

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Backpropagation

Matt Gormley Lecture 13 Feb. 27, 2019

Reminders

- Homework 4: Logistic Regression
 - Out: Fri, Feb 15
 - Due: Fri, Mar 1 at 11:59pm
- Homework 5: Neural Networks
 - Out: Fri, Mar 1
 - Due: Fri, Mar 22 at 11:59pm
- Today's In-Class Poll
 - http://p13.mlcourse.org
 - Also linked from Schedule page on mlcourse.org

Q&A

Q: What is mini-batch SGD?

A: A variant of SGD...

Mini-Batch SGD

Gradient Descent:

Compute true gradient exactly from all N examples

Mini-Batch SGD:

Approximate true gradient by the average gradient of K randomly chosen examples

Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient of one randomly chosen example

Mini-Batch SGD

while not converged: $\theta \leftarrow \theta - \lambda g$

Three variants of first-order optimization:

Gradient Descent:
$$\mathbf{g} = \nabla J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^N \nabla J^{(i)}(\boldsymbol{\theta})$$
 SGD: $\mathbf{g} = \nabla J^{(i)}(\boldsymbol{\theta})$ where i sampled uniformly Mini-batch SGD: $\mathbf{g} = \frac{1}{S} \sum_{s=1}^S \nabla J^{(i_s)}(\boldsymbol{\theta})$ where i_s sampled uniformly $\forall s$

Computing Gradients

DIFFERENTIATION

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Approaches to Differentiation

Question 1:

When can we compute the gradients for an arbitrary neural network?

Question 2:

When can we make the gradient computation efficient?

Approaches to Differentiation

1. Finite Difference Method

- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation

- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha / Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets
- Pro: Computes partial derivatives of one output $f(x)_i$ with respect to all inputs x_j in time proportional to computation of f(x)
- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode

- Note: Easy to implement. Uses dual numbers.
- Pro: Computes partial derivatives of all outputs $f(x)_i$ with respect to one input x_j in time proportional to computation of f(x)
- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

Given
$$f: \mathbb{R}^A \to \mathbb{R}^B, f(\mathbf{x})$$

Compute $\frac{\partial f(\mathbf{x})_i}{\partial x_j} \forall i,j$

Finite Difference Method

The centered finite difference approximation is:

$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{(J(\boldsymbol{\theta} + \epsilon \cdot \boldsymbol{d}_i) - J(\boldsymbol{\theta} - \epsilon \cdot \boldsymbol{d}_i))}{2\epsilon} \tag{1}$$

where d_i is a 1-hot vector consisting of all zeros except for the ith

entry of d_i , which has value 1.

Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon

Symbolic Differentiation

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Answer: Answers below are in the form [dy/dx, dy/dz]

Symbolic Differentiation

Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:

$$y = \sigma(\boldsymbol{\beta}^T \sigma((\boldsymbol{\alpha}^{(2)})^T \sigma((\boldsymbol{\alpha}^{(1)})^T \mathbf{x}))$$

where $y \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^{D^{(0)}}$, $\boldsymbol{\beta} \in \mathbb{R}^{D^{(2)}}$ and $\boldsymbol{\alpha}^{(i)}$ is a $D^{(i)} \times D^{(i-1)}$ matrix. Nonlinear functions are applied elementwise:

$$\sigma(\mathbf{a}) = [\sigma(a_1), \dots, \sigma(a_K)]^T$$

Let σ be sigmoid: $\sigma(a)=\frac{1}{1+exp-a}$ What is $\frac{\partial y}{\partial \beta_j}$ and $\frac{\partial y}{\partial \alpha_j^{(i)}}$ for all i,j.

CHAIN RULE

Chain Rule

Chalkboard

Chain Rule of Calculus

Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation is just repeated application of the chain rule from Calculus 101.

Intuitions

BACKPROPAGATION

Algorithm

BACKPROPAGATION

Backpropagation

Chalkboard

Example: Backpropagation for Chain Rule #1

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order.
 - For variable u_i with inputs v₁,..., v_N
 - a. Compute $u_i = g_i(v_1, ..., v_N)$ b. Store the result at the node

Backward Computation

- Initialize all partial derivatives dy/du_i to 0 and dy/dy = 1.
- Visit each node in reverse topological order.
 - For variable $u_i = g_i(v_1,..., v_N)$ a. We already know dy/du_i

 - b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_i) is easy)