

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Networks

Matt Gormley Lecture 12 Feb. 25, 2019

Reminders

- Homework 4: Logistic Regression
 - Out: Fri, Feb 15
 - Due: Fri, Mar 1 at 11:59pm
- Homework 5: Neural Networks
 - Out: Fri, Mar 1
 - Due: Fri, Mar 22 at 11:59pm

Q&A

NEURAL NETWORKS

Background

A Recipe for Machine Learning

1. Given training data:

$$\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 3. Define goal: $m{ heta}^* = rg \min_{m{ heta}} \sum_{i=1}^N \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$
- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

4. Train with SGD: (take small steps

opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

A Recipe for

Goals for Today's Lecture

- 1. Explore a new class of decision functions (Neural Networks)
 - 2. Consider variants of this recipe for training

2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Train with SGD:
ke small steps
opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Linear Regression

Logistic Regression

Logistic Regression

Logistic Regression

Perceptron

Neural Network

Neural Network Model

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

"Combined logistic models"

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Not really, no target for hidden units...

Independent variables

Weights

Hidden Layer Weights

Dependent variable

From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology...

Biological "Model"

- Neuron: an excitable cell
- **Synapse:** connection between neurons
- A neuron sends an electrochemical pulse along its synapses when a sufficient voltage change occurs
- Biological Neural Network: collection of neurons along some pathway through the brain

Artificial Model

- Neuron: node in a directed acyclic graph (DAG)
- Weight: multiplier on each edge
- Activation Function: nonlinear thresholding function, which allows a neuron to "fire" when the input value is sufficiently high
- Artificial Neural Network: collection of neurons into a DAG, which define some differentiable function

Biological "Computation"

- Neuron switching time: ~ 0.001 sec
- Number of neurons: ~ 10¹⁰
- Connections per neuron: ~ 10⁴⁻⁵
- Scene recognition time: ~ 0.1 sec

Artificial Computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

Neural Networks

Chalkboard

- Example: Neural Network w/1 Hidden Layer
- Example: Neural Network w/2 Hidden Layers
- Example: Feed Forward Neural Network

Neural Network

Neural Network for Classification

Neural Network Parameters

Question:

Suppose you are training a one-hidden layer neural network with sigmoid activations for binary classification.

True or False: There is a unique set of parameters that maximize the likelihood of the dataset above.

Answer:

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- # of hidden layers (depth)
- 2. # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function

Q: How many layers should we use?

Q: How many layers should we use?

Q: How many layers should we use?

Q: How many layers should we use?

Theoretical answer:

- A neural network with 1 hidden layer is a universal function approximator
- Cybenko (1989): For any continuous function g(x), there exists a 1-hidden-layer neural net $h_{\theta}(x)$ s.t. $|h_{\theta}(x) g(x)| < \epsilon$ for all x, assuming sigmoid activation functions

Empirical answer:

- Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
- After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

Big caveat: You need to know and use the right tricks.

Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!

Different Levels of Abstraction

Face Recognition:

- Deep Network
 can build up
 increasingly
 higher levels of
 abstraction
- Lines, parts, regions

Different Levels of Abstraction

Neural Network with sigmoid activation functions

Neural Network with arbitrary nonlinear activation functions

Sigmoid / Logistic Function

$$logistic(u) = \frac{1}{1 + e^{-u}}$$

So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...

- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs

Alternate 1: tanh

Like logistic function but shifted to range [-1, +1]

Understanding the difficulty of training deep feedforward neural networks

Figure from Glorot & Bentio (2010)

- A new change: modifying the nonlinearity
 - reLU often used in vision tasks

 $\max(0, w \cdot x + b)$.

Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient when you pass zero)

- A new change: modifying the nonlinearity
 - reLU often used in vision tasks

Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn't saturate (at one end) Sparsifies outputs Helps with vanishing gradient

Decision Functions

Neural Network

Neural Network for Classification

Decision Functions

Neural Network

Neural Network for Regression

Objective Functions for NNs

Quadratic Loss:

- the same objective as Linear Regression
- i.e. mean squared error

2. Cross-Entropy:

- the same objective as Logistic Regression
- i.e. negative log likelihood
- This requires probabilities, so we add an additional "softmax" layer at the end of our network

Quadratic
$$J = \frac{1}{2}(y - y^*)^2$$

Cross Entropy
$$J = y^* \log(y) + (1 - y^*) \log(1 - y)$$

Backward

$$\begin{array}{ll} {\rm Quadratic} & J = \frac{1}{2} (y - y^*)^2 & \qquad \frac{dJ}{dy} = y - y^* \\ {\rm Cross \ Entropy} & J = y^* \log(y) + (1 - y^*) \log(1 - y) & \frac{dJ}{dy} = y^* \frac{1}{y} + (1 - y^*) \frac{1}{y - 1} \end{array}$$

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Multi-Class Output

Multi-Class Output

Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$

Neural Network Errors

Question A: On which of the datasets below could a one-hidden layer neural network achieve zero *classification* error? **Select all that apply.**

Question B: On which of the datasets below could a one-hidden layer neural network for regression achieve nearly zero MSE? **Select all that apply.**

DECISION BOUNDARY EXAMPLES

Example #3: Four Gaussians

Example #4: Two Pockets

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

Example #3: Four Gaussians

Example #3: Four Gaussians

Tuned Neural Network (hidden=2, activation=logistic)

Tuned Neural Network (hidden=3, activation=logistic)

Tuned Neural Network (hidden=4, activation=logistic)

Tuned Neural Network (hidden=10, activation=logistic)

Neural Networks Objectives

You should be able to...

- Explain the biological motivations for a neural network
- Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
- Explain the reasons why a neural network can model nonlinear decision boundaries for classification
- Compare and contrast feature engineering with learning features
- Identify (some of) the options available when designing the architecture of a neural network
- Implement a feed-forward neural network