10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Backpropagation

Matt Gormley
Lecture 13
Feb. 27, 2019

Reminders

* Homework 4: Logistic Regression
— Out: Fri, Feb 15
— Due: Fri, Mar 1 at 11:59pm
* Homework 5: Neural Networks
— Out: Fri, Mar 1
— Due: Fri, Mar 22 at 11:59pm
* Today’s In-Class Poll
— http://p13.mlcourse.org

— Also linked from Schedule page on
mlcourse.org

Q&A

A: A variant of SGD...

Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N
examples

e Mini-Batch SGD:

Approximate true gradient by the average
gradient of K randomly chosen examples

» Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

Mini-Batch SGD

while not converged: 6 <— 0 — \g

Three variants of first- order opt|m|zat|on'

(3)
Gradient Descent: g = V.J (@ N Z VJY
SGD: g = VJ'(0) where i sampled uniformly

S
| S
Mini-batch SGD: g = 5 Z v.J)(9) where i, sampled uniformly Vs

DIFFERENTIATION

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)

Approaches to

Trainin
5 Differentiation

* Question 1:
When can we compute the gradients for an
arbitrary neural network?

* Question 2:
When can we make the gradient
computation efficient?

Approaches to

T
raining Differentiation

1. Finite Difference Method
- Pro: Great for testing implementations of backpropagation Given f .]RA —]RB, f(x)

- Con: Slow for high dimensional inputs [outputs

— Required: Ability to call the function f(x) on any input x 8f(x)
2. Symbolic Differentiation Compute

- Note: The method you learned in high-school 8w_7

- Note: Used by Mathematica / Wolfram Alpha / Maple

Y, g

— Pro: Yields easily interpretable derivatives
— Con: Leads to exponential computation time if not carefully implemented
— Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode
- Note: Called Backpropagation when applied to Neural Nets
— Pro: Computes partial derivatives of one output f(x); with respect to all inputs x; in time proportional
to computation of f(x)
— Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)
4. Automatic Differentiation - Forward Mode
- Note: Easy to implement. Uses dual numbers.

— Pro: Computes partial derivatives of all outputs f(x); with respect to one input x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

Training Finite Difference Method

The centered finite difference approximation is:

0 _(J(O+e-di)—J(O—¢-d;))
50, J(0) ~ > (1)

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1. R

Notes:

* Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples

with an appropriately
chosen epsilon

6 6 10

Training Symbolic Differentiation

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = explaz) log(x) Tz

Answer: Answers below are in the form [dy/dx, dy/dz]

A. [42,-72] E. [1208, 810]
B. [72,-42] F. [810,1208]
C. [100, 127] G. [1505, 94]
D. [127,100] H. [94,1505]

Training Symbolic Differentiation

Differentiation Quiz #2:
A neural network with 2 hidden layers can be written as:

y =o(B o((@®)o((aV)x))

wherey € R, x € RP"”, B8 € RP™ and a!? isa D) x pi-1)
matrix. Nonlinear functions are applied elementwise:

o(a) = [o(a1),

- - ® — 1
Let o be sigmoid: o(a) = 15—
. bR o .
What is 0.—-’—5] and ¥ forall 4, j.

Jdox

J

CHAIN RULE

Training Chain Rule

Chalkboard

— Chain Rule of Calculus

Training Chain Rule

B

Training Chain Rule

BACKPROPAGATION

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

19

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

20

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

21

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

22

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

23

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

24

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

25

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

26

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

27

Error Back-Propagation

Slide from (Stoyanov & Eisner, 2012)

28

BACKPROPAGATION

Training Backpropagation

Chalkboard

— Example: Backpropagation for Chain Rule #1

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(z2) 1 log(x) | Tz

Training Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The
algorithm defines a directed acyclic graph, where each variable is a
node (i.e. the “computation graph”)

2. Visit each node in topological order.
For variable u; with inputs v,,..., vy
a. Computeuy; = %i(v"..., Vn)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/du; to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.
For variable u; = gi(v,,..., Vy)
a. We already know dy/du
b. Increment dy/dv; by (dy/du;)(du;/dv;)
(Choice of algorithm ensures computing (du;/dv;) is easy)

Return partial derivatives dy/du; for all variables

