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Reminders

• Homework 5: Neural Networks

– Out: Fri, Mar 1

– Due: Fri, Mar 22 at 11:59pm

• Today’s In-Class Poll

– http://p14.mlcourse.org

• Office hours: “HW-X / General”
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Q&A
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Q: Do I need to know Matrix Calculus to derive the 
backprop algorithms used in this class?

A: No. We’ve carefully constructed our assignments so 
that you do not need to know Matrix Calculus.

That said, it’s kind of handy.



Matrix Calculus
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Matrix Calculus
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Question:

Answer:

Matrix Calculus
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Suppose y = g(u) and u = h(x)

Which of the following is the 
correct definition of the chain rule?

Recall:



BACKPROPAGATION
Algorithm
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Backpropagation

Chalkboard
– Example: Backpropagation for Chain Rule #1
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Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



Backpropagation

Chalkboard
– SGD for Neural Network
– Example: Backpropagation for Neural Network
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Training



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing 

(dui/dvj) is easy)



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node



Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in 

the backward pass
2. Reuses partial derivatives throughout the 

backward pass (but only if the algorithm reuses 
shared computation in the forward pass)

(Key idea: partial derivatives in the backward 
pass should be thought of as variables stored 
for reuse)
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SGD with Backprop
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Training

Example: 1-Hidden Layer Neural Network



Backpropagation
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Training

Forward Backward

J = cos(u)
dJ

du
= �sin(u)

u = u1 + u2
dJ

du1
=

dJ

du

du

du1
,
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Simple Example: The goal is to compute J = ( (x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.
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Backpropagation
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Training

…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y� y + (1 � y�) (1 � y)
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Backpropagation
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Training

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Backpropagation
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Backpropagation
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Training

Case 2:
Neural 
Network

…

…



Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Training



Derivative of a Sigmoid
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Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN

a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing 

(dui/dvj) is easy)



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node



SGD with Backprop
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Training

Example: 1-Hidden Layer Neural Network



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

29

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 

And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



Summary
1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic 

regression classifiers
– discover useful hidden representations of the 

input
2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic 

differentiation
30



Backprop Objectives
You should be able to…
• Construct a computation graph for a function as specified by an 

algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the 

given and intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. 

L2) when the parameters of a model are comprised of several matrices 
corresponding to different layers of a neural network

• Apply the empirical risk minimization framework to learn a neural 
network

• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and 

when it can be computed efficiently
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DECISION BOUNDARIES OF 
NEURAL NETWORKS
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band

38

hidden



Example #1: Diagonal Band
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Example #2: One Pocket
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Example #2: One Pocket
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary 

logistic regression, multinomial logistic regression) as 
components to build up feed-forward neural network 
architectures

• Explain the reasons why a neural network can model 
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing 
the architecture of a neural network

• Implement a feed-forward neural network
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DEEP LEARNING
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Deep Learning Outline
• Background: Computer Vision

– Image Classification
– ILSVRC 2010 - 2016
– Traditional Feature Extraction Methods
– Convolution as Feature Extraction

• Convolutional Neural Networks (CNNs)
– Learning Feature Abstractions
– Common CNN Layers:

• Convolutional Layer
• Max-Pooling Layer
• Fully-connected Layer (w/tensor input)
• Softmax Layer
• ReLU Layer

– Background: Subgradient
– Architecture: LeNet
– Architecture: AlexNet

• Training a CNN
– SGD for CNNs
– Backpropagation for CNNs
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Why is everyone talking 
about Deep Learning?

• Because a lot of money is invested in it…
– DeepMind:  Acquired by Google for $400 

million
– DNNResearch:  Three person startup 

(including Geoff Hinton) acquired by Google 
for unknown price tag

– Enlitic, Ersatz, MetaMind, Nervana, Skylab: 
Deep Learning startups commanding millions 
of VC dollars

• Because it made the front page of the 
New York Times
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Why is everyone talking 
about Deep Learning?

Deep learning: 
– Has won numerous pattern recognition 

competitions
– Does so with minimal feature 

engineering

69

1960s

1980s

1990s

2006

2016

This wasn’t always the case!
Since 1980s:  Form of models hasn’t changed much, 
but lots of new tricks…

– More hidden units
– Better (online) optimization
– New nonlinear functions (ReLUs)
– Faster computers (CPUs and GPUs)



BACKGROUND: COMPUTER VISION
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Example: Image Classification
• ImageNet LSVRC-2011 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/
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Feature Engineering for CV
Edge detection (Canny)

75
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)

15.3% error on ImageNet LSVRC-2012 contest

Input 

image 

(pixels)

• Five convolutional layers 

(w/max-pooling)

• Three fully connected layers

1000-way 

softmax



CNNs for Image Recognition
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



CONVOLUTION
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What’s a convolution?

• Basic idea:

– Pick a 3x3 matrix F of weights

– Slide this over an image and compute the “inner product” 

(similarity) of F and the corresponding field of the image, and 

replace the pixel in the center of the field with the output of the 

inner product operation

• Key point:

– Different convolutions extract different types of low-level 

“features” from an image

– All that we need to vary to generate these different features is the 

weights of F

Slide adapted from William Cohen



Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen
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What’s a convolution?
http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Slide from William Cohen



What’s a convolution?

• Basic idea:

– Pick a 3x3 matrix F of weights

– Slide this over an image and compute the “inner product” 

(similarity) of F and the corresponding field of the image, and 

replace the pixel in the center of the field with the output of the 

inner product operation

• Key point:

– Different convolutions extract different types of low-level 

“features” from an image

– All that we need to vary to generate these different features is the 

weights of F

Slide adapted from William Cohen



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1

1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0

1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0 0

1 1

1 1



CONVOLUTIONAL NEURAL NETS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

113

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

114

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide 
another form of decision function

• Let’s see what they look like…



Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

115

Architecture #1: LeNet-5



Convolutional Layer
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea: 
Treat convolution matrix as 
parameters and learn them!



Downsampling by Averaging
• Downsampling by averaging used to be a common approach
• This is a special case of convolution where the weights are fixed to a 

uniform distribution
• The example below uses a stride of 2
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3/4 3/4 1/4

3/4 1/4 0

1/4 0 0

1/4 1/4

1/4 1/4



Max-Pooling
• Max-pooling is another (common) form of downsampling
• Instead of averaging, we take the max value within the same range as 

the equivalently-sized convolution
• The example below uses a stride of 2
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Max-
pooling

Input Image

Max-Pooled 
Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1



TRAINING CNNS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

122

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

123

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

• Q: Now that we have the CNN 
as a decision function, how do 
we compute the gradient?

• A: Backpropagation of course!



SGD for CNNs
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LAYERS OF A CNN
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Common CNN Layers

Whiteboard
– ReLU Layer
– Background: Subgradient
– Fully-connected Layer (w/tensor input)
– Softmax Layer
– Convolutional Layer
– Max-Pooling Layer
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ReLU Layer
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Softmax Layer
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Fully-Connected Layer
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Convolutional Layer
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Convolutional Layer
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Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

134

Architecture #1: LeNet-5



Architecture #2: AlexNet
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



CNN VISUALIZATIONS
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3D Visualization of CNN
http://scs.ryerson.ca/~aharley/vis/conv/



Convolution of a Color Image
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201623

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

• Color images consist of 3 floats per pixel for 
RGB (red, green blue) color values

• Convolution must also be 3-dimensional



Animation of 3D Convolution
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


MNIST Digit Recognition with CNNs 
(in your browser)

142

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Figure from Andrej Karpathy



CNN Summary
CNNs
– Are used for all aspects of computer vision, and 

have won numerous pattern recognition 
competitions

– Able learn interpretable features at different levels 
of abstraction

– Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:
– Readings on course website
– Andrej Karpathy, CS231n Notes

http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/

