
Deep Learning

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 14

Mar. 4, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 5: Neural Networks

– Out: Fri, Mar 1

– Due: Fri, Mar 22 at 11:59pm

• Today’s In-Class Poll

– http://p14.mlcourse.org

• Office hours: “HW-X / General”

2

Q&A

3

Q: Do I need to know Matrix Calculus to derive the
backprop algorithms used in this class?

A: No. We’ve carefully constructed our assignments so
that you do not need to know Matrix Calculus.

That said, it’s kind of handy.

Matrix Calculus

4

Types of
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

De
no

m
in

at
or

Types of
Derivatives scalar

scalar

vector

matrix

Matrix Calculus

5

Types of
Derivatives scalar vector

scalar

vector

Matrix Calculus

6

Matrix Calculus

7

Question:

Answer:

Matrix Calculus

8

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the
correct definition of the chain rule?

Recall:

BACKPROPAGATION
Algorithm

9

Backpropagation

Chalkboard
– Example: Backpropagation for Chain Rule #1

10

Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Backpropagation

Chalkboard
– SGD for Neural Network
– Example: Backpropagation for Neural Network

11

Training

Backpropagation

12

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order.

Let u1,…, uM denote all the nodes with vj as an input
Assuming that y = h(u) = h(u1,…, uM)
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing

(dui/dvj) is easy)

Backpropagation

13

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in

the backward pass
2. Reuses partial derivatives throughout the

backward pass (but only if the algorithm reuses
shared computation in the forward pass)

(Key idea: partial derivatives in the backward
pass should be thought of as variables stored
for reuse)

14

Training

SGD with Backprop

15

Training

Example: 1-Hidden Layer Neural Network

Backpropagation

16

Training

Forward Backward

J = cos(u)
dJ

du
= �sin(u)

u = u1 + u2
dJ

du1
=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
=

dJ

du1

du1

dt
,

du1

dt
= (t)

u2 = 3t
dJ

dt
=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = ((x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Backpropagation

17

Training

Forward Backward

J = cos(u)
dJ

du
= �sin(u)

u = u1 + u2
dJ

du1
=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
=

dJ

du1

du1

dt
,

du1

dt
= (t)

u2 = 3t
dJ

dt
=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = ((x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.

Backpropagation

18

Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic
Regression

Forward Backward

J = y� y + (1 � y�) (1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + (�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

(�a)

((�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
= �j

Backpropagation

19

Training

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Backpropagation

20

Training

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Backpropagation

21

Training

Case 2:
Neural
Network

…

…

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

22

Training

Derivative of a Sigmoid

23

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

24

Training

Case 2:
Neural
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

25

Training

Backpropagation

26

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN

a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order.

Let u1,…, uM denote all the nodes with vj as an input
Assuming that y = h(u) = h(u1,…, uM)
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing

(dui/dvj) is easy)

Backpropagation

27

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

SGD with Backprop

28

Training

Example: 1-Hidden Layer Neural Network

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

29

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!

And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

Summary
1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic

regression classifiers
– discover useful hidden representations of the

input
2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic

differentiation
30

Backprop Objectives
You should be able to…
• Construct a computation graph for a function as specified by an

algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the

given and intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g.

L2) when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

• Apply the empirical risk minimization framework to learn a neural
network

• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and

when it can be computed efficiently

31

DECISION BOUNDARIES OF
NEURAL NETWORKS

32

33

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band

34

Example #1: Diagonal Band

35

Example #1: Diagonal Band

36

hidden

Example #1: Diagonal Band

37

hidden

Example #1: Diagonal Band

38

hidden

Example #1: Diagonal Band

39

hidden

Example #1: Diagonal Band

40

hidden

hidden

hiddenhidden

Example #2: One Pocket

41

Example #2: One Pocket

42

Example #2: One Pocket

43

hidden

Example #2: One Pocket

44

hidden

Example #2: One Pocket

45

hidden

Example #2: One Pocket

46

hidden

Example #2: One Pocket

47

hidden

Example #2: One Pocket

48

hidden hidden

hiddenhidden

Example #3: Four Gaussians

49

Example #3: Four Gaussians

50

Example #3: Four Gaussians

51

Example #3: Four Gaussians

52

hidden

Example #3: Four Gaussians

53

hidden

Example #3: Four Gaussians

54

hidden

Example #3: Four Gaussians

55

hidden

Example #4: Two Pockets

56

Example #4: Two Pockets

57

Example #4: Two Pockets

58

Example #4: Two Pockets

59

Example #4: Two Pockets

60

Example #4: Two Pockets

61

hidden

Example #4: Two Pockets

62

hidden

Example #4: Two Pockets

63

hidden

Example #4: Two Pockets

64

hidden

Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary

logistic regression, multinomial logistic regression) as
components to build up feed-forward neural network
architectures

• Explain the reasons why a neural network can model
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning
features

• Identify (some of) the options available when designing
the architecture of a neural network

• Implement a feed-forward neural network

65

DEEP LEARNING

66

Deep Learning Outline
• Background: Computer Vision

– Image Classification
– ILSVRC 2010 - 2016
– Traditional Feature Extraction Methods
– Convolution as Feature Extraction

• Convolutional Neural Networks (CNNs)
– Learning Feature Abstractions
– Common CNN Layers:

• Convolutional Layer
• Max-Pooling Layer
• Fully-connected Layer (w/tensor input)
• Softmax Layer
• ReLU Layer

– Background: Subgradient
– Architecture: LeNet
– Architecture: AlexNet

• Training a CNN
– SGD for CNNs
– Backpropagation for CNNs

67

Why is everyone talking
about Deep Learning?

• Because a lot of money is invested in it…
– DeepMind: Acquired by Google for $400

million
– DNNResearch: Three person startup

(including Geoff Hinton) acquired by Google
for unknown price tag

– Enlitic, Ersatz, MetaMind, Nervana, Skylab:
Deep Learning startups commanding millions
of VC dollars

• Because it made the front page of the
New York Times

68

Why is everyone talking
about Deep Learning?

Deep learning:
– Has won numerous pattern recognition

competitions
– Does so with minimal feature

engineering

69

1960s

1980s

1990s

2006

2016

This wasn’t always the case!
Since 1980s: Form of models hasn’t changed much,
but lots of new tricks…

– More hidden units
– Better (online) optimization
– New nonlinear functions (ReLUs)
– Faster computers (CPUs and GPUs)

BACKGROUND: COMPUTER VISION

70

Example: Image Classification
• ImageNet LSVRC-2011 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

71

72

73

74

Feature Engineering for CV
Edge detection (Canny)

75
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)

Example: Image Classification

76

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)

15.3% error on ImageNet LSVRC-2012 contest

Input

image

(pixels)

• Five convolutional layers

(w/max-pooling)

• Three fully connected layers

1000-way

softmax

CNNs for Image Recognition

77

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He

CONVOLUTION

78

What’s a convolution?

• Basic idea:

– Pick a 3x3 matrix F of weights

– Slide this over an image and compute the “inner product”

(similarity) of F and the corresponding field of the image, and

replace the pixel in the center of the field with the output of the

inner product operation

• Key point:

– Different convolutions extract different types of low-level

“features” from an image

– All that we need to vary to generate these different features is the

weights of F

Slide adapted from William Cohen

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

80

0 0 0

0 1 1

0 1 0

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

81

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

0 0 0

0 1 1

0 1 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

82

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

83

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

84

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

85

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

86

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

87

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

88

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

89

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

90

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

91

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

92

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

93

0 0 0

0 1 0

0 0 0

Identity
Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

Background: Image Processing
A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

94

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

.1 .1 .1

.1 .2 .1

.1 .1 .1

Blurring
Convolution

Input Image

Convolved Image

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen

What’s a convolution?

• Basic idea:

– Pick a 3x3 matrix F of weights

– Slide this over an image and compute the “inner product”

(similarity) of F and the corresponding field of the image, and

replace the pixel in the center of the field with the output of the

inner product operation

• Key point:

– Different convolutions extract different types of low-level

“features” from an image

– All that we need to vary to generate these different features is the

weights of F

Slide adapted from William Cohen

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

102

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

103

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

104

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

105

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

106

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

107

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

108

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0
1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

109

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

110

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0

1 1

1 1

Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

111

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0 0

1 1

1 1

CONVOLUTIONAL NEURAL NETS

112

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

113

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

114

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide
another form of decision function

• Let’s see what they look like…

Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

115

Architecture #1: LeNet-5

Convolutional Layer

116

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea:
Treat convolution matrix as
parameters and learn them!

Downsampling by Averaging
• Downsampling by averaging used to be a common approach
• This is a special case of convolution where the weights are fixed to a

uniform distribution
• The example below uses a stride of 2

117

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3/4 3/4 1/4

3/4 1/4 0

1/4 0 0

1/4 1/4

1/4 1/4

Max-Pooling
• Max-pooling is another (common) form of downsampling
• Instead of averaging, we take the max value within the same range as

the equivalently-sized convolution
• The example below uses a stride of 2

118

Max-
pooling

Input Image

Max-Pooled
Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1

TRAINING CNNS

120

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

122

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

123

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

• Q: Now that we have the CNN
as a decision function, how do
we compute the gradient?

• A: Backpropagation of course!

SGD for CNNs

124

LAYERS OF A CNN

125

Common CNN Layers

Whiteboard
– ReLU Layer
– Background: Subgradient
– Fully-connected Layer (w/tensor input)
– Softmax Layer
– Convolutional Layer
– Max-Pooling Layer

126

ReLU Layer

127

Softmax Layer

128

Fully-Connected Layer

129

Convolutional Layer

130

Convolutional Layer

131

Max-Pooling Layer

132

Max-Pooling Layer

133

Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

134

Architecture #1: LeNet-5

Architecture #2: AlexNet

135

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

CNNs for Image Recognition

136

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He

CNN VISUALIZATIONS

138

3D Visualization of CNN
http://scs.ryerson.ca/~aharley/vis/conv/

Convolution of a Color Image

140

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201623

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

• Color images consist of 3 floats per pixel for
RGB (red, green blue) color values

• Convolution must also be 3-dimensional

Animation of 3D Convolution

141
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser)

142

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Figure from Andrej Karpathy

CNN Summary
CNNs
– Are used for all aspects of computer vision, and

have won numerous pattern recognition
competitions

– Able learn interpretable features at different levels
of abstraction

– Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:
– Readings on course website
– Andrej Karpathy, CS231n Notes

http://cs231n.github.io/convolutional-networks/

143

http://cs231n.github.io/convolutional-networks/

