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Reminders

• Homework 4: Logistic Regression
– Out: Fri, Feb 15
– Due: Fri, Mar 1 at 11:59pm

• Homework 5: Neural Networks
– Out: Fri, Mar 1
– Due: Fri, Mar 22 at 11:59pm

• Today’s In-Class Poll
– http://p13.mlcourse.org
– Also linked from Schedule page on

mlcourse.org
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Q&A
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Q: What is mini-batch SGD?

A: A variant of SGD…



Mini-Batch SGD

• Gradient Descent: 
Compute true gradient exactly from all N 
examples

• Mini-Batch SGD: 
Approximate true gradient by the average 
gradient of K randomly chosen examples

• Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient 
of one randomly chosen example
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Mini-Batch SGD
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Three variants of first-order optimization:



DIFFERENTIATION
Computing Gradients
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)



Approaches to 
Differentiation

• Question 1:
When can we compute the gradients for an 
arbitrary neural network?

• Question 2:
When can we make the gradient 
computation efficient?
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Training



Approaches to 
Differentiation

1. Finite Difference Method
– Pro: Great for testing implementations of backpropagation
– Con: Slow for high dimensional inputs / outputs
– Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation
– Note: The method you learned in high-school
– Note: Used by Mathematica / Wolfram Alpha / Maple
– Pro: Yields easily interpretable derivatives
– Con: Leads to exponential computation time if not carefully implemented
– Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode
– Note: Called Backpropagation when applied to Neural Nets
– Pro: Computes partial derivatives of one output f(x)i with respect to all inputs xj in time proportional 

to computation of f(x)
– Con: Slow for high dimensional outputs (e.g. vector-valued functions)
– Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode
– Note: Easy to implement. Uses dual numbers.
– Pro: Computes partial derivatives of all outputs f(x)i with respect to one input xj in time proportional 

to computation of f(x)
– Con: Slow for high dimensional inputs (e.g. vector-valued x)
– Required: Algorithm for computing f(x)
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Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon
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Symbolic Differentiation
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A. [42, -72]

B. [72, -42]
C. [100, 127]

D. [127, 100]

E. [1208, 810]

F. [810, 1208]
G. [1505, 94]

H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Symbolic Differentiation

Differentiation Quiz #2:
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…

…

…



CHAIN RULE
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Chain Rule

Chalkboard
– Chain Rule of Calculus
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Chain Rule
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2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)
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Chain Rule:
Given: 

…



Chain Rule
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Chain Rule:
Given: 

…
Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.



BACKPROPAGATION
Intuitions
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Error Back-Propagation

19
Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)



BACKPROPAGATION
Algorithm
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Backpropagation

Chalkboard
– Example: Backpropagation for Chain Rule #1
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Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



Backpropagation
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Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The 

algorithm defines a directed acyclic graph, where each variable is a 
node (i.e. the “computation graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables


