features" from an image
- All that we need to vary to generate these different features is the weights of F

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	О	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	О
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

3	3	1
3	1	0
1		

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

3	3	1
3	1	0
1	0	

Downsampling

- Suppose we use a convolution with stride 2
- Only 9 patches visited in input, so only 9 pixels in output

Input Image

1	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

Convolved Image

3	3	1
3	1	0
1	0	0

CONVOLUTIONAL NEURAL NETS

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Machine Learning

- Convolutional Neural Networks (CNNs) provide another form of decision function
 - Let's see what they look like...

2. choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Train with SGD:
ke small steps
opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Convolutional Neural Network (CNN)

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

7

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Convolutional Layer

CNN key idea:

Treat convolution matrix as parameters and learn them!

Input Image

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

Learned Convolution

θ ₁₁	θ_{12}	θ_{13}
θ_{21}	θ_{22}	θ_{23}
θ_{31}	θ_{32}	θ_{33}

Convolved Image

.4	.5	.5	.5	.4
.4	.2	ņ	.6	.3
•5	.4	.4	.2	.1
.5	.6	.2	.1	0
.4	.3	.1	0	0

Downsampling by Averaging

- Downsampling by averaging used to be a common approach
- This is a special case of convolution where the weights are fixed to a uniform distribution
- The example below uses a stride of 2

Input Image

1	1	1	1	1	0
1	О	0	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Convolution

1/4	1/4
1/4	1/4

Convolved Image

3/4	3/4	1/4
3/4	1/4	0
1/4	0	0

Max-Pooling

- Max-pooling is another (common) form of downsampling
- Instead of averaging, we take the max value within the same range as the equivalently-sized convolution
- The example below uses a stride of 2

Input Image

0

0

1

$$y_{ij} = \max(x_{ij}, x_{i,j+1}, x_{i+1,j}, x_{i+1,j+1})$$

TRAINING CNNS

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

3. Define goal:

- $\{\boldsymbol{x}_i,\boldsymbol{y}_i\}_{i=1}^N$ Q: Now that we have the CNN as a decision function, how do we compute the gradient?
 - A: Backpropagation of course!

SGD for CNNs

$$\begin{array}{lll}
\hline SGD & for CNNs \\
\hline Ex: Architecture: & Given $\vec{x}, \vec{y}^* \\
\hline J = l(y, y^*) \\
y = soStruck(z^{(s)}) & Paramators $\vec{\Theta} = [\times, \beta, W] \\
z^{(s)} = lnew(z^{(u)}, W) \\
z^{(s)} = relu(z^{(s)}) & SGD : \\
z^{(s)} = relu(z^{(s)}, \beta) & DInit \vec{\Theta} \\
z^{(s)} = (conv(z^{(s)}, \beta)) & DInit \vec{\Theta} \\
z^{(s)} = (conv(z^{(s)}, \beta)) & Supple i \in \{1, ..., W\} \\
z^{(s)} = conv(\vec{x}, \infty) & Forward: y = h_{\Theta}(\vec{x}^{(i)}), J_{i}(\vec{\Theta}) = l(y, y^*) \\
Backward: V_{\vec{\Theta}}J_{i}(\vec{\Theta}) = ... \\
\hline Vylate: \vec{\Theta} \leftarrow \vec{\Theta} - Ny_{\vec{\Theta}}J_{i}(\vec{\Theta})
\end{array}$$$$

LAYERS OF A CNN

Common CNN Layers

Whiteboard

- ReLU Layer
- Background: Subgradient
- Fully-connected Layer (w/tensor input)
- Softmax Layer
- Convolutional Layer
- Max-Pooling Layer

ReLU Layer

Softmax Layer

Software Layer

Input:
$$\vec{x} \in \mathbb{R}^{K}$$
 Ostput: $\vec{y} \in \mathbb{R}^{K}$

Forward:

 $y_i = \exp(x_i)$
 $k! \exp(x_k)$
 $k = \exp(x_k)$

Where $\frac{dy_i}{dx_j} = \begin{cases} y_i (1-y_i) & \text{if } i=j \\ -y_i y_j & \text{otherwise} \end{cases}$

Fully-Connected Layer

Convolutional Layer

Convolutional Layer

Max-Pooling Layer

Max-Pooling Layer

Convolutional Neural Network (CNN)

- Typical layers include:
 - Convolutional layer
 - Max-pooling layer
 - Fully-connected (Linear) layer
 - ReLU layer (or some other nonlinear activation function)
 - Softmax
- These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998

7

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Architecture #2: AlexNet

CNN for Image Classification

(Krizhevsky, Sutskever & Hinton, 2012) 15.3% error on ImageNet LSVRC-2012 contest

Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax

CNNs for Image Recognition

CNN VISUALIZATIONS

3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/

Convolution of a Color Image

- Color images consist of 3 floats per pixel for RGB (red, green blue) color values
- Convolution must also be 3-dimensional

activation map

Animation of 3D Convolution

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs (in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers

Other Resources:

- Readings on course website
- Andrej Karpathy, CS231n Notes
 http://cs231n.github.io/convolutional-networks/